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Holomorphically symplectic manifolds (reminder)

DEFINITION: A holomorphically symplectic manifold is a complex manifold

equipped with non-degenerate, holomorphic (2,0)-form.

DEFINITION: For the rest of this talk, a hyperkähler manifold is a com-

pact, Kähler, holomorphically symplectic manifold.

DEFINITION: A hyperkähler manifold M is called simple, or IHS if π1(M) =

0, H2,0(M) = C.

Bogomolov’s decomposition: Any hyperkähler manifold admits a finite cov-

ering which is a product of a torus and several simple hyperkähler manifolds.

Further on, all hyperkähler manifolds are assumed to be simple.
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The Bogomolov-Beauville-Fujiki form (reminder)

THEOREM: (Fujiki). Let η ∈ H2(M), and dimM = 2n, where M is hy-

perkähler. Then
∫
M η2n = cq(η, η)n, for some primitive integer quadratic form

q on H2(M,Z), and c > 0 a rational number.

Definition: This form is called Bogomolov-Beauville-Fujiki form. It is

defined by the Fujiki’s relation uniquely, up to a sign. The sign is

determined from the following formula (Bogomolov, Beauville)

λq(η, η) =
∫
X
η ∧ η ∧Ωn−1 ∧Ωn−1−

−
n− 1

n

(∫
X
η ∧Ωn−1 ∧Ωn

)(∫
X
η ∧Ωn ∧Ωn−1

)
where Ω is the holomorphic symplectic form, and λ > 0.

Remark: q has signature (3, b2 − 3). It is negative definite on primitive

forms, and positive definite on 〈Ω,Ω, ω〉, where ω is a Kähler form.
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Automorphisms of cohomology.

THEOREM: Let M be a simple hyperkähler manifold, and G ⊂ GL(H∗(M)) a
group of automorphisms of its cohomology algebra preserving the Pontryagin
classes. Then G acts on H2(M) preserving the BBF form. Moreover, the
map G−→O(H2(M,R), q) is surjective on a connected component, and
has compact kernel.

Proof. Step 1: Fujiki formula v2n = cq(v, v)n implies that G preserves the
Bogomolov-Beauville-Fujiki up to a sign. The sign is fixed, if n is odd.

Step 2: For even n, the sign is also fixed. Indeed, G preserves p1(M), and (as
Fujiki has shown) v2n−2 ∧ p1(M) = q(v, v)n−1c, for some c ∈ R. The constant
c is positive, because the degree of c2(B) is positive for any non-trivial
stable bundle with c1(B) = 0.

Step 3: o(H2(M,R), q) acts on H∗(M,R) by derivations preserving Pontryagin
classes (V., 1995). Therefore Lie(G) surjects to o(H2(M,R), q).

Step 4: The kernel K of the map G−→G
∣∣∣H2(M,R) is compact, because it

commutes with the Hodge decomposition and Lefschetz sl(2)-action, hence
preserves the Riemann-Hodge form.
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Sullivan’s theorem

Theorem: (Dennis Sullivan)

Let M be a compact, simply connected Kähler manifold, dimCM > 3. Denote

by Γ0 the group of automorphisms of an algebra H∗(M,Z) preserving the

Pontryagin classes pi(M). Then the natural map Diff(M)/Diff0 −→ Γ0 has

finite kernel, and its image has finite index in Γ0.

Theorem: Let M be a simple hyperkähler manifold, and Γ0 as above. Then

(i) Γ0

∣∣∣H2(M,Z) is a finite index subgroup of O(H2(M,Z), q).

(ii) The map Γ0 −→O(H2(M,Z), q) has finite kernel.

Proof: Follows from the computation of G = Aut(H∗(M,R), p1, ..., pn) done

earlier. Indeed, the kernel of Γ0

∣∣∣H2(M,Z) is a set of integer points of a com-

pact Lie group, hence finite. The image of Γ0 = GZ has finite index in

O(H2(M,Z), q), because the corresponding map of Lie groups is surjective.
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Computation of the mapping class group

COROLLARY: The mapping class group Γ is mapped to O(H2(M,Z), q)

with finite kernel and finite index.

