Kähler manifolds,

lecture 1

Misha Verbitsky

Harish-Chandra Research Institute January 11, December 2010, Allahabad.

Complex action on vector spaces

Let V be a vector space over \mathbb{R}, and $I: V \longrightarrow V$ an automorphism which satisfies $I^{2}=-\mathrm{Id}_{V}$. We extend the action of I on the tensor spaces $V \otimes V \otimes \ldots \otimes V \otimes V^{*} \otimes V^{*} \otimes \ldots \otimes V^{*}$ by multiplicativity: $I\left(v_{1} \otimes \ldots \otimes w_{1} \otimes \ldots \otimes w_{n}\right)=$ $I\left(v_{1}\right) \otimes \ldots \otimes I\left(w_{1}\right) \otimes \ldots \otimes I\left(w_{n}\right)$.

Trivial observations:

1. The eigenvalues of I are $\pm \sqrt{-1}$.
2. V admits an I-invariant metric g. Take any metric g_{0}, and let $g:=$ $g_{0}+I\left(g_{0}\right)$.
3. I diagonalizable over \mathbb{C}. Indeed, any orthogonal matrix is diagonalizable.
4. All eigenvalues of I are equal to $\pm \sqrt{-1}$. Indeed, $I^{2}=-1$.
5. There are as many $\sqrt{-1}$-eigenvalues as there are $-\sqrt{-1}$-eigenvalues. Indeed, I is real.

The Hodge decomposition in linear algebra
DEFINITION: The Hodge decomposition $V \otimes_{\mathbb{R}} \mathbb{C}:=V^{1,0} \oplus V^{0,1}$ is defined in such a way that $V^{1,0}$ is a $\sqrt{-1}$-eigenspace of I, and $V^{0,1}$ a $-\sqrt{-1}$ eigenspace.

REMARK: Let $V_{\mathbb{C}}:=V \otimes_{\mathbb{R}} \mathbb{C}$. The Grassmann algebra of skew-symmetric forms $\wedge^{n} V_{\mathbb{C}}:=\Lambda_{\mathbb{R}}^{n} V \otimes_{\mathbb{R}} C$ admits a decomposition

$$
\wedge^{n} V_{\mathbb{C}}=\bigoplus_{p+q=n} \wedge^{p} V^{1,0} \otimes \wedge^{q} V^{0,1}
$$

We denote $\wedge^{p} V^{1,0} \otimes \wedge^{q} V^{0,1}$ by $\wedge^{p, q} V$. The resulting decomposition $\wedge^{n} V_{\mathbb{C}}=$ $\oplus_{p+q={ }_{n}} \wedge^{p, q} V$ is called the Hodge decomposition of the Grassmann algebra.

REMARK: The operator I induces $U(1)$-action on V by the formula $\rho(t)(v)=$ $\cos t \cdot v+\sin t \cdot I(v)$. We extend this action on the tensor spaces by muptiplicativity.
$U(1)$-representations and the weight decomposition
REMARK: Any complex representation W of $U(1)$ is written as a sum of 1-dimensional representations $W_{i}(p)$, with $U(1)$ acting on each $W_{i}(p)$ as $\rho(t)(v)=e^{\sqrt{-1} p t}(v)$. The 1-dimensional representations are called weight p representations of $U(1)$.

DEFINITION: A weight decomposition of a $U(1)$-representation W is a decomposition $W=\oplus W^{p}$, where each $W^{p}=\oplus_{i} W_{i}(p)$ is a sum of 1-dimensional representations of weight p.

REMARK: The Hodge decomposition $\wedge^{n} V_{\mathbb{C}}=\oplus_{p+q=n} \wedge^{p, q} V$ is a weight decomposition, with $\wedge^{p, q} V$ being a weight $p-q$-component of $\wedge^{n} V_{\mathbb{C}}$.

REMARK: $V^{p, p}$ is the space of $U(1)$-invariant vectors in $\wedge^{2 p} V$.

