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Graded vector spaces and algebras
DEFINITION: A graded vector space is a space V* = @,z V.

REMARK: If V* is graded, the endomorphisms space End(V*) = @;cz End*(V*)
is also graded, with End'(V*) = @ ¢z Hom(VJ, Vit7)

DEFINITION: A graded algebra(or “graded associative algebra™) is an as-
sociative algebra A*™ = @,z A*, with the product compatible with the grading:
Al. AT C AV,

REMARK: A bilinear map of graded paces which satisfies A*- A7 ¢ A7 is
called graded, or compatible with grading.

REMARK: The category of graded spaces can be defined as a category of
vector spaces with U(1)-action, with the weight decomposition providing
the grading. Then a graded algebra is an associative algebra in the
category of spaces with U(1)-action.

DEFINITION: An operator on a graded vector space is called even (odd)
if it shifts the grading by even (odd) number. The parity a of an operator a
is O if it is even, 1 if it is odd. We say that an operator is pure if it is even
or odd.
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Supercommutator

DEFINITION: A supercommutator of pure operators on a graded vector
space is defined by a formula {a,b} = ab — (—1)%ba.

DEFINITION: A graded associative algebra is called graded commutative
(or “supercommutative”) if its supercommutator vanishes.

EXAMPLE: The Grassmann algebra is supercommutative.

DEFINITION: A graded Lie algebra (Lie superalgebra) is a graded vector
space g* equipped with a bilinear graded map {-,-} : g* x g* — g* which
is graded anticommutative: {a,b} = —(—1)?{b,a} and satisfies the super
Jacobi identity {c, {a,b}} = {{c,a},b} + (—1)%{a, {c, b}}

EXAMPLE: Consider the algebra End(A*) of operators on a graded vector
space, with supercommutator as above. Then End(A*),{-,-} is a graded
Lie algebra.

Lemma 1: Let d be an odd element of a Lie superalgebra, satisfying {d,d} =
0, and L an even element. Then {{L,d},d} = 0.

Proof: 0= {L,{d,d}} = {{L,d},d} + {d,{L,d}} = 2{{L,d},d}. m
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de Rham differential

DEFINITION: Let M be a real manifold, and A*M the space of differential
forms on M. We define the de Rham differential as the only operator

d: N(M) — AT1(M) which satisfies
1. The graded Leibniz identity: d(a A B) = d(a) AB+ (=1)% A dS
2. d2=0

3. On functions, d: C®M — AL(M) is the usual differential.

REMARK: Uniqueness of d iIs clear. Indeed, d is determined by its values
on any set of multiplicative generators of A*(M). On the other hand, A*(M)
is generated by C°°M and dC°°M.

EXxistence of d: it suffices to prove that d exists locally, then patch together
local differentials by uniqueness. On R"™, one has d(fP) = Y, j—idmi A P for
every coordinate monomial form P = dx;; A ... A dx;, .

DEFINITION: A form n is called closed if dnp = 0, and exact if n = d¢.
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Hodge x operator

Let V be a vector space. A metric ¢ on V induces a natural metric
on each of its tensor spaces: g(z]1 ® T2 ® ... ® T, 2] ® 5 Q ... ® x),) =
g(z1,77)g(x2, 25)...9(x), 2).).

This gives a natural positive definite scalar product on differential forms
over a Riemannian manifold (M, g): g(o,B) = [y 9(a, B) VOl

Another non-degenerate form is provided by the Poincare pairing:.
o, — [jyanp.

DEFINITION: Let M be a Riemannian n-manifold. Define the Hodge x
operator x : A*M — A""kM by the following relation: g(a, 3) = [y a A *8.

REMARK: The Hodge x operator always exists. It is defined explicitly in
an orthonormal basis &1, ..., &n € AL M:

# (G N N NE ) = (1), NE, Ao NE
where §;,,&5,---,&5,_, 1S @ complementary set of vectors to &;,,&,, .-, §;,, and
s the signature of a permutation (i1, ...,%5, J1s s Jr—k)-

REMARK: 2|1y = (=10 1d oy
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Hodge theory

CLAIM: On a compact Riemannian n-manifold, one has d*‘/\kM = (—1)”’“*d*,
where d* denotes the adjoint operator, which is defined by the equation

(do,v) = (o, d*).
Proof: Since
0=/ dlanp) = [ d(@)AB+ (-1 nd(B),
one has (da, *8) = (—=1)%*(a, *dB3). Setting ~ := %3, we obtain
(da,y) = (—1)%(a, xd(*) " 1y) = (1) (1) =D (q, xdx7) = (—1)¥(a, *d*7).

DEFINITION: The anticommutator A = {d,d*} = dd* + d*d is called the
Laplacian of M. It is self-adjoint and positive definite: (Ax,z) = (dz,dx) +
(d*x,d*x).

THEOREM: (The main theorem of Hodge theory)
There is a basis in the Hilbert space L2(A*(M)) consisting of eigenvec-
tors of A.

THEOREM: (“Elliptic regularity for A”) Let a € L2(A¥(M)) be an eigen-
vector of A. Then « is a smooth k-form.
§)
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De Rham cohomology

is called the de Rham coho-

DEFINITION: The space H:(M) :=
mology of M.

DEFINITION: A form « is called harmonic if A(«a) = 0.

REMARK: Let o be a harmonic form. Then (Axz,z) = (dz,dz) 4+ (d*x,d*z),
hence o € kerd N ker d*

REMARK: The projection H!(M) — H*(M) from harmonic forms to
cohomology is injective. Indeed, a form « lies in the kernel of such projection

if « = dg, but then (a,a) = (a,dB) = (d*a, 3) = 0.

THEOREM: The natural map H‘ (M) — H*(M) is an isomorphism
(see the next page).

REMARK: Poincare duality immediately follows from this theorem.
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Hodge theory and the cohomology
THEOREM: The natural map H‘(M) — H'(M) is an isomorphism.

Proof. Step 1: Since d2 =0 and (d*)2 = 0, one has {d, A} = 0. This means
that A commutes with the de Rham differential.

Step 2: Consider the eigenspace decomposition A*(M)=&, H: (M), where o
runs through all eigenvalues of A, and ‘H},(M) is the corresponding eigenspace.
For each o, de Rham differential defines a complex

HO(M) - HE(M) L HA(M) L

Step 3: On H}, (M), one has dd* + d*d = a. When a # 0, and n closed, this
implies dd*(n) 4+ d*d(n) = dd*n = an, hence n = d¢, with &€ := a~1d*n. This
implies that the complexes (H}, (M),d) don’t contribute to cohomology.

Step 4: We have proven that
H*(N'M,d) =P H*(H;,(M),d) = H* (H§(M),d) = H*(M).
(8%
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Supersymmetry in Kahler geometry

Let (M,I,g) be a Kaehler manifold, w its Kaehler form. On A*(M), the
following operators are defined.

0. d, d*, A, because it is Riemannian.

1. L(a) (= w A«

2. N(a) := xL x . It is easily seen that A = L*.

3. I‘/\p,q(M) =+v-1 (r—q)

THEOREM: These operators generate a 9-dimensional Lie superalge-
bra a, acting on A*(M). Moreover, the Laplacian A is central in a, hence a

also acts on the cohomology of M.

REMARK: This is a convenient way to summarize the Kahler relations and
the Lefschetz’ sl(2)-action.



