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Quaternionic geometry: an introduction

DEFINITION: An isometry is a map which preserve distances. Euclidean

geometry is a study of isometries (Felix Klein).

Isometries of R2 are expressed in terms of complex numbers. Transla-

tions correspond to addition, turns to multiplication. An isometry of a plane

can be written as a map of complex numbers z −→ az + b, where a, b are

complex numbers, |a| = 1.

This allows one to answer geometry questions algebraically.

QUESTION: Can we do that in dimension 3?

ANSWER: Yes!
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Sir William Rowan Hamilton

(August 4, 1805 – September 2, 1865)
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Broom Bridge

“Here as he walked by on the 16th of October 1843 Sir William Rowan Hamil-

ton in a flash of genius discovered the fundamental formula for quaternion

multiplication

I2 = J2 = K2 = IJK = −1

and cut it on a stone of this bridge.”
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Isometries in R3.

DEFINITION: Quaternions are the algebra of “quaternion numbers” H =
〈aI + bJ + cK + d, with a, b, c, d,∈ R (real numbers), and relations I2 = J2 =
K2 = IJK = −1.

DEFINITION: Define the conjugate quaternion to be aI + bJ + cK + d =
−aI − bJ − cK + d and the norm of a quaternion |h| :=

√
hh.

REMARK: xy = yx.

REMARK: |aI + bJ + cK + d| =
√
a2 + b2 + c2 + d2.

REMARK: The norm is multiplicative (preserves multiplication of quater-
nions): |xy|2 = xyyx = x|y|2x = |x|2|y|2.

We identify R3 with the space of imaginary quaternions, R3 = aI + bJ +
cK, and define an action of SU(2) on R3 by the formula h(v) = hvh−1

REMARK: This is an isometry! Indeed, |h(v)| = |h||v||h|−1.

REMARK: Any isometry of R3 can be written as v −→ hvh−1 + p, where
h ∈ H and p ∈ R3.
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Isometries in R4.

REMARK: A group is a set equipped with an associative multiplication,
which is invertible, and a unit.

DEFINITION: The group of unitary quaternions h ∈ H, |h| = 1 is called
SU(2).

Define an action of SU(2)× SU(2) on R4 = H: ρ(h1, h2)(v) = h1vh
−1
2 . This

is an isometry!

CLAIM: Every isometry of R4 can be written as as v −→ h1vh
−1
2 + p, for

appropriate h1, h2 ∈ SU(2) and p ∈ H.

REMARK: A group isomorphism G ∼= G′ is a one-to-one correspondence
between the groups G, G′ which is multiplicative.

REMARK: The correspondence observed by Hamilton can be written in
the modern language as SU(2)/±1 ∼= SO(3), where SO(3) is the group of
isometries of R3 preserving 0.

REMARK: For R4, one also has an isomorphism SO(4) = SU(2)×SU(2)/±1.

This is called the spin covering.
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Fast forward 70 years.

Élie Joseph Cartan

(9 April 1869 – 6 May 1951)
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Geometric structures

DEFINITION: A geometric structure (Elie Cartan) is an atlas on a man-

ifold, with the differentials of all transition functions in a given subgroup

G ⊂ GL(n,R).

EXAMPLE: GL(n,C) ⊂ GL(2n,R) (“the complex structure”).

EXAMPLE: Sp(n,R) ⊂ GL(2n,R) (“the symplectic structure”).

“Quaternionic structures” in the sense of Elie Cartan don’t exist.

THEOREM: Let f : Hn −→Hm be a function, defined locally in some open

subset of n-dimensional quaternion space Hn. Suppose that the differential

Df is H-linear. Then f is a linear map.

Proof (a modern one): The graph of f is a “hyperkähler submanifold” in

Hn ×Hm, hence “geodesically complete”, hence linear.
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Algebraic geometry over C is a respectable subject. Algebraic geome-

try over R as well (maybe a bit less respectable, but anyway).

