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Holomorphically symplectic manifolds (reminder)

DEFINITION: A holomorphically symplectic manifold is a complex manifold
equipped with non-degenerate, holomorphic (2,0)-form.

DEFINITION: For the rest of this talk, a hyperkahler manifold is a com-
pact, Kahler, holomorphically symplectic manifold.

DEFINITION: A hyperkdahler manifold M is called simple, or IHS if m{(M) =
0, H%O(M) = C.

Bogomolov’s decomposition: Any hyperkahler manifold admits a finite cov-
ering which is a product of a torus and several simple hyperkahler manifolds.

Further on, all hyperkahler manifolds are assumed to be simple.
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The Bogomolov-Beauville-Fujiki form (reminder)

THEOREM: (Fujiki). Let n € H2(M), and dimM = 2n, where M is hy-
perkdhler. Then [,;7°" = cq(n,n)"™, for some primitive integer quadratic form
g on H2(M,Z), and ¢ > 0 a rational number.

Definition: This form is called Bogomolov-Beauville-Fujiki form. It is
defined by the Fujiki’'s relation uniquely, up to a sign. The sign is
determined from the following formula (Bogomolov, Beauville)

Aa(n, 1) = /Xn AnAQTTIAT L

1 _ e
_n (/ n/\Q”_l/\Q”> (/ nAQPAQ" 1)
n X X

where €2 is the holomorphic symplectic form, and A\ > 0.

Remark: ¢ has signature (3,6, — 3). It is negative definite on primitive
forms, and positive definite on (Q2,Q,w), where w is a Kahler form.
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Automorphisms of cohomology.

THEOREM: Let M be a simple hyperkahler manifold, and G C GL(H*(M)) a
group of automorphisms of its cohomology algebra preserving the Pontryagin
classes. Then G acts on HQ(M) preserving the BBF form. Moreover, the
map G — O(H?(M,R),q) is surjective on a connected component, and
has compact kernel.

Proof. Step 1: Fujiki formula v2" = ¢q(v,v)™ implies that G preserves the
Bogomolov-Beauville-Fujiki up to a sign. The sign is fixed, if n is odd.

Step 2: For even n, the sign is also fixed. Indeed, G preserves p1 (M), and (as
Fujiki has shown) v2" 2 A p1 (M) = q(v,v)" ¢, for some ¢ € R. The constant
c is positive, because the degree of c>(B) is positive for any non-trivial
stable bundle with ¢1(B) = 0.

Step 3: o(H2(M,R),q) acts on H*(M,R) by derivations preserving Pontryagin
classes (V., 1995). Therefore Lie(G) surjects to o(H2(M,R),q).

Step 4: The kernel K of the map G — G‘HQ(M R) IS compact, because it
commutes with the Hodge decomposition and Lefschetz si(2)-action, hence
preserves the Riemann-Hodge form. m
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Sullivan’s theorem

Theorem: (Dennis Sullivan)

Let M be a compact, simply connected Kahler manifold, dimg M > 3. Denote
by g the group of automorphisms of an algebra H*(M,7Z) preserving the
Pontryagin classes p;(M). Then the natural map Diff(M )/ Diffp — g has
finite kernel, and its image has finite index in [ .

Theorem: Let M be a simple hyperkahler manifold, and g as above. Then
() I‘O)HQ(MZ) is a finite index subgroup of O(H?2(M,Z),q).
(ii) The map My — O(H?2(M,Z),q) has finite kernel.

Proof: Follows from the computation of G = Aut(H*(M,R), pq,...,pn) done
earlier. Indeed, the kernel of I_O‘HQ(M7Z) IS a set of integer points of a com-
pact Lie group, hence finite. The image of g = Gy has finite index in
O(H?(M,Z),q), because the corresponding map of Lie groups is surjective. m
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Computation of the mapping class group

COROLLARY: The mapping class group I is mapped to O(H?(M,7Z),q)
with finite kernel and finite index.

Proof: By Sullivan, ' is mapped to [ with finite kernel and finite index, and
Mo — O(H?%(M,Z),q) has finite kernel and finite index, as shown above. =

THEOREM: (Kollar-Matsusaka, Huybrechts) There are only finitely many
connected components of Teich.

COROLLARY: Let 'y be the group of elements of mapping class group
preserving a connected component of Teichmuller space containing I € Teich.
Then [; has finite index in [.

REMARK: [; is a group generated by monodromy of all Gauss-Manin local
systems for all deformations of (M, I). It is known as the monodromy group
of (M, I).
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The period map

Remark: For any J € Teich, (M, J) is also a simple hyperkahler manifold,
hence H29(M,J) is one-dimensional.

Definition: Let P : Teich — PH?2(M,C) map J to a line H29(M,J) €
PH2(M,C). The map P: Teich — PH?2(M,C) is called the period map.

REMARK: P maps Teich into an open subset of a quadric, defined by

Per := {l € PH?(M,C) | q¢(l,1) =0,q(l,1) > 0.

