Kahler manifolds, lecture 1 M. Verbitsky

Kahler manifolds and holonomy

lecture 1

Misha Verbitsky

Tel-Aviv University

December 13, 2010,



Kahler manifolds, lecture 1 M. Verbitsky

Complex action on vector spaces

Let V be a vector space over R, and I : V — V an automorphism which
satisfies 12 = —Idy. We extend the action of I on the tensor spaces
VRVE.VRV*QV*®...V* by multiplicativity: I(v1®...0 w1 Q...Qwn) =
I(v)® ... I(w1) ® ... I(wn).

Trivial observations:

1. The eigenvalues of [ are £/ —1.

2. 'V admits an /-invariant metric g. Take any metric gg, and let g :
g0 + I(g0).

3. I diagonalizable over C. Indeed, any orthogonal matrix is diagonalizable.
4. All eigenvalues of I are equal to +v/—1. Indeed, I? = —1.

5. There are as many v —1-eigenvalues as there are —/—1-eigenvalues.
Indeed, I is real.
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The Hodge decomposition in linear algebra

DEFINITION: The Hodge decomposition V @ C := V1.0 g V0.1l is de-
fined in such a way that V1.0 is a /=1 -eigenspace of I, and V91 a —\/—1 -
eigenspace.

REMARK: Let Vp :(= V ®@r C. The Grassmann algebra of skew-symmetric
forms A"V = /\H%V ®r C admits a decomposition

Nve= @ AvEOgatyol
ptq=n
We denote APV1.0 @ A9VO:.1 by APYV. The resulting decomposition A"V =
Dptg=n NP4V is called the Hodge decomposition of the Grassmann al-
gebra.

REMARK: The operator I induces U(1)-action on V by the formula p(t)(v) =
cost-v 4+ sint-I(v). We extend this action on the tensor spaces by mupti-
plicativity.
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U(1)-representations and the weight decomposition

REMARK: Any complex representation W of U(1) is written as a sum
of 1-dimensional representations W;(p), with U(1) acting on each W;(p)
as p(t)(v) = e\/—_lpt(v). The 1-dimensional representations are called weight
p representations of U(1).

DEFINITION: A weight decomposition of a U(1)-representation W is a de-
composition W = WP, where each WP = ¢,W;(p) is a sum of 1-dimensional
representations of weight p.

REMARK: The Hodge decomposition A"V = Dp1g=n APV is a weight
decomposition, with AP:9V being a weight p — g-component of A" V.

REMARK: VPP is the space of U(1)-invariant vectors in A2PV.

Further on, TM is the tangent bundle on a manifold, and A*M the space
of differential -forms. It is a Grassman algebra on T'M
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Complex manifolds

DEFINITION: Let M be a smooth manifold. An almost complex structure
is an operator I : TM — TM which satisfies 12 = —Idp,y.

T he eigenvalues of this operator are ++/—1. The corresponding eigenvalue
decomposition is denoted TM = T%1M @ T1.0(M).

DEFINITION: An almost complex structure is integrable if VX,Y € TLOM,
one has [X,Y] € T1OM. In this case I is called a complex structure op-
erator. A manifold with an integrable almost complex structure is called a
complex manifold.

THEOREM: (Newlander-Nirenberg)
This definition is equivalent to the usual one.

REMARK: The commutator defines a C*®°M-linear map
N := N2(T19) — 170.107, called the Nijenhuis tensor of I. One can rep-
resent N as a section of A29(M) @ TO101.

Exercise: Prove that CP" is a complex manifold, in the sense of the above
definition.
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Kahler manifolds

DEFINITION: An Riemannian metric g on an almost complex manifiold M
is called Hermitian if g(Iz,Iy) = g(z,y). In this case, g(z, Iy) = g(Iz, I?%y) =
—g(y, Iz), hence w(x,y) := g(x, Iy) is skew-symmetric.

DEFINITION: The differential form w € AL1(M) is called the Hermitian
form of (M, 1,g).

