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Complex action on vector spaces

Let V be a vector space over R, and I : V −→ V an automorphism which

satisfies I2 = − IdV . We extend the action of I on the tensor spaces

V ⊗V ⊗ ...⊗V ⊗V ∗⊗V ∗⊗ ...⊗V ∗ by multiplicativity: I(v1⊗ ...⊗w1⊗ ...⊗wn) =

I(v1)⊗ ...⊗ I(w1)⊗ ...⊗ I(wn).

Trivial observations:

1. The eigenvalues of I are ±
√
−1 .

2. V admits an I-invariant metric g. Take any metric g0, and let g :=

g0 + I(g0).

3. I diagonalizable over C. Indeed, any orthogonal matrix is diagonalizable.

4. All eigenvalues of I are equal to ±
√
−1 . Indeed, I2 = −1.

5. There are as many
√
−1-eigenvalues as there are −

√
−1-eigenvalues.

Indeed, I is real.
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The Hodge decomposition in linear algebra

DEFINITION: The Hodge decomposition V ⊗R C := V 1,0 ⊕ V 0,1 is de-

fined in such a way that V 1,0 is a
√
−1 -eigenspace of I, and V 0,1 a −

√
−1 -

eigenspace.

REMARK: Let VC := V ⊗R C. The Grassmann algebra of skew-symmetric

forms ΛnVC := ΛnRV ⊗R C admits a decomposition

ΛnVC =
⊕

p+q=n

ΛpV 1,0 ⊗ ΛqV 0,1

We denote ΛpV 1,0 ⊗ ΛqV 0,1 by Λp,qV . The resulting decomposition ΛnVC =⊕
p+q=nΛp,qV is called the Hodge decomposition of the Grassmann al-

gebra.

REMARK: The operator I induces U(1)-action on V by the formula ρ(t)(v) =

cos t · v + sin t · I(v). We extend this action on the tensor spaces by mupti-

plicativity.
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U(1)-representations and the weight decomposition

REMARK: Any complex representation W of U(1) is written as a sum

of 1-dimensional representations Wi(p), with U(1) acting on each Wi(p)

as ρ(t)(v) = e
√
−1 pt(v). The 1-dimensional representations are called weight

p representations of U(1).

DEFINITION: A weight decomposition of a U(1)-representation W is a de-

composition W = ⊕W p, where each W p = ⊕iWi(p) is a sum of 1-dimensional

representations of weight p.

REMARK: The Hodge decomposition ΛnVC =
⊕
p+q=nΛp,qV is a weight

decomposition, with Λp,qV being a weight p− q-component of ΛnVC.

REMARK: V p,p is the space of U(1)-invariant vectors in Λ2pV .

Further on, TM is the tangent bundle on a manifold, and ΛiM the space

of differential i-forms. It is a Grassman algebra on TM

4



Kähler manifolds, lecture 1 M. Verbitsky

Complex manifolds

DEFINITION: Let M be a smooth manifold. An almost complex structure

is an operator I : TM −→ TM which satisfies I2 = − IdTM .

The eigenvalues of this operator are ±
√
−1. The corresponding eigenvalue

decomposition is denoted TM = T0,1M ⊕ T1,0(M).

DEFINITION: An almost complex structure is integrable if ∀X,Y ∈ T1,0M ,
one has [X,Y ] ∈ T1,0M . In this case I is called a complex structure op-

erator. A manifold with an integrable almost complex structure is called a

complex manifold.

THEOREM: (Newlander-Nirenberg)
This definition is equivalent to the usual one.

REMARK: The commutator defines a C∞M-linear map
N := Λ2(T1,0)−→ T0,1M , called the Nijenhuis tensor of I. One can rep-

resent N as a section of Λ2,0(M)⊗ T0,1M.

Exercise: Prove that CPn is a complex manifold, in the sense of the above
definition.
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Kähler manifolds

DEFINITION: An Riemannian metric g on an almost complex manifiold M

is called Hermitian if g(Ix, Iy) = g(x, y). In this case, g(x, Iy) = g(Ix, I2y) =
−g(y, Ix), hence ω(x, y) := g(x, Iy) is skew-symmetric.

