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Complex action on vector spaces

Let V be a vector space over R, and I : V — V an automorphism which
satisfies 12 = —Idy. We extend the action of I on the tensor spaces
VRVE.VRV*QV*®...V* by multiplicativity: I(v1®...0 w1 Q...Qwn) =
I(v)® ... I(w1) ® ... I(wn).

Trivial observations:

1. The eigenvalues of [ are £/ —1.

2. 'V admits an /-invariant metric g. Take any metric gg, and let g :
g0 + I(g0).

3. I diagonalizable over C. Indeed, any orthogonal matrix is diagonalizable.
4. All eigenvalues of I are equal to +v/—1. Indeed, I? = —1.

5. There are as many v —1-eigenvalues as there are —/—1-eigenvalues.
Indeed, I is real.
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The Hodge decomposition in linear algebra

DEFINITION: The Hodge decomposition V @ C := V1.0 g V0.1l is de-
fined in such a way that V1.0 is a /=1 -eigenspace of I, and V91 a —\/—1 -
eigenspace.

REMARK: Let Vp :(= V ®@r C. The Grassmann algebra of skew-symmetric
forms A"V = /\H%V ®r C admits a decomposition

Nve= @ AvEOgatyol
ptq=n
We denote APV1.0 @ A9VO:.1 by APYV. The resulting decomposition A"V =
Dptg=n NP4V is called the Hodge decomposition of the Grassmann al-
gebra.

REMARK: The operator I induces U(1)-action on V by the formula p(t)(v) =
cost-v 4+ sint-I(v). We extend this action on the tensor spaces by mupti-
plicativity.
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U(1)-representations and the weight decomposition

REMARK: Any complex representation W of U(1) is written as a sum
of 1-dimensional representations W;(p), with U(1) acting on each W;(p)
as p(t)(v) = e\/—_lpt(v). The 1-dimensional representations are called weight
p representations of U(1).

DEFINITION: A weight decomposition of a U(1)-representation W is a de-
composition W = WP, where each WP = ¢,W;(p) is a sum of 1-dimensional
representations of weight p.

REMARK: The Hodge decomposition A"V = Dp1g=n APV is a weight
decomposition, with AP:9V being a weight p — g-component of A" V.

REMARK: VPP is the space of U(1)-invariant vectors in A2PV.

Further on, TM is the tangent bundle on a manifold, and A*M the space
of differential -forms. It is a Grassman algebra on T'M
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Complex manifolds

DEFINITION: Let M be a smooth manifold. An almost complex structure
is an operator I : TM — TM which satisfies 12 = —Idp,y.

T he eigenvalues of this operator are ++/—1. The corresponding eigenvalue
decomposition is denoted TM = T%1M @ T1.0(M).

DEFINITION: An almost complex structure is integrable if VX,Y € TLOM,
one has [X,Y] € T1OM. In this case I is called a complex structure op-
erator. A manifold with an integrable almost complex structure is called a
complex manifold.

THEOREM: (Newlander-Nirenberg)
T his definition is equivalent to the usual one.

REMARK: The commutator defines a C*®°M-linear map
N := N2(T19) — 170.107, called the Nijenhuis tensor of I. One can rep-
resent N as a section of A29(M) @ TO101.

Exercise: Prove that CP" is a complex manifold, in the sense of the above
definition.
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Kahler manifolds

DEFINITION: An Riemannian metric g on an almost complex manifiold M
is called Hermitian if g(Iz,Iy) = g(z,y). In this case, g(z, Iy) = g(Iz, I?%y) =
—g(y, Iz), hence w(x,y) := g(x, [y) is skew-symmetric.

DEFINITION: The differential form w € AL1(M) is called the Hermitian
form of (M, 1,gq).

REMARK: It is U(1)-invariant, hence of Hodge type (1,1).

THEOREM: Let (M, 1I,g) be an almost complex Hermitian manifold. Then
the following conditions are equivalent.

(i) The complex structure I is integrable, and the Hermitian form w is closed.

(ii) One has V(I) = 0, where V is the Levi-Civita connection
V: End(TM) — End(TM) @ AL (M).

DEFINITION: A complex Hermitian manifold M is called Kahler if either
of these conditions hold. The cohomology class [w] € H2(M) of a form w is
called the Kahler class of M.
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Examples of Kahler manifolds.

Definition: Let M = CP™ be a complex projective space, and g a U(n+ 1)-
invariant Riemannian form. It is called Fubini-Study form on CP"™. The
Fubini-Study form is obtained by taking arbitrary Riemannian form and aver-
aging with U(n 4+ 1).

Remark: For any z € CP", the stabilizer St(x) is isomorphic to U(n). Fubini-
Study form on T,CP"™ = C" is U(n)-invariant, hence unique up to a constant.

Claim: Fubini-Study form is Kahler. Indeed, dw|; is a U(n)-invariant 3-
form on C", but such a form must vanish, by invariants theory.

Corollary: Every projective manifold (complex submanifold of CP") is
Kahler. Indeed, a restriction of a closed form is again closed.
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Connection and torsion

Notation: Let M be a smooth manifold, T'M its tangent bundle, A'M the
bundle of differential i-forms, C°°M the smooth functions. The space of
sections of a bundle B is denoted by B.

