Kähler manifolds

lecture 3

Misha Verbitsky

Harish-Chandra Research Institute January 15, December 2010,

Allahabad.

Supercommutator

DEFINITION: A supercommutator of pure operators on a graded vector space is defined by a formula $\{a, b\} = ab - (-1)^{\tilde{a}\tilde{b}}ba$.

DEFINITION: A graded associative algebra is called graded commutative (or "supercommutative") if its supercommutator vanishes.

EXAMPLE: The Grassmann algebra is supercommutative.

DEFINITION: A graded Lie algebra (Lie superalgebra) is a graded vector space \mathfrak{g}^* equipped with a bilinear graded map $\{\cdot,\cdot\}$: $\mathfrak{g}^*\times\mathfrak{g}^*\longrightarrow\mathfrak{g}^*$ which is graded anticommutative: $\{a,b\} = -(-1)^{\tilde{a}\tilde{b}}\{b,a\}$ and satisfies the super Jacobi identity $\{c, \{a, b\}\} = \{\{c, a\}, b\} + (-1)^{\tilde{a}\tilde{c}}\{a, \{c, b\}\}$

EXAMPLE: Consider the algebra $End(A^*)$ of operators on a graded vector space, with supercommutator as above. Then $End(A^*)$, $\{\cdot, \cdot\}$ is a graded Lie algebra.

Lemma 1: Let d be an odd element of a Lie superalgebra, satisfying $\{d, d\} =$ 0, and L an even element. Then $\{\{L, d\}, d\} = 0$.

Proof:
$$0 = \{L, \{d, d\}\} = \{\{L, d\}, d\} + \{d, \{L, d\}\} = 2\{\{L, d\}, d\}.$$

Supersymmetry in Kähler geometry

Let (M, I, g) be a Kaehler manifold, ω its Kaehler form. On $\Lambda^*(M)$, the following operators are defined.

- 0. d, d^* , Δ , because it is Riemannian.
- 1. The Hodge operator $L(\alpha) := \omega \wedge \alpha$
- 2. The Hodge operator $\Lambda(\alpha) := *L * \alpha$. It is easily seen that $\Lambda = L^*$.
- 3. The Weil operator: $\mathcal{W}|_{\Lambda^{p,q}(M)} = \sqrt{-1} (p-q)$. This operator is real.

THEOREM: These operators generate a 9-dimensional Lie superalgebra \mathfrak{a} , acting on $\Lambda^*(M)$. Moreover, the Laplacian Δ is central in \mathfrak{a} , hence \mathfrak{a} also acts on the cohomology of M.

REMARK: This is a convenient way to summarize the Kähler relations and the Lefschetz' $\mathfrak{sl}(2)$ -action.

Reference:

JM Figueroa-O'Farrill, C Koehl, B Spence, **Supersymmetry and the cohomology of (hyper)Kaehler manifolds,** arXiv:hep-th/9705161, Nucl.Phys. B503 (1997) 614-626

M. Verbitsky, **Hyperkaehler manifolds with torsion, supersymmetry and Hodge theory,** arXiv:math/0112215, Asian J. Math. Vol. 6, No. 4, pp. 679-712 (2002)

Elena Poletaeva, **Superconformal algebras and Lie superalgebras of the Hodge theory**, arXiv:hep-th/0209168, J.Nonlin.Math.Phys. 10 (2003) 141-147

The coordinate operators

Let V be an even-dimensional real vector space equipped with a scalar product, and $v_1, ..., v_{2n}$ an orthonormal basis. Denote by $e_{v_i} : \Lambda^k V \longrightarrow \Lambda^{k+1} V$ an operator of multiplication, $e_{v_i}(\eta) = e_i \wedge \eta$. Let $i_{v_i} : \Lambda^k V \longrightarrow \Lambda^{k-1} V$ be an adjoint operator, $i_{v_i} = *e_{v_i}*$.

CLAIM: The operators e_{v_i} , i_{v_i} , Id are a basis of an odd Heisenberg Lie superalgebra \mathfrak{H} , with the only non-trivial supercommutator given by the formula $\{e_{v_i}, i_{v_j}\} = \delta_{i,j}$ Id.

Now, consider the tensor $\omega = \sum_{i=1}^{n} v_{2i-1} \wedge v_{2i}$, and let $L(\alpha) = \omega \wedge \alpha$, and $\Lambda := L^*$ be the corresponding Hodge operators.

CLAIM: From the commutator relations in \mathfrak{H} , one obtains immediately that

$$H := [L, \Lambda] = \left[\sum e_{v_{2i-1}} e_{v_{2i}}, \sum i_{v_{2i-1}} i_{v_{2i}}\right] = \sum_{i=1}^{2n} e_{v_i} i_{v_i} - \sum_{i=1}^{2n} i_{v_i} e_{v_i},$$

is a scalar operator acting as k - n on k-forms.