It is called the period space of M.
REMARK: Per = SO(bp — 3,3)/S50(2) x SO(bp —3,1)

THEOREM: (Bogomolov)
Let M be a simple hyperkahler manifold, and Teich its Teichmiuller space.
Then The period map P : Teich — Per is etale.

REMARK: Bogomolov's theorem implies that Teich is smooth. It is usually

non-Hausdorff.
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Birational equivalence and non-separable points

DEFINITION: Let M be a topological space. We say that =,y € M are non-
separable (denoted by =z ~ y) if for any open sets V >z, U>y, UNV #£ 0.

THEOREM: (D. Huybrechts) If I1, I» € Teich are non-separable points, then
P(I1) = P(I»), and (M, I7) is birationally equivalent to (M, I»).

DEFINITION: Let M be a topological space for which M/ ~ is Hausdorff.
Then M/ ~ is called a Hausdorff reduction of M.

DEFINITION: The space Teich, := Teich / ~ is called the birational Te-
ichmuller space of M.

THEOREM: (Global Torelli theorem)

Let (M, I) be a hyperkahler manifold, and Teichg a connected component of
its birational Teichmuller space. Then Teichg IS iIsomorphic to Per, where
Per = SO(by — 3,3)/50(2) x SO(bp —3,1). Two points in Teichg coorespond
to birational manifolds if they lie in the same M -orbit, where 'l is the mon-
odromy group. Finally, ! is an arithmetic lattice in SO(b, — 3, 3).
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The group of symplectic Hodge monodromy

DEFINITION: Let (M,I) be a hyperkahler manifold. Then the Hodge
monodromy group Mon; (M) is the group of all a € Mon(M) preserving the
Hodge decomposition on H2(M).

DEFINITION: Let €2 be a holomorphic symplectic form on a hyperkahler
manifold. Consider the homomorphism ¢ : Mon;(M) — C*, p(vy) = ”y%ﬂ De-
note its kernel by Mon; (M, I). Thigroup is called the group of symplectic
Hodge monodromy.

Claim 1: Consider the Hodge lattice A = Hll’l(M, Z). Then the natural
homomorphism Mon; (M, ) — O(A) is injective and has finite index.

Proof: Let H%(M) = Hll’l(M, Q)71 be the “transcendental part” of the Hodge
lattice, that is, the smallest Hodge substructure containing Re H29(M). By
definition,

Mon; (M, 1) = {a e Mon(M) ‘ a

—

Since Mon(M) is an arithmetic lattice subgroup in O(H?(M,Z)), Mon; (M, )
is an arthmetic lattice in the group of isometries of ILI,?T(M)L =A. =

9



Hyperkahler geometry and hyperbolic gometry M. Verbitsky

MBM classes (reminder)

DEFINITION: Negative class on a hyperkahler manifold is n € Hy(M,R) =
H?(M,R) satisfying ¢(n,n) < 0. It is effective if it is represented by a curve.

THEOREM: Let z € H>(M,Z) be negative, and I,I' complex structures in
the same deformation class, such that z is of type (1,1) with respect to I and
I' and Pic(M) = (z). Then +z is effective in (M, I) < iff it is effective in
(M, 1.

REMARK: From now on, we identify H2(M) and H»(M) using the BBF
form. Under this identification, integer classes in H»(M) correspond to
rational classes in H2(M) (the form ¢ is not unimodular).

DEFINITION: A negative class z € H2(M,Z) on a hyperkdhler manifold is

called an MBM class if there exist a deformation of M with Pic(M) = (z)
such that Az is represented by a curve, for some X\ #= 0.
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MBM classes and the shape of the Kahler cone (reminder)

THEOREM: Let (M, I) be a hyperkdhler manifold, and S C Hy 1(M,I) the
set of all MBM classes in Hj 1(M,I). Consider the corresponding set of
hyperplanes S+ := {W =21 | ze S} in HYY(M,I). Then the Kahler cone
of (M,I) is a connected component of Pos(M, )\ U S+, where Pos(M,I)
is a positive cone of (M,I). Moreover, for any connected component K of
Pos(M,I)\ U S+, there exists v € O(H2(M)) in a monodromy group of M,
and a hyperkahler manifold (M, I") birationally equivalent to (M, I), such that
~v(K) is a Kahler cone of (M,I).

REMARK: This implies that MBM classes correspond to faces of the
Kahler cone.

DEFINITION: Kahler chamber is a connected component of
Pos(M, I)\ U S-+.

CLAIM: The Hodge monodromy group maps Kahler chambers to Kahler
chambers.
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MBM classes and automorphisms

THEOREM: Let (M,I) be a hyperkahler manifold, Mon(M) the group of
automorphisms of H2(M) generated by monodromy transform for all Gauss-
Manin local systems, and Mon;(M) the Hodge monodromy group, that is, a
subgroup of Mon(M) preserving the Hodge decomposition. Then Aut(M) is
a subgroup of Mon;(M) preserving the Kahler cone Kah(M).

COROLLARY: Let (M, I) be a hyperkahler manifold such that there are no
MBM classes of type (1,1). Then Aut(M) = Mon;(M).