Is there algebraic geometry over H?
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History of algebraic geometry.

1. XIX centrury: Riemann, Klein, Poincaré. Study of elliptic integrals

and elliptic functions leads to the notion of a Riemannian surface of a

holomorphic function. In a modern language, Riemann surface is a smooth

2-dimensional manifold, covered by open disks in R2 = C, with transition

functions holomorphic.

A Riemann surface for a square root.
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History of algebraic geometry.

2. Italian school (1885-1935):

Segre, Severi, Enriques, Castelnuovo.

An affine algebraic variety is a subset in Cn defined as a set of common

zeroes of a system of algebraic equations. Two varieties are equivalent, if

there exists a polynomial bijection from one to another.

1. Can be defined over any algebraically closed field.

2. If the equations are homogeneous, they define a (compact) subset in a

projective space CPn (“a projective variety”)

3. Definition is not intrinsic.
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An elliptic curve
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3. Modern approach: Zariski, Weil, Grothendieck, Dieudonné

A scheme is a ringed space which is locally isomorphic to a spectrum of a

ring (with Zariski topology). Morphisms of schemes are morphisms of ringed

spaces: continuous maps X
ϕ−→ Y , with ring homomorphisms

ϕ∗ : OU −→Oϕ−1(U)

defined for any open U ⊂ Y and commuting with restrictions to subsets.

0. Scheme geometry. All the usual geometric notions (compactness, sep-

arability, smoothness...) have their scheme-theoretic versions.

1. Schemes are closed under all natural operations.

(taking products, a graph of a morphism, intersection, union...)
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2. The moduli spaces are again schemes (when finite-dimensional).

The moduli spaces are the sets parameterizing various algebro-geometric

objects (subvarieties, morphisms, fiber bundles) and equipped with a natural

algebraic structure. Grothendieck proved that the moduli exist in scheme

category, under very general assumptions.

3. Can be used in number theory.

The rings do not need to be defined over C, or any other algebraically closed

field. In particular, Spec(Z) is a scheme, which can be studied in geometric

terms. This was the original motivation of Grothendieck (at least, one of his

motivations).

4. Desingularization (Hironaka).

Over a field of characteristic 0, any variety X admits a desingularization,

that is, a proper, surjective map X̃ −→X, with X̃ smooth, and generically

one-to-one.
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Complex geometry (Grauert, Oka, Cartan, Serre...)

DEFINITION: A complex manifold is a manifold with an atlas of open
subsets in Cn, and translation maps complex analytic.

DEFINITION: A complex analytic subvariety is a closed subset, locally
defined as a zero set of a system of complex analytic equations. A complex
analytic variety is a ringed topological space, locally isomorphic to a closed
subvariety of an open ball B ⊂ Cn.

Complex spaces are as good as schemes: the products/graphs/moduli
spaces of complex spaces are again complex spaces, and Hironaka’s
desingularization works as well.

REMARK: Since any complex algebraic map is complex analytic, every
scheme defines a complex analytic space.

DEFINITION: A complex variety obtained from a scheme is called algebraic.

Serre’s GAGA (Géométrie Algébrique - Géométrie Analitique, 1956):
A complex subvariety of a compact algebraic variety is algebraic. Com-
pact algebraic varieties over C are special case of complex analytic!

However, the topology of complex varieties is infinitely more complicated.
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Kähler manifolds.

A complex manifold is equipped with a natural map I TM −→ TM , I2 = − Id,

called the complex structure map. A Riemannian metric is called Hermitian

if g(Ix, y) = g(x, Iy). In this situation ω(x, y) = g(x, Iy) is a differential form,

called Hermitian form. The following conditions are equivalent

1. dω = 0.

2. ω is parallel (preserved by the Levi-Civita connection), that is, ∇ω = 0.

3. Flat approximation. At each point M has complex coordinates, such

that g is approximated at this point by a standard (flat) Hermitian structure

in this coordinates, up to order 2.

