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Supercommutator

DEFINITION: A supercommutator of pure operators on a graded vector
space is defined by a formula {a, b} = ab− (−1)ã̃bba.

DEFINITION: A graded associative algebra is called graded commutative
(or “supercommutative”) if its supercommutator vanishes.

EXAMPLE: The Grassmann algebra is supercommutative.

DEFINITION: A graded Lie algebra (Lie superalgebra) is a graded vector
space g∗ equipped with a bilinear graded map {·, ·} : g∗ × g∗ −→ g∗ which
is graded anticommutative: {a, b} = −(−1)ã̃b{b, a} and satisfies the super
Jacobi identity {c, {a, b}} = {{c, a}, b}+ (−1)ãc̃{a, {c, b}}

EXAMPLE: Consider the algebra End(A∗) of operators on a graded vector
space, with supercommutator as above. Then End(A∗), {·, ·} is a graded
Lie algebra.

Lemma 1: Let d be an odd element of a Lie superalgebra, satisfying {d, d} =
0, and L an even element. Then {{L, d}, d} = 0.

Proof: 0 = {L, {d, d}} = {{L, d}, d}+ {d, {L, d}} = 2{{L, d}, d}.
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Supersymmetry in Kähler geometry

Let (M, I, g) be a Kaehler manifold, ω its Kaehler form. On Λ∗(M), the

following operators are defined.

0. d, d∗, ∆, because it is Riemannian.

1. The Hodge operator L(α) := ω ∧ α

2. The Hodge operator Λ(α) := ∗L ∗ α. It is easily seen that Λ = L∗.

3. The Weil operator: W
∣∣∣Λp,q(M) =

√
−1 (p− q). This operator is real.

THEOREM: These operators generate a 9-dimensional Lie superalge-

bra a, acting on Λ∗(M). Moreover, the Laplacian ∆ is central in a, hence a

also acts on the cohomology of M.

REMARK: This is a convenient way to summarize the Kähler relations and

the Lefschetz’ sl(2)-action.
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The coordinate operators

Let V be an even-dimensional real vector space equipped with a scalar prod-

uct, and v1, ..., v2n an orthonormal basis. Denote by evi : ΛkV −→ Λk+1V an

operator of multiplication, evi(η) = ei ∧ η. Let ivi : ΛkV −→ Λk−1V be an

adjoint operator, ivi = ∗evi∗.

CLAIM: The operators evi, ivi, Id are a basis of an odd Heisenberg Lie

superalgebra H, with the only non-trivial supercommutator given by the

formula {evi, ivj} = δi,j Id.

Now, consider the tensor ω =
∑n
i=1 v2i−1 ∧ v2i, and let L(α) = ω ∧ α, and

Λ := L∗ be the corresponding Hodge operators.

CLAIM: From the commutator relations in H, one obtains immediately that

H := [L,Λ] =
[∑

ev2i−1ev2i,
∑

iv2i−1iv2i

]
=

2n∑
i=1

eviivi −
2n∑
i=1

ivievi,

is a scalar operator acting as k − n on k-forms.
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The Lefschetz sl(2)-action

COROLLARY: The operators L,Λ, H form a basis of a Lie algebra isomor-
phic to sl(2), with relations

[L,Λ] = H, [H,L] = 2L, [H,Λ] = −2Λ.

DEFINITION: L,Λ, H is called the Lefschetz sl(2)-triple.

REMARK: Finite-dimensional representations of sl(2) are semisimple.

REMARK: A simple finite-dimensional representation V of sl(2) is generated
by v ∈ V which satisfies Λ(v) = 0, H(v) = pv (“lowest weight vector”),
where p ∈ Z>0. Then v, L(v), L2(v), ..., Lp(v) form a basis of Vp := V . This
representation is determined uniquely by p.

REMARK: In this basis, H acts diagonally: H(Li(v)) = (2i− p)Li(v).

REMARK: One has Vp = Symp V1, where V1 is a 2-dimensional tautological
representation. It is called a weight p representation of sl(2).

COROLLARY: For a finite-dimensional representation V of sl(2), denote by
V (i) the eigenspaces of H, with H

∣∣∣V (i) = i. Then Li induces an isomorphism

V (−i) Li−→ V (i) for any i > 0.
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Integrability of the complex structure

CLAIM: (“Cartan’s formula”) The de Rham differential of can be expressed
through the commutator of vector fields:

dη(X1, ...Xd+1) =
∑

(−1)i+1DXi(η(X1, ..., X̌i, ..., Xd+1)

−
∑
i<j

(−1)i+j+1η([Xi, Xj], X1, ..., X̌i, ..., X̌j, ..., Xd+1).

For a 1-form η, this gives dη(X1, X2) = DX1
η(X2)−DX2

η(X1)−η([X1, X2]).

COROLLARY: Let (M, I) be an almost complex manifold. Then the fol-
lowing assertions are equivalent.

