Kähler manifolds

lecture 2

Misha Verbitsky

Harish-Chandra Research Institute
January 13, December 2010, Allahabad.

Graded vector spaces and algebras

DEFINITION: A graded vector space is a space $V^{*}=\oplus_{i \in \mathbb{Z}} V^{i}$.
REMARK: If V^{*} is graded, the endomorphisms space End $\left(V^{*}\right)=\oplus_{i \in \mathbb{Z}} \operatorname{End}^{i}\left(V^{*}\right)$ is also graded, with $\operatorname{End}^{i}\left(V^{*}\right)=\oplus_{j \in \mathbb{Z}} \operatorname{Hom}\left(V^{j}, V^{i+j}\right)$

DEFINITION: A graded algebra(or "graded associative algebra") is an associative algebra $A^{*}=\oplus_{i \in \mathbb{Z}} A^{i}$, with the product compatible with the grading: $A^{i} \cdot A^{j} \subset A^{i+j}$.

REMARK: A bilinear map of graded paces which satisfies $A^{i} \cdot A^{j} \subset A^{i+j}$ is called graded, or compatible with grading.

REMARK: The category of graded spaces can be defined as a category of vector spaces with $U(1)$-action, with the weight decomposition providing the grading. Then a graded algebra is an associative algebra in the category of spaces with $U(1)$-action.

DEFINITION: An operator on a graded vector space is called even (odd) if it shifts the grading by even (odd) number. The parity \tilde{a} of an operator a is 0 if it is even, 1 if it is odd. We say that an operator is pure if it is even or odd.

Supercommutator

DEFINITION: A supercommutator of pure operators on a graded vector space is defined by a formula $\{a, b\}=a b-(-1)^{\tilde{a} b} b a$.

DEFINITION: A graded associative algebra is called graded commutative (or "supercommutative") if its supercommutator vanishes.

EXAMPLE: The Grassmann algebra is supercommutative.
DEFINITION: A graded Lie algebra (Lie superalgebra) is a graded vector space \mathfrak{g}^{*} equipped with a bilinear graded map $\{\cdot, \cdot\}: \mathfrak{g}^{*} \times \mathfrak{g}^{*} \longrightarrow \mathfrak{g}^{*}$ which is graded anticommutative: $\{a, b\}=-(-1)^{\tilde{a} \tilde{b}}\{b, a\}$ and satisfies the super Jacobi identity $\{c,\{a, b\}\}=\{\{c, a\}, b\}+(-1)^{\tilde{a} \tilde{c}}\{a,\{c, b\}\}$

EXAMPLE: Consider the algebra End $\left(A^{*}\right)$ of operators on a graded vector space, with supercommutator as above. Then $\operatorname{End}\left(A^{*}\right),\{\cdot, \cdot\}$ is a graded Lie algebra.

Lemma 1: Let d be an odd element of a Lie superalgebra, satisfying $\{d, d\}=$ 0 , and L an even element. Then $\{\{L, d\}, d\}=0$.

Proof: $0=\{L,\{d, d\}\}=\{\{L, d\}, d\}+\{d,\{L, d\}\}=2\{\{L, d\}, d\}$.
de Rham differential

DEFINITION: Let M be a real manifold, and $\Lambda^{*} M$ the space of differential forms on M. We define the de Rham differential as the only operator $d: \Lambda^{i}(M) \longrightarrow \Lambda^{i+1}(M)$ which satisfies

1. The graded Leibniz identity: $d(\alpha \wedge \beta)=d(\alpha) \wedge \beta+(-1)^{\tilde{\alpha}} \alpha \wedge d \beta$
2. $d^{2}=0$
3. On functions, $d: C^{\infty} M \longrightarrow \Lambda^{1}(M)$ is the usual differential.

REMARK: Uniqueness of d is clear. Indeed, d is determined by its values on any set of multiplicative generators of $\Lambda^{*}(M)$. On the other hand, $\Lambda^{*}(M)$ is generated by $C^{\infty} M$ and $d C^{\infty} M$.