The Lefschetz $\mathfrak{sl}(2)$ -action

COROLLARY: The operators L, Λ, H form a basis of a Lie algebra isomorphic to $\mathfrak{sl}(2)$, with relations

$$[L, \Lambda] = H, \quad [H, L] = 2L, \quad [H, \Lambda] = -2\Lambda.$$

DEFINITION: L, Λ, H is called **the Lefschetz** $\mathfrak{sl}(2)$ -triple.

REMARK: Finite-dimensional representations of $\mathfrak{sl}(2)$ are semisimple.

REMARK: A simple finite-dimensional representation V of $\mathfrak{sl}(2)$ is generated by $v \in V$ which satisfies $\Lambda(v) = 0$, H(v) = pv ("lowest weight vector"), where $p \in \mathbb{Z}^{\geq 0}$. Then $v, L(v), L^2(v), ..., L^p(v)$ form a basis of $V_p := V$. This representation is determined uniquely by p.

REMARK: In this basis, H acts diagonally: $H(L^{i}(v)) = (2i - p)L^{i}(v)$.

REMARK: One has $V_p = \operatorname{Sym}^p V_1$, where V_1 is a 2-dimensional tautological representation. It is called a weight *p* representation of $\mathfrak{sl}(2)$.

COROLLARY: For a finite-dimensional representation V of $\mathfrak{sl}(2)$, denote by $V^{(i)}$ the eigenspaces of H, with $H|_{V^{(i)}} = i$. Then L^i induces an isomorphism $V^{(-i)} \xrightarrow{L^i} V^{(i)}$ for any i > 0.

Integrability of the complex structure

CLAIM: ("Cartan's formula") The de Rham differential of can be expressed through the commutator of vector fields:

$$d\eta(X_1, \dots, X_{d+1}) = \sum (-1)^{i+1} D_{X_i}(\eta(X_1, \dots, \check{X}_i, \dots, X_{d+1})) - \sum_{i < j} (-1)^{i+j+1} \eta([X_i, X_j], X_1, \dots, \check{X}_i, \dots, \check{X}_j, \dots, X_{d+1}).$$

For a 1-form η , this gives $d\eta(X_1, X_2) = D_{X_1}\eta(X_2) - D_{X_2}\eta(X_1) - \eta([X_1, X_2])$.

COROLLARY: Let (M, I) be an almost complex manifold. Then the following assertions are equivalent.

(i) $d\eta \subset \Lambda^{0,2}(M) \oplus \Lambda^{1,1}(M)$ for any $\eta \in \Lambda^{0,1}(M)$.

(ii) *I* is integrable.

REMARK: This is equivalent to $d|_{\Lambda^1 M}$ having only two Hodge components: $d = d^{1,0} + d^{0,1}$ (for a non-integrable complex structure, there are 4: $d = d^{2,-1} + d^{1,0} + d^{0,1} + d^{-1,2}$).

REMARK: Since Λ^*M is multiplicatively generated by $\Lambda^1(M)$, the decomposition $d = d^{2,-1} + d^{1,0} + d^{0,1} + d^{-1,2}$ holds for any almost complex manifold.

Integrability and the Hodge decomposition

CLAIM: A manifold (M, I) is integrable if and only if $(d^{0,1})^2|_{C^{\infty}M} = 0$.

Proof. Step 1: The bundle $\Lambda^{1,0}(M)$ is generated over $C^{\infty}M$ by $d^{1,0}(C^{\infty}M)$. Indeed, it is *n*-dimensional, $n = \dim_{\mathbb{C}} M$ and to prove this one needs to find n functions $f_1, ..., f_n$ with $d^{1,0}f_i$ linearly independent at a point. This is done by taking 2n functions $f_1, ..., f_{2n}$ with df_i linearly independent, and finding an appropriate subset.

Step 2: Then, the integrability condition $d(\Lambda^{1,0}(M)) \subset \Lambda^{2,0}(M) \oplus \Lambda^{1,1}(M)$ is equivalent to $dd^{1,1}(C^{\infty}M) \subset \Lambda^{2,0}(M) \oplus \Lambda^{1,1}(M) \Leftrightarrow d^{-1,2}(d^{1,0}(C^{\infty}M)) = 0.$

Step 3: The (0,2) component of $d^2 = 0$ gives $\{d^{-1,2}, d^{1,0}\} = \{d^{0,1}, d^{0,1}\} = 2(d^{0,1})^2 = 0$. From Step 2, we obtain that $(d^{0,1})^2|_{C^{\infty}M} = 0$ is equivalent to integrability.