DEFINITION: A connection on a vector bundle B is a map B - AlM®B
which satisfies

V(fb) =df @ b+ fVb
forallbe B, f e C°°M.

REMARK: For any tensor bundle B .= B*®B*"®..QB* R BQB®..®B a
connection on B defines a connection on 54 using the Leibniz formula:

V(b1 ®by) =V (b1) ® bp+ b1 ® V(b2).

DEFINITION: A torsion of a connection Al - AlM @ ALM is a map

AltoV — d, where Alt : A1M @ ALM — A2M is exterior multiplication. It is a
map Tv : A'M — A2M.

An exercise: Prove that torsion is a C°°M-linear.
8



Kahler manifolds, lecture 1 M. Verbitsky

Linearized torsion map

DEFINITION: A torsor over a group GG is a space X with a free, transitive
action of (4.

EXAMPLE: An affine space is a torsor over a linear space.

REMARK: If V1 and V», are connections B, the difference V_V5 is C°°M-
linear. This makes the space A(B) of connections on B into an affine
space, that is, a torsor over a linear space A1 (M) ® End(B).

REMARK: Torsion is an affine map
AANLM) — Hom(ATM,A°M) = TM & AN°M.

DEFINITION: An linearized torsion map is a map
Ty jin : N(M) @A (M) ®@TM — TM ® N°M
obtained as a linearization of a torsion map A(A1M) — Hom(AL1M, A2M).

REMARK: It is equal to
Alt@Idry 0 AY(M) @ AL (M) @ TM — A°M @ T M.
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Orthogonal connection

DEFINITION: Let (M,g) be a Riemannian manifold. A connection V is
called orthogonal if V(g) = 0. It is called Levi-Civita if it is torsion-free.

CLAIM: Orthogonal connection always exists, on any vector bundle B.

Proof: Take a covering {U;} such that B)UZ. are trivial and admit an orthonor-
mal frame. Choose connections V; locally on U; fixing these frames. Then
patch the local pieces together, using a splitting ; of unit:

V(b) =) V,(;b)

Exercise: Show that this defines a connection.

REMARK: Let V, V/ be two connections. Their difference is C*°M-linear:
V-V € Al @ EndTM. If both connections V, V/ are orthogonal, one has
V —V/(g) = 0. This means that V-V’ ¢ Al ®o(TM), where o(TM) denotes
the space of antisymmetric endomorphisms.
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Levi-Civita connection

THEOREM: (“the main theorem of differential geometry’)
For any Riemannian manifold, the Levi-Civita connection exists,
and it is unique.

Proof: Choose any orthogonal connection Vg. The space of all orthogonal
connections is affine space modeled on A1M ® o(TM).

Step 1: Identifying TM and AlM, obtain o(TM) = A2M.

Step 2: The linearized torsion map is

Alt@Idry 0 AY(M) @ A°M — A°M @ T'M.

This is an isomorphism (dimension count, representation theory). Denote
it by V.

Step 3: Take V := Vg — W I(Ty,). Then Ty = Ty, — V(W 1(Ty,)) = 0,
hence V is torsion-free. m
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Levi-Civita connection on a Kahler manifold

THEOREM: Let (M,1,g) be an almost complex Hermitian manifold. Then
the following conditions are equivalent.

(i) The complex structure I is integrable, and the Hermitian form w is
closed.

(ii) One has V(I) = 0, where V is the Levi-Civita connection.

REMARK: The implication (ii) = (i) is clear. Indeed, [X,Y] = VY —
Vy X, hence it is a (1,0)-vector field when X,Y are of type (1,0), and then [
Is integrable. Also, dw = 0, because V is torsion-free, and dw = Alt(Vw).

Let us prove (i) = (ii). Step 1: For an almost complex Hermitian structure,
choose a connection Vg preserving I and g. A difference between such
connections lies in Al@u(T M), where u(T M) is the bundle of skew-Hermitian
endomorphisms on T'M.

Step 2: We identify u(TM) and ALL1M. Then, the linearized torsion map for
a Hermitian connection on an almost complex manifold is given by

Ty 1in © NY(M) @ ABY (M) — A2M @ AL ().
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Linearized torsion of a Hermitian manifold

Step 3: The torsion of Vg belongs to

/\1’1(M) ® /\1(M) D A2:0 R /\O’l(M) D NO2 ® /\1’O(M)
because Vg preserves the Hodge decomposition, and [ is integrable:

Ty,(X,Y) =VoxY — Voy X
Step 4: The linearized torsion map induces an exact sequence
AL(M) @ AV (M)
2% A2 () @ A2 (),

where Alt is the antisymmetrization map (dimension count).

Step 5: 0 = dw =Ty, (v) — V(w) = Ty,(w). This means that the antisym-
metrization of 7Ty, vanishes.

Step 6: From the above exact sequence it follows that Ty, C im(W).

Step 7: Then V :=Vy— W 1(Ty,) has zero torsion.
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