Existence of d : it suffices to prove that d exists locally, then patch together local differentials by uniqueness. On \mathbb{R}^{n}, one has $d(f P)=\sum_{i} \frac{d f}{d x_{i}} d x_{i} \wedge P$ for every coordinate monomial form $P=d x_{i_{1}} \wedge \ldots \wedge d x_{i_{k}}$.

DEFINITION: A form η is called closed if $d \eta=0$, and exact if $\eta=d \xi$.

Hodge * operator

Let V be a vector space. A metric g on V induces a natural metric on each of its tensor spaces: $g\left(x_{1} \otimes x_{2} \otimes \ldots \otimes x_{k}, x_{1}^{\prime} \otimes x_{2}^{\prime} \otimes \ldots \otimes x_{k}^{\prime}\right)=$ $g\left(x_{1}, x_{1}^{\prime}\right) g\left(x_{2}, x_{2}^{\prime}\right) \ldots g\left(x_{k}, x_{k}^{\prime}\right)$.

This gives a natural positive definite scalar product on differential forms over a Riemannian manifold $(M, g): g(\alpha, \beta):=\int_{M} g(\alpha, \beta) \mathrm{Vol}_{M}$

Another non-degenerate form is provided by the Poincare pairing: $\alpha, \beta \longrightarrow \int_{M} \alpha \wedge \beta$.

DEFINITION: Let M be a Riemannian n-manifold. Define the Hodge * operator $*: \wedge^{k} M \longrightarrow \wedge^{n-k} M$ by the following relation: $g(\alpha, \beta)=\int_{M} \alpha \wedge * \beta$.

REMARK: The Hodge * operator always exists. It is defined explicitly in an orthonormal basis $\xi_{1}, \ldots, \xi_{n} \in \wedge^{1} M$:

$$
*\left(\xi_{i_{1}} \wedge \xi_{i_{2}} \wedge \ldots \wedge \xi_{i_{k}}\right)=(-1)^{s} \xi_{j_{1}} \wedge \xi_{j_{2}} \wedge \ldots \wedge \xi_{j_{n-k}}
$$

where $\xi_{j_{1}}, \xi_{j_{2}}, \ldots, \xi_{j_{n-k}}$ is a complementary set of vectors to $\xi_{i_{1}}, \xi_{i_{2}}, \ldots, \xi_{i_{k}}$, and s the signature of a permutation ($i_{1}, \ldots, i_{k}, j_{1}, \ldots, j_{n-k}$).

REMARK: $\left.*^{2}\right|_{\wedge^{k}(M)}=(-1)^{k(n-k)} \operatorname{Id}_{\wedge^{k}(M)}$

Hodge theory

CLAIM: On a compact Riemannian n-manifold, one has $\left.d^{*}\right|_{\wedge^{k} M}=(-1)^{n k} * d *$, where d^{*} denotes the adjoint operator, which is defined by the equation $(d \alpha, \gamma)=\left(\alpha, d^{*} \gamma\right)$.

Proof: Since

$$
0=\int_{M} d(\alpha \wedge \beta)=\int_{M} d(\alpha) \wedge \beta+(-1)^{\tilde{\alpha}} \alpha \wedge d(\beta)
$$

one has $(d \alpha, * \beta)=(-1)^{\tilde{\alpha}}(\alpha, * d \beta)$. Setting $\gamma:=* \beta$, we obtain $(d \alpha, \gamma)=(-1)^{\tilde{\alpha}}\left(\alpha, * d(*)^{-1} \gamma\right)=(-1)^{\tilde{\alpha}}(-1)^{\tilde{\alpha}(\tilde{n}-\tilde{\alpha})}(\alpha, * d * \gamma)=(-1)^{\tilde{\alpha} \tilde{n}}(\alpha, * d * \gamma)$.

DEFINITION: The anticommutator $\Delta:=\left\{d, d^{*}\right\}=d d^{*}+d^{*} d$ is called the Laplacian of M. It is self-adjoint and positive definite: $(\Delta x, x)=(d x, d x)+$ ($\left.d^{*} x, d^{*} x\right)$.

THEOREM: (The main theorem of Hodge theory)
There is a basis in the Hilbert space $L^{2}\left(\Lambda^{*}(M)\right)$ consisting of eigenvectors of Δ.