Proof: By Sullivan, Γ is mapped to Γ0 with finite kernel and finite index, and

Γ0 −→O(H2(M,Z), q) has finite kernel and finite index, as shown above.

THEOREM: (Kollar-Matsusaka, Huybrechts) There are only finitely many

connected components of Teich.

COROLLARY: Let ΓI be the group of elements of mapping class group

preserving a connected component of Teichmüller space containing I ∈ Teich.

Then ΓI has finite index in Γ.

REMARK: ΓI is a group generated by monodromy of all Gauss-Manin local

systems for all deformations of (M, I). It is known as the monodromy group

of (M, I).
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The period map

Remark: For any J ∈ Teich, (M,J) is also a simple hyperkähler manifold,

hence H2,0(M,J) is one-dimensional.

Definition: Let P : Teich −→ PH2(M,C) map J to a line H2,0(M,J) ∈
PH2(M,C). The map P : Teich −→ PH2(M,C) is called the period map.

REMARK: P maps Teich into an open subset of a quadric, defined by

Per := {l ∈ PH2(M,C) | q(l, l) = 0, q(l, l) > 0.

It is called the period space of M .

REMARK: Per = SO(b2 − 3,3)/SO(2)× SO(b2 − 3,1)

THEOREM: (Bogomolov)

Let M be a simple hyperkähler manifold, and Teich its Teichmüller space.

Then The period map P : Teich −→ Per is etale.

REMARK: Bogomolov’s theorem implies that Teich is smooth. It is usually

non-Hausdorff.
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Birational equivalence and non-separable points

DEFINITION: Let M be a topological space. We say that x, y ∈M are non-

separable (denoted by x ∼ y) if for any open sets V 3 x, U 3 y, U ∩ V 6= ∅.

THEOREM: (D. Huybrechts) If I1, I2 ∈ Teich are non-separable points, then

P (I1) = P (I2), and (M, I1) is birationally equivalent to (M, I2).

DEFINITION: Let M be a topological space for which M/ ∼ is Hausdorff.

Then M/ ∼ is called a Hausdorff reduction of M .

DEFINITION: The space Teichb := Teich / ∼ is called the birational Te-

ichmüller space of M .

THEOREM: (Global Torelli theorem)

Let (M, I) be a hyperkähler manifold, and TeichIb a connected component of

its birational Teichmüller space. Then TeichIb is isomorphic to Per, where

Per = SO(b2 − 3,3)/SO(2)× SO(b2 − 3,1). Two points in TeichIb coorespond

to birational manifolds if they lie in the same ΓI-orbit, where ΓI is the mon-

odromy group. Finally, ΓI is an arithmetic lattice in SO(b2 − 3,3).

8



Hyperkähler geometry and hyperbolic gometry M. Verbitsky

The group of symplectic Hodge monodromy

DEFINITION: Let (M, I) be a hyperkähler manifold. Then the Hodge
monodromy group MonI(M) is the group of all a ∈Mon(M) preserving the
Hodge decomposition on H2(M).

DEFINITION: Let Ω be a holomorphic symplectic form on a hyperkähler
manifold. Consider the homomorphism ϕ : MonI(M)−→ C∗, ϕ(γ) = γ∗Ω

Ω . De-
note its kernel by MonI,Ω(M, I). Thi group is called the group of symplectic
Hodge monodromy.

Claim 1: Consider the Hodge lattice Λ := H
1,1
I (M,Z). Then the natural

homomorphism MonI,Ω(M, I)−→O(Λ) is injective and has finite index.

Proof: Let H2
tr(M) := H

1,1
I (M,Q)⊥ be the “transcendental part” of the Hodge

lattice, that is, the smallest Hodge substructure containing ReH2,0(M). By
definition,

MonI,Ω(M, I) =

{
a ∈Mon(M)

∣∣∣∣∣ a

∣∣∣∣H2
tr(M) = Id

}
Since Mon(M) is an arithmetic lattice subgroup in O(H2(M,Z)), MonI,Ω(M, I)
is an arthmetic lattice in the group of isometries of H2

tr(M)⊥ = Λ.
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MBM classes (reminder)

DEFINITION: Negative class on a hyperkähler manifold is η ∈ H2(M,R) =

H2(M,R) satisfying q(η, η) < 0. It is effective if it is represented by a curve.

