Kähler manifolds

lecture 3

Misha Verbitsky

Harish-Chandra Research Institute
January 15, December 2010, Allahabad.

Supercommutator

DEFINITION: A supercommutator of pure operators on a graded vector space is defined by a formula $\{a, b\}=a b-(-1)^{\tilde{a} b} b a$.

DEFINITION: A graded associative algebra is called graded commutative (or "supercommutative") if its supercommutator vanishes.

EXAMPLE: The Grassmann algebra is supercommutative.
DEFINITION: A graded Lie algebra (Lie superalgebra) is a graded vector space \mathfrak{g}^{*} equipped with a bilinear graded map $\{\cdot, \cdot\}: \mathfrak{g}^{*} \times \mathfrak{g}^{*} \longrightarrow \mathfrak{g}^{*}$ which is graded anticommutative: $\{a, b\}=-(-1)^{\tilde{a} \tilde{b}}\{b, a\}$ and satisfies the super Jacobi identity $\{c,\{a, b\}\}=\{\{c, a\}, b\}+(-1)^{\tilde{a} \tilde{c}}\{a,\{c, b\}\}$

EXAMPLE: Consider the algebra End $\left(A^{*}\right)$ of operators on a graded vector space, with supercommutator as above. Then End $\left(A^{*}\right),\{\cdot, \cdot\}$ is a graded Lie algebra.

Lemma 1: Let d be an odd element of a Lie superalgebra, satisfying $\{d, d\}=$ 0 , and L an even element. Then $\{\{L, d\}, d\}=0$.

Proof: $0=\{L,\{d, d\}\}=\{\{L, d\}, d\}+\{d,\{L, d\}\}=2\{\{L, d\}, d\}$.

Supersymmetry in Kähler geometry

Let (M, I, g) be a Kaehler manifold, ω its Kaehler form. On $\wedge^{*}(M)$, the following operators are defined.
$0 . d, d^{*}, \Delta$, because it is Riemannian.

1. The Hodge operator $L(\alpha):=\omega \wedge \alpha$
2. The Hodge operator $\wedge(\alpha):=* L * \alpha$. It is easily seen that $\wedge=L^{*}$.
3. The Weil operator: $\left.\mathcal{W}\right|_{\wedge p, q(M)}=\sqrt{-1}(p-q)$. This operator is real.

THEOREM: These operators generate a 9-dimensional Lie superalgebra \mathfrak{a}, acting on $\Lambda^{*}(M)$. Moreover, the Laplacian Δ is central in \mathfrak{a}, hence \mathfrak{a} also acts on the cohomology of M.

REMARK: This is a convenient way to summarize the Kähler relations and the Lefschetz' $\mathfrak{s l}(2)$-action.

Reference:

JM Figueroa-O'Farrill, C Koehl, B Spence, Supersymmetry and the cohomology of (hyper)Kaehler manifolds, arXiv:hep-th/9705161, Nucl.Phys. B503 (1997) 614-626
M. Verbitsky, Hyperkaehler manifolds with torsion, supersymmetry and Hodge theory, arXiv:math/0112215, Asian J. Math. Vol. 6, No. 4, pp. 679-712 (2002)

Elena Poletaeva, Superconformal algebras and Lie superalgebras of the Hodge theory, arXiv:hep-th/0209168, J.Nonlin.Math.Phys. 10 (2003) 141147

The coordinate operators

Let V be an even-dimensional real vector space equipped with a scalar product, and $v_{1}, \ldots, v_{2 n}$ an orthonormal basis. Denote by $e_{v_{i}}: \Lambda^{k} V \longrightarrow \Lambda^{k+1} V$ an operator of multiplication, $e_{v_{i}}(\eta)=e_{i} \wedge \eta$. Let $i_{v_{i}}: \wedge^{k} V \longrightarrow \wedge^{k-1} V$ be an adjoint operator, $i_{v_{i}}=* e_{v_{i}} *$.

CLAIM: The operators $e_{v_{i}}, i_{v_{i}}$, Id are a basis of an odd Heisenberg Lie superalgebra \mathfrak{H}, with the only non-trivial supercommutator given by the formula $\left\{e_{v_{i}}, i_{v_{j}}\right\}=\delta_{i, j}$ Id.

Now, consider the tensor $\omega=\sum_{i=1}^{n} v_{2 i-1} \wedge v_{2 i}$, and let $L(\alpha)=\omega \wedge \alpha$, and $\Lambda:=L^{*}$ be the corresponding Hodge operators.

CLAIM: From the commutator relations in \mathfrak{H}, one obtains immediately that

$$
H:=[L, \wedge]=\left[\sum e_{v_{2 i-1}} e_{v_{2 i}}, \sum i_{v_{2 i-1}} i_{v_{2 i}}\right]=\sum_{i=1}^{2 n} e_{v_{i}} i_{v_{i}}-\sum_{i=1}^{2 n} i_{v_{i}} e_{v_{i}},
$$

is a scalar operator acting as $k-n$ on k-forms.