THEOREM: ("Elliptic regularity for $\Delta^{\prime \prime}$) Let $\alpha \in L^{2}\left(\wedge^{k}(M)\right)$ be an eigenvector of Δ. Then α is a smooth k-form.

De Rham cohomology
DEFINITION: The space $H^{i}(M):=\frac{\left.\operatorname{ker} d\right|_{\Lambda^{i} M}}{d\left(\Lambda^{i-1} M\right)}$ is called the de Rham cohomology of M.

DEFINITION: A form α is called harmonic if $\Delta(\alpha)=0$.
REMARK: Let α be a harmonic form. Then $(\Delta x, x)=(d x, d x)+\left(d^{*} x, d^{*} x\right)$, hence $\alpha \in \operatorname{ker} d \cap \operatorname{ker} d^{*}$

REMARK: The projection $\mathcal{H}^{i}(M) \longrightarrow H^{i}(M)$ from harmonic forms to cohomology is injective. Indeed, a form α lies in the kernel of such projection if $\alpha=d \beta$, but then $(\alpha, \alpha)=(\alpha, d \beta)=\left(d^{*} \alpha, \beta\right)=0$.

THEOREM: The natural map $\mathcal{H}^{i}(M) \longrightarrow H^{i}(M)$ is an isomorphism (see the next page).

REMARK: Poincare duality immediately follows from this theorem.

Hodge theory and the cohomology

THEOREM: The natural map $\mathcal{H}^{i}(M) \longrightarrow H^{i}(M)$ is an isomorphism.
Proof. Step 1: Since $d^{2}=0$ and $\left(d^{*}\right)^{2}=0$, one has $\{d, \Delta\}=0$. This means that Δ commutes with the de Rham differential.

Step 2: Consider the eigenspace decomposition $\wedge^{*}(M) \cong \oplus_{\alpha} \mathcal{H}_{\alpha}^{*}(M)$, where α runs through all eigenvalues of Δ, and $\mathcal{H}_{\alpha}^{*}(M)$ is the corresponding eigenspace. For each α, de Rham differential defines a complex

$$
\mathcal{H}_{\alpha}^{0}(M) \xrightarrow{d} \mathcal{H}_{\alpha}^{1}(M) \xrightarrow{d} \mathcal{H}_{\alpha}^{2}(M) \xrightarrow{d} \ldots
$$

Step 3: On $\mathcal{H}_{\alpha}^{*}(M)$, one has $d d^{*}+d^{*} d=\alpha$. When $\alpha \neq 0$, and η closed, this implies $d d^{*}(\eta)+d^{*} d(\eta)=d d^{*} \eta=\alpha \eta$, hence $\eta=d \xi$, with $\xi:=\alpha^{-1} d^{*} \eta$. This implies that the complexes $\left(\mathcal{H}_{\alpha}^{*}(M), d\right)$ don't contribute to cohomology.

Step 4: We have proven that

$$
H^{*}\left(\wedge^{*} M, d\right)=\bigoplus_{\alpha} H^{*}\left(\mathcal{H}_{\alpha}^{*}(M), d\right)=H^{*}\left(\mathcal{H}_{0}^{*}(M), d\right)=\mathcal{H}^{*}(M) .
$$

Supersymmetry in Kähler geometry

Let (M, I, g) be a Kaehler manifold, ω its Kaehler form. On $\wedge^{*}(M)$, the following operators are defined.
$0 . d, d^{*}, \Delta$, because it is Riemannian.

1. $L(\alpha):=\omega \wedge \alpha$
2. $\wedge(\alpha):=* L * \alpha$. It is easily seen that $\wedge=L^{*}$.
3. $\left.\mathcal{I}\right|_{\wedge p, q(M)}=\sqrt{-1}(p-q)$

THEOREM: These operators generate a 9-dimensional Lie superalgebra \mathfrak{a}, acting on $\Lambda^{*}(M)$. Moreover, the Laplacian Δ is central in \mathfrak{a}, hence \mathfrak{a} also acts on the cohomology of M.

REMARK: This is a convenient way to summarize the Kähler relations and the Lefschetz' $\mathfrak{s l}(2)$-action.