THEOREM: Let z ∈ H2(M,Z) be negative, and I, I ′ complex structures in

the same deformation class, such that z is of type (1,1) with respect to I and

I ′ and Pic(M) = 〈z〉. Then ±z is effective in (M, I) ⇔ iff it is effective in

(M, I ′).

REMARK: From now on, we identify H2(M) and H2(M) using the BBF

form. Under this identification, integer classes in H2(M) correspond to

rational classes in H2(M) (the form q is not unimodular).

DEFINITION: A negative class z ∈ H2(M,Z) on a hyperkähler manifold is

called an MBM class if there exist a deformation of M with Pic(M) = 〈z〉
such that λz is represented by a curve, for some λ 6= 0.
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MBM classes and the shape of the Kähler cone (reminder)

THEOREM: Let (M, I) be a hyperkähler manifold, and S ⊂ H1,1(M, I) the

set of all MBM classes in H1,1(M, I). Consider the corresponding set of

hyperplanes S⊥ := {W = z⊥ | z ∈ S} in H1,1(M, I). Then the Kähler cone

of (M, I) is a connected component of Pos(M, I)\ ∪ S⊥, where Pos(M, I)

is a positive cone of (M, I). Moreover, for any connected component K of

Pos(M, I)\ ∪ S⊥, there exists γ ∈ O(H2(M)) in a monodromy group of M ,

and a hyperkähler manifold (M, I ′) birationally equivalent to (M, I), such that

γ(K) is a Kähler cone of (M, I ′).

REMARK: This implies that MBM classes correspond to faces of the

Kähler cone.

DEFINITION: Kähler chamber is a connected component of

Pos(M, I)\ ∪ S⊥.

CLAIM: The Hodge monodromy group maps Kähler chambers to Kähler

chambers.
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MBM classes and automorphisms

THEOREM: Let (M, I) be a hyperkähler manifold, Mon(M) the group of

automorphisms of H2(M) generated by monodromy transform for all Gauss-

Manin local systems, and MonI(M) the Hodge monodromy group, that is, a

subgroup of Mon(M) preserving the Hodge decomposition. Then Aut(M) is

a subgroup of MonI(M) preserving the Kähler cone Kah(M).

COROLLARY: Let (M, I) be a hyperkähler manifold such that there are no

MBM classes of type (1,1). Then Aut(M) = MonI(M).

Proof: Indeed, for such manifold Kah(M, I) = Pos(M, I).
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Morrison-Kawamata cone conjecture

DEFINITION: An integer cohomology class a is primitive if it is not divisible
by integer numbers c > 1.

THEOREM: (a version of Morrison-Kawamata cone conjecture)
The group Mon(M) acts on the set of primitive MBM classes with
finitely many orbits.

Proof: Proven by Amerik-V., using homogeneous dynamics (Ratner theo-
rems, Dani-Margulis, Mozes-Shah).

COROLLARY: Let M be a hyperkähler manifold. Then there exists a
number N > 0, called an MBM bound, such that any MBM class z satisfies
|q(z, z)| < N .

Proof: There are only finitely many primitive MBM classes, up to isometry
action, and the have finitely many squares.

Corollary 1: Let M be a hyperkähler manifold, N its MBM bound, and (M, I)
a deformation such that for any x ∈ H1,1

I (M,Z) one has q(x, x) > N . Then
(M, I) has no MBM classes of type (1,1), and Kah(M, I) = Pos(M, I) and
Aut(M) = MonI(M).
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Classification of automorphisms of a hyperbolic space

REMARK: The group O(m,n),m, n > 0 has 4 connected components. We
denote the connected component of 1 by SO+(m,n). We call a vector v

positive if its square is positive.