Proof: Indeed, for such manifold Kah(M,I) = Pos(M,I). =
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Morrison-Kawamata cone conjecture

DEFINITION: An integer cohomology class a is primitive if it is not divisible
by integer numbers ¢ > 1.

THEOREM: (a version of Morrison-Kawamata cone conjecture)
The group Mon(M) acts on the set of primitive MBM classes with
finitely many orbits.

Proof: Proven by Amerik-V., using homogeneous dynamics (Ratner theo-
rems, Dani-Margulis, Mozes-Shah). =

COROLLARY: Let M be a hyperkahler manifold. Then there exists a
number N > 0O, called an MBM bound, such that any MBM class z satisfies

(2, 2)| < N.

Proof: There are only finitely many primitive MBM classes, up to isometry
action, and the have finitely many squares. m

Corollary 1: Let M be a hyperkahler manifold, N its MBM bound, and (M, I)
a deformation such that for any x € H}’l(M, 7Z) one has q(xz,z) > N. Then
(M,I) has no MBM classes of type (1,1), and Kah(M,I) = Pos(M,I) and
Aut(M) = Mon;(M). =

13



Hyperkahler geometry and hyperbolic gometry M. Verbitsky

Classification of automorphisms of a hyperbolic space

REMARK: The group O(m,n),m,n > 0 has 4 connected components. We
denote the connected component of 1 by SO"‘(m,n). We call a vector v
positive if its square is positive.

DEFINITION: Let V be a vector space with quadratic form ¢ of signature
(1,n), Pos(V) = {x € V | q(z,z) > 0} its positive cone, and PTV projec-
tivization of Pos(V). Denote by g any SO(V)-invariant Riemannian structure
on PTV. Then (P1V,g) is called hyperbolic space, and the group SOT(V)
the group of oriented hyperbolic isometries.

Theorem-definition: Let n > 0, and a € SOT(1,n) is an isometry acting on
V. Then one and only one of these three cases occurs

(i) o has an eigenvector x with g(x,z) > 0 (« is “elliptic isometry”)

(i) o has an eigenvector z with ¢(x,z) = 0 and eigenvalue )\, satisfying
Az| > 1 (a is “hyperbolic isometry”)

(iii) o has a unique eigenvector z with ¢g(xz,2) = 0. (« is “parabolic
isometry”)

DEFINITION: An automorphism of a hyperkahler manifold (M, I) is called
elliptic (parabolic, hyperbolic) if it is elliptic (parabolic, hyperbolic) on
Hp (M, R).
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Primitive sublattices with an MBM bound

DEFINITION: Integer lattice, or quadratic lattice, or just lattice is Z"
equipped with an integer-valued quadratic form. When we speak of em-
bedding of lattices, we always assume that they are compatible with
the quadratic form.

DEFINITION: A sublattice A’ C A is called primitive if (NN ®7;Q)NA =N
A number a is represented by a lattice (A,q) if a = g(x,z) for some x € A.
Minumum of a lattice is the number min A := ming|q(z,x)|, taken over all
x € N.

Theorem 1: Let (A,q) be a lattice of signature (n,m), n >3,m > 2. Fix a
number N > 0. Then there exists a primitive sublattice A’ C A of rank
2, signature (1,1) with min A’ > N.

Proof: Takes some number theory (Hilbert symbols, quadratic residues). For
unimodular lattices it is Witt-Nikulin theorem.

DEFINITION: Let M be a hyperkahler manifold, A = HQ(M, 7), q the BBF
form. A primitive sublattice A ¢ H?(M,Z) satisfies MBM bound if its
minimum is > N, where N is the MBM bound of M.
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Sublattices with MBM bound and automorphisms

REMARK: By Torelli theorem, for any primitive sublattice A C HQ(M, 7),
there exists a complex structure I such that A = H]l’l(M, 7), if
H?2(M,R)/(A ®z R) has signature (p,q) with p > 2.

THEOREM: Let M be a hyperkahler manifold, and A C HQ(M, 7)) a primitive
sublattice satisfying the MBM bound. Let (M,I) be a deformation of M
such that A = H}’l(M, 7). Then the group of holomorphic symplectic
automorphisms Aut(M,2) = Mon; (M) surjects to a subgroup of finite
index in O(N\).

Proof: Since N = HIl’l(M,Z) satisfies MBM bound, it contains no MBM

classes. By Corollary 1, this gives Aut(M, 2) = Mon (M). Now, Mon; (M)
is a finite index subgroup in O(A), as follows from Claim 1. =
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EXxistence of hyperbolic automorphisms

THEOREM: Let M be a hyperkahler manifold, with »(M) > 7. Then
M has a deformation admitting a hyperbolic automorphism.

Proof. Step 1: Find a primitive rank 2 sublattice A ¢ H2(M,Z) satisfying
the MBM bound. Using Torelli theorem, we construct a deformation M’ of
M which has A = HLY (M) n H2(M',Z).

Proof. Step 2: For such M’, the group of symplectic automorphisms surjects
to a finite index subgroup of O(A).

Proof. Step 3: If A isrank 2, signature (1,1) quadratic lattice not represent-

ing 0, the group O(A) has infinite order (follows from Dirichlet unit theorem).
u
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