Further on, $T M$ is the tangent bundle on a manifold, and $\wedge^{i} M$ the space of differential i-forms. It is a Grassman algebra on $T M$

Complex manifolds

DEFINITION: Let M be a smooth manifold. An almost complex structure is an operator $I: T M \longrightarrow T M$ which satisfies $I^{2}=-\mathrm{Id}_{T M}$.

The eigenvalues of this operator are $\pm \sqrt{-1}$. The corresponding eigenvalue decomposition is denoted $T M=T^{0,1} M \oplus T^{1,0}(M)$.

DEFINITION: An almost complex structure is integrable if $\forall X, Y \in T^{1,0_{M}}$, one has $[X, Y] \in T^{1,0} M$. In this case I is called a complex structure operator. A manifold with an integrable almost complex structure is called a complex manifold.

THEOREM: (Newlander-Nirenberg)
This definition is equivalent to the usual one.
REMARK: The commutator defines a $\mathbb{C}^{\infty} M$-linear map $N:=\wedge^{2}\left(T^{1,0}\right) \longrightarrow T^{0,1} M$, called the Nijenhuis tensor of I. One can represent N as a section of $\wedge^{2,0}(M) \otimes T^{0,1} M$.

Exercise: Prove that $\mathbb{C} P^{n}$ is a complex manifold, in the sense of the above definition.

Kähler manifolds

DEFINITION: An Riemannian metric g on an almost complex manifiold M is called Hermitian if $g(I x, I y)=g(x, y)$. In this case, $g(x, I y)=g\left(I x, I^{2} y\right)=$ $-g(y, I x)$, hence $\omega(x, y):=g(x, I y)$ is skew-symmetric.

DEFINITION: The differential form $\omega \in \wedge^{1,1}(M)$ is called the Hermitian form of (M, I, g).

REMARK: It is $U(1)$-invariant, hence of Hodge type $(\mathbf{1 , 1})$.
THEOREM: Let (M, I, g) be an almost complex Hermitian manifold. Then the following conditions are equivalent.
(i) The complex structure I is integrable, and the Hermitian form ω is closed.
(ii) One has $\nabla(I)=0$, where ∇ is the Levi-Civita connection

$$
\nabla: \operatorname{End}(T M) \longrightarrow \operatorname{End}(T M) \otimes \wedge^{1}(M)
$$

DEFINITION: A complex Hermitian manifold M is called Kähler if either of these conditions hold. The cohomology class $[\omega] \in H^{2}(M)$ of a form ω is called the Kähler class of M.

Examples of Kähler manifolds.

Definition: Let $M=\mathbb{C} P^{n}$ be a complex projective space, and g a $U(n+1)$ invariant Riemannian form. It is called Fubini-Study form on $\mathbb{C} P^{n}$. The Fubini-Study form is obtained by taking arbitrary Riemannian form and averaging with $U(n+1)$.

Remark: For any $x \in \mathbb{C} P^{n}$, the stabilizer $S t(x)$ is isomorphic to $U(n)$. FubiniStudy form on $T_{x} \mathbb{C} P^{n}=\mathbb{C}^{n}$ is $U(n)$-invariant, hence unique up to a constant.

Claim: Fubini-Study form is Kähler. Indeed, $\left.d \omega\right|_{x}$ is a $U(n)$-invariant 3form on \mathbb{C}^{n}, but such a form must vanish, by invariants theory.

Corollary: Every projective manifold (complex submanifold of $\mathbb{C} P^{n}$) is Kähler. Indeed, a restriction of a closed form is again closed.

Connection and torsion

Notation: Let M be a smooth manifold, $T M$ its tangent bundle, $\Lambda^{i} M$ the bundle of differential i-forms, $C^{\infty} M$ the smooth functions. The space of sections of a bundle B is denoted by B.