REMARK: $d^{2,-1}$: $\Lambda^{0,1}M \longrightarrow \Lambda^{2,0}M$) is a $C^{\infty}M$ -linear map which is **dual to the Nijenhuis tensor** $N : \Lambda^2 T^{1,0}M \longrightarrow T^{0,1}M$.

REMARK: The above claim provides an equivalence $d^{2,-1} = 0 \Leftrightarrow \{d^{-1,2}, d^{1,0}\} = 0 \Leftrightarrow (d^{0,1})^2 = 0.$

The twisted differential d^c

DEFINITION: The **twisted differential** is defined as $d^c := -IdI$.

CLAIM: Let (M, I) be a complex manifold. Then $\partial := \frac{d + \sqrt{-1} d^c}{2}$, $\overline{\partial} := \frac{d - \sqrt{-1} d^c}{2}$ are the Hodge components of d, $\partial = d^{1,0}$, $\overline{\partial} = d^{0,1}$.

Proof: Let *V* be a space generated by *d*, *IdI*. The natural action of *U*(1) generated by $e^{\mathcal{W}}$ preserves *V*. Since *d* has only two Hodge components. *U*(1) acts with weights $\sqrt{-1}$ and $-\sqrt{-1}$, and its Hodge components are expressed as above.

CLAIM: On a complex manifold, one has $d^c = [\mathcal{W}, d]$.

Proof: Clearly, $[\mathcal{W}, d^{1,0}] = \sqrt{-1} d^{1,0}$ and $[\mathcal{W}, d^{0,1}] = -\sqrt{-1} d^{0,1}$. Adding these equations, obtain $d^c = [\mathcal{W}, d]$.

COROLLARY: $\{d, d^c\} = \{d, \{d, W\}\} = 0$ (Lemma 1).

De Rham differential on Kaehler manifolds

THEOREM: The following statements are equivalent.

1. *I* is integrable. 2. $\partial^2 = 0$. 3. $\overline{\partial}^2 = 0$. 4. $dd^c = -d^c d$ 5. $dd^c = 2\sqrt{-1} \partial \overline{\partial}$.

DEFINITION: The operator dd^c is called **the pluri-Laplacian**.

THEOREM: Let *M* be a Kaehler manifold. One has the following identities ("Kodaira idenitities").

$$[\Lambda,\partial] = \sqrt{-1} \overline{\partial}^*, \quad [L,\overline{\partial}] = -\sqrt{-1} \partial^*, \quad [\Lambda,\overline{\partial}^*] = -\sqrt{-1} \partial, \quad [L,\partial^*] = \sqrt{-1} \overline{\partial}.$$

Equivalently,

$$[\Lambda, d] = (d^c)^*, \qquad [L, d^*] = -d^c, \qquad [\Lambda, d^c] = -d^*, \qquad [L, (d^c)^*] = d.$$

Laplacians and supercommutators

THEOREM: Let

$$\Delta_d := \{d, d^*\}, \quad \Delta_{d^c} := \{d^c, d^{c^*}\}, \quad \Delta_{\partial} := \{\partial, \partial^*\}, \Delta_{\overline{\partial}} := \{\overline{\partial}, \overline{\partial}^*\}.$$

Then $\Delta_d = \Delta_{d^c} = 2\Delta_{\partial} = 2\Delta_{\overline{\partial}}$. In particular, Δ_d preserves the Hodge decomposition.

Proof: By Kodaira relations, $\{d, d^c\} = 0$. Graded Jacobi identity gives

$$\{d, d^*\} = -\{d, \{\Lambda, d^c\}\} = \{\{\Lambda, d\}, d^c\} = \{d^c, d^{c^*}\}.$$

Same calculation with $\partial, \overline{\partial}$ gives $\Delta_{\partial} = \Delta_{\overline{\partial}}$. Also, $\{\partial, \overline{\partial}^*\} = \sqrt{-1} \{\partial, \{\Lambda, \partial\}\} = 0$, (Lemma 1), and the same argument implies that **all anticommutators** $\partial, \overline{\partial}^*$, etc. all vanish except $\{\partial, \partial^*\}$ and $\{\overline{\partial}, \overline{\partial}^*\}$. This gives $\Delta_d = \Delta_{\partial} + \Delta_{\overline{\partial}}$.

DEFINITION: The operator $\Delta := \Delta_d$ is called **the Laplacian**.

REMARK: We have proved that operators L, Λ, d, W generate a Lie superalgebra of dimension (5|4) (5 even, 4 odd), with a 1-dimensional center $\mathbb{R}\Delta$.