DEFINITION: The differential form ω ∈ Λ1,1(M) is called the Hermitian
form of (M, I, g).

REMARK: It is U(1)-invariant, hence of Hodge type (1,1).

THEOREM: Let (M, I, g) be an almost complex Hermitian manifold. Then
the following conditions are equivalent.

(i) The complex structure I is integrable, and the Hermitian form ω is closed.

(ii) One has ∇(I) = 0, where ∇ is the Levi-Civita connection

∇ : End(TM)−→ End(TM)⊗ Λ1(M).

DEFINITION: A complex Hermitian manifold M is called Kähler if either
of these conditions hold. The cohomology class [ω] ∈ H2(M) of a form ω is
called the Kähler class of M .
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Examples of Kähler manifolds.

Definition: Let M = CPn be a complex projective space, and g a U(n+ 1)-

invariant Riemannian form. It is called Fubini-Study form on CPn. The

Fubini-Study form is obtained by taking arbitrary Riemannian form and aver-

aging with U(n+ 1).

Remark: For any x ∈ CPn, the stabilizer St(x) is isomorphic to U(n). Fubini-

Study form on TxCPn = Cn is U(n)-invariant, hence unique up to a constant.

Claim: Fubini-Study form is Kähler. Indeed, dω|x is a U(n)-invariant 3-

form on Cn, but such a form must vanish, by invariants theory.

Corollary: Every projective manifold (complex submanifold of CPn) is

Kähler. Indeed, a restriction of a closed form is again closed.
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Connection and torsion

Notation: Let M be a smooth manifold, TM its tangent bundle, ΛiM the
bundle of differential i-forms, C∞M the smooth functions. The space of

sections of a bundle B is denoted by B.

DEFINITION: A connection on a vector bundle B is a map B
∇−→ Λ1M⊗B

which satisfies

∇(fb) = df ⊗ b+ f∇b

for all b ∈ B, f ∈ C∞M .

REMARK: For any tensor bundle B1 := B∗⊗B∗⊗ ...⊗B∗⊗B ⊗B ⊗ ...⊗B a

connection on B defines a connection on B1 using the Leibniz formula:

∇(b1 ⊗ b2) = ∇(b1)⊗ b2 + b1 ⊗∇(b2).

DEFINITION: A torsion of a connection Λ1 ∇−→ Λ1M ⊗ Λ1M is a map
Alt ◦∇ − d, where Alt : Λ1M ⊗ Λ1M −→ Λ2M is exterior multiplication. It is a
map T∇ : Λ1M −→ Λ2M .

An exercise: Prove that torsion is a C∞M-linear.
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Linearized torsion map

DEFINITION: A torsor over a group G is a space X with a free, transitive
action of G.

EXAMPLE: An affine space is a torsor over a linear space.

REMARK: If ∇1 and ∇2 are connections B, the difference ∇−∇2 is C∞M-
linear. This makes the space A(B) of connections on B into an affine
space, that is, a torsor over a linear space Λ1(M)⊗ End(B).

REMARK: Torsion is an affine map

A(Λ1M)−→ Hom(Λ1M,Λ2M) = TM ⊗ Λ2M.

DEFINITION: An linearized torsion map is a map

T∇,lin : Λ1(M)⊗ Λ1(M)⊗ TM −→ TM ⊗ Λ2M

obtained as a linearization of a torsion map A(Λ1M)−→ Hom(Λ1M,Λ2M).

REMARK: It is equal to

Alt⊗ IdTM : Λ1(M)⊗ Λ1(M)⊗ TM −→ Λ2M ⊗ TM.
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Orthogonal connection

DEFINITION: Let (M, g) be a Riemannian manifold. A connection ∇ is

called orthogonal if ∇(g) = 0. It is called Levi-Civita if it is torsion-free.