The Lefschetz sl(2)-action
COROLLARY: The operators L, \wedge, H form a basis of a Lie algebra isomorphic to $s l(2)$, with relations

$$
[L, \wedge]=H, \quad[H, L]=2 L, \quad[H, \wedge]=-2 \wedge .
$$

DEFINITION: L, \wedge, H is called the Lefschetz $\mathfrak{s l}(2)$-triple.
REMARK: Finite-dimensional representations of $\mathfrak{s l}(2)$ are semisimple.
REMARK: A simple finite-dimensional representation V of $\mathfrak{s l}(2)$ is generated by $v \in V$ which satisfies $\Lambda(v)=0, H(v)=p v$ ("lowest weight vector"), where $p \in \mathbb{Z} \geqslant 0$. Then $v, L(v), L^{2}(v), \ldots, L^{p}(v)$ form a basis of $V_{p}:=V$. This representation is determined uniquely by p.

REMARK: In this basis, H acts diagonally: $H\left(L^{i}(v)\right)=(2 i-p) L^{i}(v)$.
REMARK: One has $V_{p}=\operatorname{Sym}^{p} V_{1}$, where V_{1} is a 2-dimensional tautological representation. It is called a weight p representation of $\mathfrak{s l}(2)$.

COROLLARY: For a finite-dimensional representation V of $\mathfrak{s l}(2)$, denote by $V^{(i)}$ the eigenspaces of H, with $\left.H\right|_{V^{(i)}}=i$. Then L^{i} induces an isomorphism $V^{(-i)} \xrightarrow{L^{i}} V^{(i)}$ for any $i>0$.

Integrability of the complex structure

CLAIM: ("Cartan's formula") The de Rham differential of can be expressed through the commutator of vector fields:

$$
\begin{aligned}
& d \eta\left(X_{1}, \ldots X_{d+1}\right)=\sum(-1)^{i+1} D_{X_{i}}\left(\eta\left(X_{1}, \ldots, \breve{X}_{i}, \ldots, X_{d+1}\right)\right. \\
& \quad-\sum_{i<j}(-1)^{i+j+1} \eta\left(\left[X_{i}, X_{j}\right], X_{1}, \ldots, \breve{X}_{i}, \ldots, \breve{X}_{j}, \ldots, X_{d+1}\right) .
\end{aligned}
$$

For a 1-form η, this gives $d \eta\left(X_{1}, X_{2}\right)=D_{X_{1}} \eta\left(X_{2}\right)-D_{X_{2}} \eta\left(X_{1}\right)-\eta\left(\left[X_{1}, X_{2}\right]\right)$.
COROLLARY: Let (M, I) be an almost complex manifold. Then the following assertions are equivalent.
(i) $d \eta \subset \wedge^{0,2}(M) \oplus \wedge^{1,1}(M)$ for any $\eta \in \Lambda^{0,1}(M)$.
(ii) I is integrable.

REMARK: This is equivalent to $\left.d\right|_{\Lambda^{1} M}$ having only two Hodge components: $d=d^{1,0}+d^{0,1}$ (for a non-integrable complex structure, there are 4: $d=$ $\left.d^{2,-1}+d^{1,0}+d^{0,1}+d^{-1,2}\right)$.

REMARK: Since $\wedge^{*} M$ is multiplicatively generated by $\Lambda^{1}(M)$, the decomposition $d=d^{2,-1}+d^{1,0}+d^{0,1}+d^{-1,2}$ holds for any almost complex manifold.

Integrability and the Hodge decomposition

CLAIM: A manifold (M, I) is integrable if and only if $\left.\left(d^{0,1}\right)^{2}\right|_{C^{\infty} M}=0$.
Proof. Step 1: The bundle $\wedge^{1,0}(M)$ is generated over $C^{\infty} M$ by $d^{1,0}\left(C^{\infty} M\right)$. Indeed, it is n-dimensional, $n=\operatorname{dim}_{\mathbb{C}} M$ and to prove this one needs to find n functions f_{1}, \ldots, f_{n} with $d^{1,0} f_{i}$ linearly independent at a point. This is done by taking $2 n$ functions $f_{1}, \ldots, f_{2 n}$ with $d f_{i}$ linearly independent, and finding an appropriate subset.

Step 2: Then, the integrability condition $d\left(\wedge^{1,0}(M)\right) \subset \wedge^{2,0}(M) \oplus \Lambda^{1,1}(M)$ is equivalent to $d d^{1,1}\left(C^{\infty} M\right) \subset \Lambda^{2,0}(M) \oplus \wedge^{1,1}(M) \Leftrightarrow d^{-1,2}\left(d^{1,0}\left(C^{\infty} M\right)\right)=0$.

Step 3: The $(0,2)$ component of $d^{2}=0$ gives $\left\{d^{-1,2}, d^{1,0}\right\}=\left\{d^{0,1}, d^{0,1}\right\}=$ $2\left(d^{0,1}\right)^{2}=0$. From Step 2, we obtain that $\left.\left(d^{0,1}\right)^{2}\right|_{C^{\infty} M}=0$ is equivalent to integrability.