DEFINITION: A connection on a vector bundle B is a map $B \xrightarrow{\nabla} \Lambda^{1} M \otimes B$ which satisfies

$$
\nabla(f b)=d f \otimes b+f \nabla b
$$

for all $b \in B, f \in C^{\infty} M$.
REMARK: For any tensor bundle $\mathcal{B}_{1}:=B^{*} \otimes B^{*} \otimes \ldots \otimes B^{*} \otimes B \otimes B \otimes \ldots \otimes B$ a connection on B defines a connection on \mathcal{B}_{1} using the Leibniz formula:

$$
\nabla\left(b_{1} \otimes b_{2}\right)=\nabla\left(b_{1}\right) \otimes b_{2}+b_{1} \otimes \nabla\left(b_{2}\right)
$$

DEFINITION: A torsion of a connection $\Lambda^{1} \xrightarrow{\nabla} \Lambda^{1} M \otimes \Lambda^{1} M$ is a map Alt $\circ \nabla-d$, where Alt : $\Lambda^{1} M \otimes \Lambda^{1} M \longrightarrow \Lambda^{2} M$ is exterior multiplication. It is a $\operatorname{map} T_{\nabla}: \wedge^{1} M \longrightarrow \Lambda^{2} M$.

An exercise: Prove that torsion is a $C^{\infty} M$-linear.

Linearized torsion map

DEFINITION: A torsor over a group G is a space X with a free, transitive action of G.

EXAMPLE: An affine space is a torsor over a linear space.
REMARK: If ∇_{1} and ∇_{2} are connections B, the difference $\nabla_{-} \nabla_{2}$ is $C^{\infty} M$ linear. This makes the space $\mathcal{A}(B)$ of connections on B into an affine space, that is, a torsor over a linear space $\wedge^{1}(M) \otimes \operatorname{End}(B)$.

REMARK: Torsion is an affine map

$$
\mathcal{A}\left(\wedge^{1} M\right) \longrightarrow \operatorname{Hom}\left(\wedge^{1} M, \wedge^{2} M\right)=T M \otimes \wedge^{2} M .
$$

DEFINITION: An linearized torsion map is a map

$$
T_{\nabla, l i n}: \wedge^{1}(M) \otimes \wedge^{1}(M) \otimes T M \longrightarrow T M \otimes \wedge^{2} M
$$

obtained as a linearization of a torsion map $\mathcal{A}\left(\wedge^{1} M\right) \longrightarrow \operatorname{Hom}\left(\wedge^{1} M, \Lambda^{2} M\right)$.
REMARK: It is equal to

$$
\operatorname{Alt} \otimes \operatorname{Id}_{T M}: \wedge^{1}(M) \otimes \Lambda^{1}(M) \otimes T M \longrightarrow \Lambda^{2} M \otimes T M
$$

Orthogonal connection

DEFINITION: Let (M, g) be a Riemannian manifold. A connection ∇ is called orthogonal if $\nabla(g)=0$. It is called Levi-Civita if it is torsion-free.

CLAIM: Orthogonal connection always exists, on any vector bundle B.

Proof: Take a covering $\left\{U_{i}\right\}$ such that $\left.B\right|_{U_{i}}$ are trivial and admit an orthonormal frame. Choose connections ∇_{i} locally on U_{i} fixing these frames. Then patch the local pieces together, using a splitting ψ_{i} of unit:

$$
\nabla(b)=\sum \nabla_{i}\left(\psi_{i} b\right)
$$

Exercise: Show that this defines a connection.

REMARK: Let ∇, ∇^{\prime} be two connections. Their difference is $C^{\infty} M$-linear: $\nabla-\nabla^{\prime} \in \wedge^{1} \otimes$ End $T M$. If both connections ∇, ∇^{\prime} are orthogonal, one has $\nabla-\nabla^{\prime}(g)=0$. This means that $\nabla-\nabla^{\prime} \in \wedge^{1} \otimes \mathfrak{o}(T M)$, where $\mathfrak{o}(T M)$ denotes the space of antisymmetric endomorphisms.

Levi-Civita connection

THEOREM: ("the main theorem of differential geometry")
For any Riemannian manifold, the Levi-Civita connection exists, and it is unique.

