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Graded vector spaces and algebras

DEFINITION: A graded vector space is a space V ∗ =
⊕
i∈Z V

i.

REMARK: If V ∗ is graded, the endomorphisms space End(V ∗) =
⊕
i∈Z Endi(V ∗)

is also graded, with Endi(V ∗) =
⊕
j∈Z Hom(V j, V i+j)

DEFINITION: A graded algebra(or “graded associative algebra”) is an as-
sociative algebra A∗ =

⊕
i∈ZA

i, with the product compatible with the grading:
Ai ·Aj ⊂ Ai+j.

REMARK: A bilinear map of graded paces which satisfies Ai · Aj ⊂ Ai+j is
called graded, or compatible with grading.

REMARK: The category of graded spaces can be defined as a category of
vector spaces with U(1)-action, with the weight decomposition providing
the grading. Then a graded algebra is an associative algebra in the
category of spaces with U(1)-action.

DEFINITION: An operator on a graded vector space is called even (odd)
if it shifts the grading by even (odd) number. The parity ã of an operator a
is 0 if it is even, 1 if it is odd. We say that an operator is pure if it is even
or odd.
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Supercommutator

DEFINITION: A supercommutator of pure operators on a graded vector
space is defined by a formula {a, b} = ab− (−1)ã̃bba.

DEFINITION: A graded associative algebra is called graded commutative
(or “supercommutative”) if its supercommutator vanishes.

EXAMPLE: The Grassmann algebra is supercommutative.

DEFINITION: A graded Lie algebra (Lie superalgebra) is a graded vector
space g∗ equipped with a bilinear graded map {·, ·} : g∗ × g∗ −→ g∗ which
is graded anticommutative: {a, b} = −(−1)ã̃b{b, a} and satisfies the super
Jacobi identity {c, {a, b}} = {{c, a}, b}+ (−1)ãc̃{a, {c, b}}

EXAMPLE: Consider the algebra End(A∗) of operators on a graded vector
space, with supercommutator as above. Then End(A∗), {·, ·} is a graded
Lie algebra.

Lemma 1: Let d be an odd element of a Lie superalgebra, satisfying {d, d} =
0, and L an even element. Then {{L, d}, d} = 0.

Proof: 0 = {L, {d, d}} = {{L, d}, d}+ {d, {L, d}} = 2{{L, d}, d}.
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de Rham differential

DEFINITION: Let M be a real manifold, and Λ∗M the space of differential

forms on M . We define the de Rham differential as the only operator

d : Λi(M)−→ Λi+1(M) which satisfies

1. The graded Leibniz identity: d(α ∧ β) = d(α) ∧ β + (−1)α̃α ∧ dβ

2. d2 = 0

3. On functions, d : C∞M −→ Λ1(M) is the usual differential.

REMARK: Uniqueness of d is clear. Indeed, d is determined by its values

on any set of multiplicative generators of Λ∗(M). On the other hand, Λ∗(M)

is generated by C∞M and dC∞M .

Existence of d: it suffices to prove that d exists locally, then patch together

local differentials by uniqueness. On Rn, one has d(fP ) =
∑
i
df
dxi
dxi ∧ P for

every coordinate monomial form P = dxi1 ∧ ... ∧ dxik.

DEFINITION: A form η is called closed if dη = 0, and exact if η = dξ.
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Hodge ∗ operator

Let V be a vector space. A metric g on V induces a natural metric
on each of its tensor spaces: g(x1 ⊗ x2 ⊗ ... ⊗ xk, x

′
1 ⊗ x′2 ⊗ ... ⊗ x′k) =

g(x1, x
′
1)g(x2, x

′
2)...g(xk, x

′
k).

This gives a natural positive definite scalar product on differential forms
over a Riemannian manifold (M, g): g(α, β) :=

∫
M g(α, β) VolM

Another non-degenerate form is provided by the Poincare pairing:
α, β −→

∫
M α ∧ β.

DEFINITION: Let M be a Riemannian n-manifold. Define the Hodge ∗
operator ∗ : ΛkM −→ Λn−kM by the following relation: g(α, β) =

∫
M α ∧ ∗β.