DEFINITION: Let V be a vector space with quadratic form q of signature
(1, n), Pos(V ) = {x ∈ V | q(x, x) > 0} its positive cone, and P+V projec-
tivization of Pos(V ). Denote by g any SO(V )-invariant Riemannian structure
on P+V . Then (P+V, g) is called hyperbolic space, and the group SO+(V )
the group of oriented hyperbolic isometries.

Theorem-definition: Let n > 0, and α ∈ SO+(1, n) is an isometry acting on
V . Then one and only one of these three cases occurs

(i) α has an eigenvector x with q(x, x) > 0 (α is “elliptic isometry”)
(ii) α has an eigenvector x with q(x, x) = 0 and eigenvalue λx satisfying

|λx| > 1 (α is “hyperbolic isometry”)
(iii) α has a unique eigenvector x with q(x, x) = 0. (α is “parabolic

isometry”)

DEFINITION: An automorphism of a hyperkähler manifold (M, I) is called
elliptic (parabolic, hyperbolic) if it is elliptic (parabolic, hyperbolic) on
H

1,1
I (M,R).
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Primitive sublattices with an MBM bound

DEFINITION: Integer lattice, or quadratic lattice, or just lattice is Zn
equipped with an integer-valued quadratic form. When we speak of em-
bedding of lattices, we always assume that they are compatible with
the quadratic form.

DEFINITION: A sublattice Λ′ ⊂ Λ is called primitive if (Λ′ ⊗Z Q) ∩ Λ = Λ′.
A number a is represented by a lattice (Λ, q) if a = q(x, x) for some x ∈ Λ.
Minumum of a lattice is the number min Λ := minx |q(x, x)|, taken over all
x ∈ Λ.

Theorem 1: Let (Λ, q) be a lattice of signature (n,m), n > 3,m > 2. Fix a
number N > 0. Then there exists a primitive sublattice Λ′ ⊂ Λ of rank
2, signature (1,1) with min Λ′ > N.

Proof: Takes some number theory (Hilbert symbols, quadratic residues). For
unimodular lattices it is Witt-Nikulin theorem.

DEFINITION: Let M be a hyperkähler manifold, Λ = H2(M,Z), q the BBF
form. A primitive sublattice Λ′ ⊂ H2(M,Z) satisfies MBM bound if its
minimum is > N , where N is the MBM bound of M .
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Sublattices with MBM bound and automorphisms

REMARK: By Torelli theorem, for any primitive sublattice Λ ⊂ H2(M,Z),

there exists a complex structure I such that Λ = H
1,1
I (M,Z), if

H2(M,R)/(Λ⊗Z R) has signature (p, q) with p > 2.

THEOREM: Let M be a hyperkähler manifold, and Λ ⊂ H2(M,Z) a primitive

sublattice satisfying the MBM bound. Let (M, I) be a deformation of M

such that Λ = H
1,1
I (M,Z). Then the group of holomorphic symplectic

automorphisms Aut(M,Ω) = MonI,Ω(M) surjects to a subgroup of finite

index in O(Λ).

Proof: Since Λ = H
1,1
I (M,Z) satisfies MBM bound, it contains no MBM

classes. By Corollary 1, this gives Aut(M,Ω) = MonI,Ω(M). Now, MonI,Ω(M)

is a finite index subgroup in O(Λ), as follows from Claim 1.
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Existence of hyperbolic automorphisms

THEOREM: Let M be a hyperkähler manifold, with b2(M) > 7. Then

M has a deformation admitting a hyperbolic automorphism.

Proof. Step 1: Find a primitive rank 2 sublattice Λ ⊂ H2(M,Z) satisfying

the MBM bound. Using Torelli theorem, we construct a deformation M ′ of

M which has Λ = H1,1(M ′) ∩H2(M ′,Z).

Proof. Step 2: For such M ′, the group of symplectic automorphisms surjects

to a finite index subgroup of O(Λ).

Proof. Step 3: If Λ is rank 2, signature (1,1) quadratic lattice not represent-

ing 0, the group O(Λ) has infinite order (follows from Dirichlet unit theorem).
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