Proof: Choose any orthogonal connection ∇_{0}. The space of all orthogonal connections is affine space modeled on $\wedge^{1} M \otimes \mathfrak{o}(T M)$.

Step 1: Identifying $T M$ and $\wedge^{1} M$, obtain $\mathfrak{o}(T M)=\Lambda^{2} M$.

Step 2: The linearized torsion map is

$$
\text { Alt } \otimes \mathrm{Id}_{T M}: \wedge^{1}(M) \otimes \wedge^{2} M \longrightarrow \Lambda^{2} M \otimes T M
$$

This is an isomorphism (dimension count, representation theory). Denote it by Ψ.

Step 3: Take $\nabla:=\nabla_{0}-\Psi^{-1}\left(T_{\nabla_{0}}\right)$. Then $T_{\nabla}=T_{\nabla_{0}}-\Psi\left(\Psi^{-1}\left(T_{\nabla_{0}}\right)\right)=0$, hence ∇ is torsion-free.

Levi-Civita connection on a Kähler manifold

THEOREM: Let (M, I, g) be an almost complex Hermitian manifold. Then the following conditions are equivalent.
(i) The complex structure I is integrable, and the Hermitian form ω is closed.
(ii) One has $\nabla(I)=0$, where ∇ is the Levi-Civita connection.

REMARK: The implication (ii) \Rightarrow (i) is clear. Indeed, $[X, Y]=\nabla_{X} Y-$ $\nabla_{Y} X$, hence it is a $(1,0)$-vector field when X, Y are of type (1,0), and then I is integrable. Also, $d \omega=0$, because ∇ is torsion-free, and $d \omega=\operatorname{Alt}(\nabla \omega)$.

Let us prove (i) \Rightarrow (ii). Step 1: For an almost complex Hermitian structure, choose a connection ∇_{0} preserving I and g. A difference between such connections lies in $\wedge^{1} \otimes \mathfrak{u}(T M)$, where $\mathfrak{u}(T M)$ is the bundle of skew-Hermitian endomorphisms on TM.

Step 2: We identify $\mathfrak{u}(T M)$ and $\wedge^{1,1} M$. Then, the linearized torsion map for a Hermitian connection on an almost complex manifold is given by

$$
T_{\nabla, l i n}: \Lambda^{1}(M) \otimes \Lambda^{1,1}(M) \longrightarrow \Lambda^{2} M \otimes \Lambda^{1}(M)
$$

Linearized torsion of a Hermitian manifold

Step 3: The torsion of ∇_{0} belongs to

$$
\Lambda^{1,1}(M) \otimes \Lambda^{1}(M) \oplus \Lambda^{2,0} \otimes \Lambda^{0,1}(M) \oplus \Lambda^{0,2} \otimes \Lambda^{1,0}(M)
$$

because ∇_{0} preserves the Hodge decomposition, and I is integrable:

$$
T_{\nabla_{0}}(X, Y)=\nabla_{0 X} Y-\nabla_{0 Y} X
$$

Step 4: The linearized torsion map induces an exact sequence

$$
\begin{aligned}
\Lambda^{1}(M) \otimes & \Lambda^{1,1}(M) \\
& \xrightarrow{\psi} \Lambda^{1,1} M \otimes \Lambda^{1}(M) \oplus \Lambda^{2,0} \otimes \Lambda^{0,1}(M) \oplus
\end{aligned} \quad \Lambda^{0,2} \otimes \Lambda^{1,0}(M)
$$

where Alt is the antisymmetrization map (dimension count).
Step 5: $0=d \omega=T_{\nabla_{0}}(\omega)-\nabla(\omega)=T_{\nabla_{0}}(\omega)$. This means that the antisymmetrization of $T_{\nabla_{0}}$ vanishes.

Step 6: From the above exact sequence it follows that $T_{\nabla_{0}} \subset \operatorname{im}(\Psi)$.
Step 7: Then $\nabla:=\nabla_{0}-\psi^{-1}\left(T_{\nabla_{0}}\right)$ has zero torsion.