REMARK: The Hodge ∗ operator always exists. It is defined explicitly in
an orthonormal basis ξ1, ..., ξn ∈ Λ1M :

∗(ξi1 ∧ ξi2 ∧ ... ∧ ξik) = (−1)sξj1 ∧ ξj2 ∧ ... ∧ ξjn−k,
where ξj1, ξj2, ..., ξjn−k is a complementary set of vectors to ξi1, ξi2, ..., ξik, and
s the signature of a permutation (i1, ..., ik, j1, ..., jn−k).

REMARK: ∗2
∣∣∣Λk(M) = (−1)k(n−k) IdΛk(M)
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Hodge theory

CLAIM: On a compact Riemannian n-manifold, one has d∗
∣∣∣ΛkM = (−1)nk∗d∗,

where d∗ denotes the adjoint operator, which is defined by the equation
(dα, γ) = (α, d∗γ).

Proof: Since

0 =
∫
M
d(α ∧ β) =

∫
M
d(α) ∧ β + (−1)α̃α ∧ d(β),

one has (dα, ∗β) = (−1)α̃(α, ∗dβ). Setting γ := ∗β, we obtain

(dα, γ) = (−1)α̃(α, ∗d(∗)−1γ) = (−1)α̃(−1)α̃(ñ−α̃)(α, ∗d∗γ) = (−1)α̃ñ(α, ∗d∗γ).

DEFINITION: The anticommutator ∆ := {d, d∗} = dd∗ + d∗d is called the
Laplacian of M . It is self-adjoint and positive definite: (∆x, x) = (dx, dx) +
(d∗x, d∗x).

THEOREM: (The main theorem of Hodge theory)
There is a basis in the Hilbert space L2(Λ∗(M)) consisting of eigenvec-
tors of ∆.

THEOREM: (“Elliptic regularity for ∆”) Let α ∈ L2(Λk(M)) be an eigen-
vector of ∆. Then α is a smooth k-form.
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De Rham cohomology

DEFINITION: The space Hi(M) :=
ker d

∣∣
ΛiM

d(Λi−1M)
is called the de Rham coho-

mology of M .

DEFINITION: A form α is called harmonic if ∆(α) = 0.

REMARK: Let α be a harmonic form. Then (∆x, x) = (dx, dx) + (d∗x, d∗x),

hence α ∈ ker d ∩ ker d∗

REMARK: The projection Hi(M)−→Hi(M) from harmonic forms to

cohomology is injective. Indeed, a form α lies in the kernel of such projection

if α = dβ, but then (α, α) = (α, dβ) = (d∗α, β) = 0.

THEOREM: The natural map Hi(M)−→Hi(M) is an isomorphism

(see the next page).

REMARK: Poincare duality immediately follows from this theorem.
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Hodge theory and the cohomology

THEOREM: The natural map Hi(M)−→Hi(M) is an isomorphism.

Proof. Step 1: Since d2 = 0 and (d∗)2 = 0, one has {d,∆} = 0. This means
that ∆ commutes with the de Rham differential.

Step 2: Consider the eigenspace decomposition Λ∗(M)=̃
⊕
αH∗α(M), where α

runs through all eigenvalues of ∆, and H∗α(M) is the corresponding eigenspace.
For each α, de Rham differential defines a complex

H0
α(M)

d−→ H1
α(M)

d−→ H2
α(M)

d−→ ...

Step 3: On H∗α(M), one has dd∗+ d∗d = α. When α 6= 0, and η closed, this
implies dd∗(η) + d∗d(η) = dd∗η = αη, hence η = dξ, with ξ := α−1d∗η. This
implies that the complexes (H∗α(M), d) don’t contribute to cohomology.

Step 4: We have proven that

H∗(Λ∗M,d) =
⊕
α
H∗(H∗α(M), d) = H∗(H∗0(M), d) = H∗(M).
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Supersymmetry in Kähler geometry

Let (M, I, g) be a Kaehler manifold, ω its Kaehler form. On Λ∗(M), the

following operators are defined.

0. d, d∗, ∆, because it is Riemannian.

1. L(α) := ω ∧ α

2. Λ(α) := ∗L ∗ α. It is easily seen that Λ = L∗.

3. I
∣∣∣Λp,q(M) =

√
−1 (p− q)

THEOREM: These operators generate a 9-dimensional Lie superalge-

bra a, acting on Λ∗(M). Moreover, the Laplacian ∆ is central in a, hence a

also acts on the cohomology of M.

REMARK: This is a convenient way to summarize the Kähler relations and

the Lefschetz’ sl(2)-action.
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