If any of these conditions is satisfied, the metric is called Kähler

(after Erich Kähler, 1938).

NB: Kähler manifolds are symplectic.
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Properties of Kähler manifolds.

1. The U(n+ 1)-invariant metric on CPn is called the Fubini-Study metric

(its uniqueness and existence follows easily from U(n)-invariance). Since Cn
does not have U(n)-invariant 3-forms, Fubini-Study metric is Kähler.

2. A submanifold of a Kähler manifold is again Kähler (restriction of ω

is still closed). Therefore, all algebraic manifolds are Kähler.

3. Topology of compact Kähler manifolds is tightly controlled (all ratio-

nal cohomology operations vanish, etc.) The fundamental group is especially

easy to control. It is conjectured that the isomorphism problem for

fundamental groups of compact Kähler manifolds has an algorithmic

solution.

4. By contrast, any finitely-generated, finitely-presented group can be

a fundamental group of a compact complex manifold. Therefore the

problem of recursively enumerating the fundamental groups cannot be

solved.

5. Topology of complex manifolds is infinitely more complicated!
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Algebraic geometry over H.

Over C, we have 3 distinct notions of “algebraic geometry”:

1. Schemes over C.

2. Complex manifolds.

3. Kähler manifolds.

The first notion does not work for H, because polynomial functions on Hn

generate all real polynomials on R4. The second version does not work, be-

cause any quaternionic-differentiable function is linear. The third one works!

Hyperkähler manifolds.
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Marcel Berger
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Classification of holonomies.

Berger’s list

Holonomy Geometry

SO(n) acting on Rn Riemannian manifolds

U(n) acting on R2n Kähler manifolds

SU(n) acting on R2n, n > 2 Calabi-Yau manifolds

Sp(n) acting on R4n hyperkähler manifolds

Sp(n)× Sp(1)/{±1} quaternionic-Kähler

acting on R4n, n > 1 manifolds

G2 acting on R7 G2-manifolds

Spin(7) acting on R8 Spin(7)-manifolds
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Eugenio Calabi

DEFINITION: (E. Calabi, 1978)

Let (M, g) be a Riemannian manifold equipped with three complex structure

operators I, J,K : TM −→ TM , satisfying the quaternionic relation

I2 = J2 = K2 = IJK = − Id .

Suppose that I, J, K are Kähler. Then (M, I, J,K, g) is called hyperkähler.
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Holomorphic symplectic geometry

CLAIM: A hyperkähler manifold (M, I, J,K), considered as a complex man-

ifold (M, I), is holomorphically symplectic (equipped with a holomorphic,

non-degenerate 2-form). Recall that, M is equipped with 3 symplectic forms

ωI, ωJ, ωK.

LEMMA: The form Ω := ωJ+
√
−1ωK is a holomorphic symplectic 2-form

on (M, I).

Converse is also true, as follows from the famous conjecture, made by Calabi

in 1952.

THEOREM: (S.-T. Yau, 1978) Let M be a compact, holomorphically sym-

plectic Kähler manifold. Then M admits a hyperkähler metric, which is

uniquely determined by the cohomology class of its Kähler form ωI.

Hyperkähler geometry is essentially the same as holomorphic symplectic ge-

ometry

22



Algebraic geometry over H M. Verbitsky

“Hyperkähler algebraic geometry” is almost as good as the usual one.

Define trianalytic subvarieties as closed subsets which are complex analytic

with respect to I, J, K.

0. Trianalytic subvarieties are singular hyperkähler.

1. Let L be a generic quaternion satisfying L2 = −1. Then all complex

subvarieties of (M,L) are trianalytic.

2. A normalization of a hyperkähler variety is smooth and hyperkähler. This

gives a desingularization (“hyperkähler Hironaka”).

3. A complex deformation of a trianalytic subvariety is again trianalytic, the

corresponding moduli space is (singularly) hyperkähler.

4. Similar results are true for vector bundles which are holomorphic under I,

J, K (“hyperholomorphic bundles”)
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