(i) dη ⊂ Λ0,2(M)⊕ Λ1,1(M) for any η ∈ Λ0,1(M).

(ii) I is integrable.

REMARK: This is equivalent to d
∣∣∣Λ1M having only two Hodge components:

d = d1,0 + d0,1 (for a non-integrable complex structure, there are 4: d =
d2,−1 + d1,0 + d0,1 + d−1,2).

REMARK: Since Λ∗M is multiplicatively generated by Λ1(M), the decom-
position d = d2,−1 + d1,0 + d0,1 + d−1,2 holds for any almost complex
manifold.
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Integrability and the Hodge decomposition

CLAIM: A manifold (M, I) is integrable if and only if (d0,1)2|C∞M = 0.

Proof. Step 1: The bundle Λ1,0(M) is generated over C∞M by d1,0(C∞M).
Indeed, it is n-dimensional, n = dimCM and to prove this one needs to find
n functions f1, ..., fn with d1,0fi linearly independent at a point. This is done
by taking 2n functions f1, ..., f2n with dfi linearly independent, and finding an
appropriate subset.

Step 2: Then, the integrability condition d(Λ1,0(M)) ⊂ Λ2,0(M)⊕Λ1,1(M) is
equivalent to dd1,1(C∞M) ⊂ Λ2,0(M)⊕ Λ1,1(M) ⇔ d−1,2(d1,0(C∞M)) = 0.

Step 3: The (0,2) component of d2 = 0 gives {d−1,2, d1,0} = {d0,1, d0,1} =
2(d0,1)2 = 0. From Step 2, we obtain that (d0,1)2|C∞M = 0 is equivalent to
integrability.

REMARK: d2,−1 : Λ0,1M −→ Λ2,0M) is a C∞M-linear map which is dual to
the Nijenhuis tensor N : Λ2T1,0M −→ T0,1M .

REMARK: The above claim provides an equivalence d2,−1 = 0 ⇔
{d−1,2, d1,0} = 0 ⇔ (d0,1)2 = 0.
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The twisted differential dc

DEFINITION: The twisted differential is defined as dc := −IdI.

CLAIM: Let (M, I) be a complex manifold. Then ∂ := d+
√
−1 dc

2 , ∂ :=
d−
√
−1 dc

2 are the Hodge components of d, ∂ = d1,0, ∂ = d0,1.

Proof: Let V be a space generated by d, IdI. The natural action of U(1)

generated by eW preserves V . Since d has only two Hodge components.

U(1) acts with weights
√
−1 and −

√
−1 , and its Hodge components are

expressed as above.

CLAIM: On a complex manifold, one has dc = [W, d].

Proof: Clearly, [W, d1,0] =
√
−1d1,0 and [W, d0,1] = −

√
−1d0,1. Adding these

equations, obtain dc = [W, d].

COROLLARY: {d, dc} = {d, {d,W}} = 0 (Lemma 1).
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De Rham differential on Kaehler manifolds

THEOREM: The following statements are equivalent.

1. I is integrable. 2. ∂2 = 0. 3. ∂
2

= 0. 4. ddc = −dcd 5. ddc = 2
√
−1 ∂∂.

DEFINITION: The operator ddc is called the pluri-Laplacian.

THEOREM: Let M be a Kaehler manifold. One has the following identities

(“Kodaira idenitities”).

[Λ, ∂] =
√
−1 ∂

∗
, [L, ∂] = −

√
−1 ∂∗, [Λ, ∂

∗
] = −

√
−1 ∂, [L, ∂∗] =

√
−1 ∂.

Equivalently,

[Λ, d] = (dc)∗, [L, d∗] = −dc, [Λ, dc] = −d∗, [L, (dc)∗] = d.
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Laplacians and supercommutators

THEOREM: Let

∆d := {d, d∗}, ∆dc := {dc, dc∗}, ∆∂ := {∂, ∂∗},∆∂ := {∂, ∂∗}.

Then ∆d = ∆dc = 2∆∂ = 2∆∂. In particular, ∆d preserves the Hodge

decomposition.

Proof: By Kodaira relations, {d, dc} = 0. Graded Jacobi identity gives

{d, d∗} = −{d, {Λ, dc}} = {{Λ, d}, dc} = {dc, dc∗}.

Same calculation with ∂, ∂ gives ∆∂ = ∆∂.. Also, {∂, ∂∗} =
√
−1 {∂, {Λ, ∂}} =

0, (Lemma 1), and the same argument implies that all anticommutators

∂, ∂
∗
, etc. all vanish except {∂, ∂∗} and {∂, ∂∗}. This gives ∆d = ∆∂ + ∆∂.

DEFINITION: The operator ∆ := ∆d is called the Laplacian.

REMARK: We have proved that operators L,Λ, d,W generate a Lie su-

peralgebra of dimension (5|4) (5 even, 4 odd), with a 1-dimensional

center R∆.
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