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Supercommutator

DEFINITION: A supercommutator of pure operators on a graded vector
space is defined by a formula {a,b} = ab — (—1)%ba.

DEFINITION: A graded associative algebra is called graded commutative
(or “supercommutative”) if its supercommutator vanishes.

EXAMPLE: The Grassmann algebra is supercommutative.

DEFINITION: A graded Lie algebra (Lie superalgebra) is a graded vector
space g* equipped with a bilinear graded map {-,-} : g* x g* — g* which
is graded anticommutative: {a,b} = —(—1)?{b,a} and satisfies the super
Jacobi identity {c, {a,b}} = {{c,a},b} + (—1)%{a, {c, b}}

EXAMPLE: Consider the algebra End(A*) of operators on a graded vector
space, with supercommutator as above. Then End(A*),{-,-} is a graded
Lie algebra.

Lemma 1: Let d be an odd element of a Lie superalgebra, satisfying {d,d} =
0, and L an even element. Then {{L,d},d} = 0.

Proof: 0= {L,{d,d}} = {{L,d},d} + {d,{L,d}} = 2{{L,d},d}. m
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Supersymmetry in Kahler geometry

Let (M,I,g) be a Kaehler manifold, w its Kaehler form. On A*(M), the
following operators are defined.

0. d, d*, A, because it is Riemannian.

1. The Hodge operator L(a) = w A«

2. The Hodge operator A(a) := *L * . It is easily seen that A = L*.

3. The Weil operator: W‘,\p,q(M) = +/—1 (p — q). This operator is real.

THEOREM: These operators generate a 9-dimensional Lie superalge-
bra a, acting on A*(M). Moreover, the Laplacian A is central in a, hence a
also acts on the cohomology of M.

REMARK: This is a convenient way to summarize the Kahler relations and
the Lefschetz’ sl(2)-action.
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The coordinate operators

Let V be an even-dimensional real vector space equipped with a scalar prod-
uct, and w1, ...,v2, an orthonormal basis. Denote by ey, : AFV — ATV an
operator of multiplication, ey (n) = e; An. Let iy, : AV — A1V be an
adjoint operator, i,, = *ey,*.

CLAIM: The operators eqy;, i,;, Id are a basis of an odd Heisenberg Lie
superalgebra 5, with the only non-trivial supercommutator given by the
formula {ey;,iv,} = 9; ;1d.

Now, consider the tensor w = > ;vp;_1 Awvg;, and let L(a) = w A a, and
N\ = L* be the corresponding Hodge operators.

CLAIM: From the commutator relations in $, one obtains immediately that
2n 2n
H:=[L,N\ = [Z 6”2i—1ev2i7ziv2i—liv2i] = D eviy; — ) e,
i=1 i=1
IS a scalar operator acting as £ — n on k-forms.
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The Lefschetz si(2)-action

COROLLARY: The operators L,\, H form a basis of a Lie algebra isomor-
phic to si(2), with relations

(LAl = H, [H,L]=2L, [H,A]=-2A.

DEFINITION: L, A, H is called the Lefschetz s((2)-triple.
REMARK: Finite-dimensional representations of s/(2) are semisimple.

REMARK: A simple finite-dimensional representation V of sl(2) is generated
by v € V which satisfies A(v) = 0, H(v) = pv (“lowest weight vector”),
where p € ZZ0. Then v, L(v), L?(v), ..., LP(v) form a basis of V, := V. This
representation is determined uniquely by »p.

REMARK: In this basis, H acts diagonally: H(L'(v)) = (2i — p)L*(v).

REMARK: One has V), = SymPVy, where V; is a 2-dimensional tautological
representation. It is called a weight p representation of si(2).

COROLLARY: For a finite-dimensional representation V' of s/(2), denote by
V() the eigenspaces of H, with H|;,;; = ¢. Then L' induces an isomorphism

v L, v for any i > O.
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Integrability of the complex structure

CLAIM: (“Cartan’s formula” ) The de Rham differential of can be expressed
through the commutator of vector fields:

dn(X1, .. Xg+1) = > (1) IDx (n(X1, s Xiy ooy X 1)
o Z(_1)2+J+1T}([XZ) X]]) Xl? T Xia T Xja T Xd—|—1>'
i<j
For a 1-form 7, this gives dn(X1, X2) = Dx,n(X2) —Dx,n(X1)—n([X1, X2]).