REMARK: $d^{2,-1}: \wedge^{0,1} M \longrightarrow \wedge^{2,0} M$) is a $C^{\infty} M$-linear map which is dual to the Nijenhuis tensor $N: \wedge^{2} T^{1,0} M \longrightarrow T^{0,1} M$.

REMARK: The above claim provides an equivalence $d^{2,-1}=0 \Leftrightarrow$ $\left\{d^{-1,2}, d^{1,0}\right\}=0 \Leftrightarrow\left(d^{0,1}\right)^{2}=0$.

The twisted differential d^{c}

DEFINITION: The twisted differential is defined as $d^{c}:=-I d I$.
CLAIM: Let (M, I) be a complex manifold. Then $\partial:=\frac{d+\sqrt{-1} d^{c}}{2}, \bar{\partial}:=$ $\frac{d-\sqrt{-1} d^{c}}{2}$ are the Hodge components of $d, \partial=d^{1,0}, \bar{\partial}=d^{0,1}$.

Proof: Let V be a space generated by $d, I d I$. The natural action of $U(1)$ generated by $e^{\mathcal{W}}$ preserves V. Since d has only two Hodge components. $U(1)$ acts with weights $\sqrt{-1}$ and $-\sqrt{-1}$, and its Hodge components are expressed as above.

CLAIM: On a complex manifold, one has $d^{c}=[\mathcal{W}, d]$.
Proof: Clearly, $\left[\mathcal{W}, d^{1,0}\right]=\sqrt{-1} d^{1,0}$ and $\left[\mathcal{W}, d^{0,1}\right]=-\sqrt{-1} d^{0,1}$. Adding these equations, obtain $d^{c}=[\mathcal{W}, d]$.

COROLLARY: $\left\{d, d^{c}\right\}=\{d,\{d, \mathcal{W}\}\}=0$ (Lemma 1).

De Rham differential on Kaehler manifolds

THEOREM: The following statements are equivalent.

1. I is integrable. 2. $\partial^{2}=0$. 3. $\bar{\partial}^{2}=0.4 . d d^{c}=-d^{c} d \quad$ 5. $d d^{c}=2 \sqrt{-1} \partial \bar{\partial}$.

DEFINITION: The operator $d d^{c}$ is called the pluri-Laplacian.

THEOREM: Let M be a Kaehler manifold. One has the following identities ("Kodaira idenitities").

$$
[\wedge, \partial]=\sqrt{-1} \bar{\partial}^{*}, \quad[L, \bar{\partial}]=-\sqrt{-1} \partial^{*}, \quad\left[\wedge, \bar{\partial}^{*}\right]=-\sqrt{-1} \partial, \quad\left[L, \partial^{*}\right]=\sqrt{-1} \bar{\partial}
$$

Equivalently,

$$
[\Lambda, d]=\left(d^{c}\right)^{*}, \quad\left[L, d^{*}\right]=-d^{c}, \quad\left[\Lambda, d^{c}\right]=-d^{*}, \quad\left[L,\left(d^{c}\right)^{*}\right]=d
$$

Laplacians and supercommutators

THEOREM: Let

$$
\Delta_{d}:=\left\{d, d^{*}\right\}, \quad \Delta_{d^{c}}:=\left\{d^{c}, d^{c *}\right\}, \quad \Delta_{\partial}:=\left\{\partial, \partial^{*}\right\}, \Delta_{\bar{\partial}}:=\left\{\bar{\partial}, \bar{\partial}^{*}\right\} .
$$

Then $\Delta_{d}=\Delta_{d^{c}}=2 \Delta_{\partial}=2 \Delta_{\bar{\partial}}$. In particular, Δ_{d} preserves the Hodge decomposition.

Proof: By Kodaira relations, $\left\{d, d^{c}\right\}=0$. Graded Jacobi identity gives

$$
\left\{d, d^{*}\right\}=-\left\{d,\left\{\Lambda, d^{c}\right\}\right\}=\left\{\{\Lambda, d\}, d^{c}\right\}=\left\{d^{c}, d^{c *}\right\} .
$$

Same calculation with $\partial, \bar{\partial}$ gives $\Delta_{\partial}=\Delta_{\bar{\partial}}$. Also, $\left\{\partial, \bar{\partial}^{*}\right\}=\sqrt{-1}\{\partial,\{\Lambda, \partial\}\}=$ 0 , (Lemma 1), and the same argument implies that all anticommutators $\partial, \bar{\partial}^{*}$, etc. all vanish except $\left\{\partial, \partial^{*}\right\}$ and $\left\{\bar{\partial}, \bar{\partial}^{*}\right\}$. This gives $\Delta_{d}=\Delta_{\partial}+\Delta_{\bar{\partial}}$.

DEFINITION: The operator $\Delta:=\Delta_{d}$ is called the Laplacian.
REMARK: We have proved that operators $L, \wedge, d, \mathcal{W}$ generate a Lie superalgebra of dimension (5|4) (5 even, 4 odd), with a 1-dimensional center $\mathbb{R} \Delta$.