CLAIM: Orthogonal connection always exists, on any vector bundle B.

Proof: Take a covering {Ui} such that B
∣∣∣Ui are trivial and admit an orthonor-

mal frame. Choose connections ∇i locally on Ui fixing these frames. Then

patch the local pieces together, using a splitting ψi of unit:

∇(b) =
∑
∇i(ψib)

Exercise: Show that this defines a connection.

REMARK: Let ∇, ∇′ be two connections. Their difference is C∞M-linear:

∇ − ∇′ ∈ Λ1 ⊗ EndTM . If both connections ∇, ∇′ are orthogonal, one has

∇−∇′(g) = 0. This means that ∇−∇′ ∈ Λ1⊗o(TM), where o(TM) denotes

the space of antisymmetric endomorphisms.
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Levi-Civita connection

THEOREM: (“the main theorem of differential geometry”)

For any Riemannian manifold, the Levi-Civita connection exists,

and it is unique.

Proof: Choose any orthogonal connection ∇0. The space of all orthogonal

connections is affine space modeled on Λ1M ⊗ o(TM).

Step 1: Identifying TM and Λ1M , obtain o(TM) = Λ2M .

Step 2: The linearized torsion map is

Alt⊗ IdTM : Λ1(M)⊗ Λ2M −→ Λ2M ⊗ TM.

This is an isomorphism (dimension count, representation theory). Denote

it by Ψ.

Step 3: Take ∇ := ∇0 −Ψ−1(T∇0
). Then T∇ = T∇0

−Ψ(Ψ−1(T∇0
)) = 0,

hence ∇ is torsion-free.

11



Kähler manifolds, lecture 1 M. Verbitsky

Levi-Civita connection on a Kähler manifold

THEOREM: Let (M, I, g) be an almost complex Hermitian manifold. Then
the following conditions are equivalent.

(i) The complex structure I is integrable, and the Hermitian form ω is
closed.

(ii) One has ∇(I) = 0, where ∇ is the Levi-Civita connection.

REMARK: The implication (ii) ⇒ (i) is clear. Indeed, [X,Y ] = ∇XY −
∇YX, hence it is a (1,0)-vector field when X,Y are of type (1,0), and then I

is integrable. Also, dω = 0, because ∇ is torsion-free, and dω = Alt(∇ω).

Let us prove (i) ⇒ (ii). Step 1: For an almost complex Hermitian structure,
choose a connection ∇0 preserving I and g. A difference between such
connections lies in Λ1⊗u(TM), where u(TM) is the bundle of skew-Hermitian
endomorphisms on TM .

Step 2: We identify u(TM) and Λ1,1M . Then, the linearized torsion map for
a Hermitian connection on an almost complex manifold is given by

T∇,lin : Λ1(M)⊗ Λ1,1(M)−→ Λ2M ⊗ Λ1(M).
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Linearized torsion of a Hermitian manifold

Step 3: The torsion of ∇0 belongs to

Λ1,1(M)⊗ Λ1(M)⊕ Λ2,0 ⊗ Λ0,1(M)⊕ Λ0,2 ⊗ Λ1,0(M)

because ∇0 preserves the Hodge decomposition, and I is integrable:

T∇0
(X,Y ) = ∇0XY −∇0YX

Step 4: The linearized torsion map induces an exact sequence

Λ1(M)⊗ Λ1,1(M)
Ψ−→ Λ1,1M ⊗ Λ1(M)⊕ Λ2,0 ⊗ Λ0,1(M)⊕ Λ0,2 ⊗ Λ1,0(M)

Alt−→ Λ2,1(M)⊕ Λ1,2(M),

where Alt is the antisymmetrization map (dimension count).

Step 5: 0 = dω = T∇0
(ω)−∇(ω) = T∇0

(ω). This means that the antisym-

metrization of T∇0
vanishes.

Step 6: From the above exact sequence it follows that T∇0
⊂ im(Ψ).

Step 7: Then ∇ := ∇0 −Ψ−1(T∇0
) has zero torsion.
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