COROLLARY: Let (M,I) be an almost complex manifold. Then the fol-
lowing assertions are equivalent.

(i) dn c A92(M) @ ALI(A) for any n € AO1(M).
(ii) I is integrable.

REMARK: This is equivalent to d‘/\lM having only two Hodge components:

d = d10 4+ 491 (for a non-integrable complex structure, there are 4: d =
d2’_1 —|—d1>0—|—do>1 —|—d_1’2).

REMARK: Since A*M is multiplicatively generated by Al(M), the decom-
position d = d4~-1 4+ 419 4+ ¢01 4+ ¢—1.2 holds for any almost complex
manifold.

.
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Integrability and the Hodge decomposition
CLAIM: A manifold (M, 1) is integrable if and only if (d%1)2|-xy; = O.

Proof. Step 1: The bundle ALO(A1) is generated over C®M by d1:0(C>®M).
Indeed, it is n-dimensional, n = dim¢c M and to prove this one needs to find
n functions f1,..., fn with d10f; linearly independent at a point. This is done
by taking 2n functions fq,..., fo,, With df; linearly independent, and finding an
appropriate subset.

Step 2: Then, the integrability condition d(ALO(M)) ¢ A20(M) g ALL(M) is
equivalent to ddb1(C>®M) c A2O(M) @ AVI(M) < d= 12 @O0 (Cc>*M)) = 0.

Step 3: The (0,2) component of d2 = 0 gives {d—12, 410} = {01 ¢0:1} =
2(d%1)2 = 0. From Step 2, we obtain that (d®1)2|-~y; = 0 is equivalent to
integrability. =

REMARK: d%~—1: AO1pr — A2001) is a C°°M-linear map which is dual to
the Nijenhuis tensor N : A2710p 70107

REMARK: The above claim provides an equivalence d2~1 = 0 <
{d 12,410} =0 & (d%1)? =o0.
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The twisted differential d°
DEFINITION: The twisted differential is defined as d°¢ := —1IdlI.

CLAIM: Let (M,I) be a complex manifold. Then 0 = d+v2_1dc, 0 =
d_Vz_ldc are the Hodge components of d, 8 = d10, § = d91.

Proof: Let V be a space generated by d,IdI. The natural action of U(1)
generated by eV preserves V. Since d has only two Hodge components.
U(1) acts with weights /-1 and —/—1, and its Hodge components are
expressed as above. m

CLAIM: On a complex manifold, one has d¢ = [W, d].

Proof: Clearly, [W,d?0] =/=1d10 and [W,d%1] = —v/=1d%1. Adding these
equations, obtain d¢ = [W,d].

COROLLARY: {d,d‘} = {d,{d,W}} =0 (Lemma 1).
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De Rham differential on Kaehler manifolds

THEOREM: The following statements are equivalent.

72

1. I is integrable. 2. 82 =0. 3. 8 =0. 4. dd°= —d°d 5. dd¢ = 2+/—1 H9.

DEFINITION: The operator dd¢ is called the pluri-Laplacian.

THEOREM: Let M be a Kaehler manifold. One has the following identities
( “Kodaira idenitities).

N0l =v—=10", [L,J]=—-/—-108% [NO]=—-v—-10, |[L,0]=+vV-10.
Equivalently,

A, d] = (d°)7, [L,d*] = —df, A, d°] = —d¥, [L, (d°)*] = d.
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Laplacians and supercommutators

THEOREM: Let
Agi=A{d,d*}, Age:={dd"}, Dy:={8,0"},05:={0,0"}.

Then Ay = Ay = 2A5 = 2A5. In particular, Ay preserves the Hodge
decomposition.

Proof: By Kodaira relations, {d,d‘} = 0. Graded Jacobi identity gives
{d7 d*} — _{da {/\7 dc}} — {{/\7d}7 dc} — {dc7 dc*}°

Same calculation with 9,8 gives Ay = A5.. Also, {9,0"} = v=1{8,{A,0}} =
0, (Lemma 1), and the same argument implies that all anticommutators
9,0, etc. all vanish except {0,0*} and {9,0"}. This gives Ay = Ay+ Ay,
|

DEFINITION: The operator A := A, is called the Laplacian.

REMARK: We have proved that operators L, A,d, )V generate a Lie su-
peralgebra of dimension (5/4) (5 even, 4 odd), with a 1-dimensional

center RA.
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