REMARK: It is U(1)-invariant, hence of Hodge type (1,1).
DEFINITION: A complex Hermitian manifold (M, I,w) is called Kahler if

dw = 0. The cohomology class [w] € H2(M) of a form w is called the Kahler
class of M, and w the Kahler form.
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Examples of Kahler manifolds.

Definition: Let M = CP™ be a complex projective space, and g a U(n 4+ 1)-
invariant Riemannian form. It is called Fubini-Study form on CP"™. The
Fubini-Study form is obtained by taking arbitrary Riemannian form and aver-
aging with U(n+ 1).

Remark: For any z € CP", the stabilizer St(x) is isomorphic to U(n). Fubini-
Study form on T, CP™ = C" is U(n)-invariant, hence unique up to a constant.

Claim: Fubini-Study form is Kahler. Indeed, dw|; is a U(n)-invariant 3-
form on C", but such a form must vanish, because —Id € U(n)

REMARK: The same argument works for all symmetric spaces.

Corollary: Every projective manifold (complex submanifold of CP") is
Kahler. Indeed, a restriction of a closed form is again closed.
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Connections

Notation: Let M be a smooth manifold, TM its tangent bundle, A'M the
bundle of differential -forms, C°°M the smooth functions. The space of
sections of a bundle B is denoted by B.

DEFINITION: A connection on a vector bundle Bisa map B - AlM®B
which satisfies

V(fb) =df @ b+ fVb
forallbe B, f e C°°M.

REMARK: A connection V on B gives a connection B* AR ALM @ B* on
the dual bundle, by the formula

d({b, 8)) = (Vb,3) + (b, V"B)

These connections are usually denoted by the same letter V.

REMARK: For any tensor bundle B .= B*®B*"®..QB* R BQB®..®B a
connection on B defines a connection on B; using the Leibniz formula:

V(b1 ®bp) =V (b1) ®bo+ b1 @ V(b2).
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Torsion

DEFINITION: A torsion of a connection A1 - AlM ®@ ALM is a map
AltoV — d, where Alt : ALM @ ALM — A2M is exterior multiplication. It is a
map Ty : A'M — N2M.

An exercise: Prove that torsion is a C°°M-linear.

DEFINITION: Let (M,g) be a Riemannian manifold. A connection V is
called orthogonal if V(g) = 0. It is called Levi-Civita if it is torsion-free.

THEOREM: (“the main theorem of differential geometry" )
For any Riemannian manifold, the Levi-Civita connection exists,
and it is unique.
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Levi-Civita connection and Kahler geometry

THEOREM: Let (M, 1I,g) be an almost complex Hermitian manifold. Then
the following conditions are equivalent.

(i) The complex structure I is integrable, and the Hermitian form w is
closed.

(ii) One has V(I) = 0, where V is the Levi-Civita connection.
REMARK: The implication (ii) = (i) is clear. Indeed, [X,Y] = VxY —
Vy X, hence it is a (1,0)-vector field when X,Y are of type (1,0), and then [

Is integrable. Also, dw = 0, because V is torsion-free, and dw = Alt(Vw).

The implication (i) = (ii) is proven by the same argument as used to construct
the Levi-Civita connection.
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Holonomy group

DEFINITION: (Cartan, 1923) Let (B, V) be a vector bundle with connec-
tion over M. For each loop ~ based in x € M, let V%v . Bl|z — Blz be
the corresponding parallel transport along the connection. The holonomy
group of (B,V) is a group generated by V, v, for all loops ~. If one takes
all contractible loops instead, V%v generates the local holonomy, or the
restricted holonomy group.

REMARK: A bundle is flat (has vanishing curvature) if and only if its
restricted holonomy vanishes.

REMARK: If V(¢) = 0 for some tensor ¢ € B®¥ g (B*)®J, the holonomy
group preserves o.

DEFINITION: Holonomy of a Riemannian manifold is holonomy of its
evi-Civita connection.

EXAMPLE: Holonomy of a Riemannian manifold lies in O(T;:M, g|z) = O(n).
EXAMPLE: Holonomy of a Kahler manifold lies in U(TxM, glz, I|z) = U(n).

REMARK: The holonomy group does not depend on the choice of a
point x € M.
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Curvature of a connection

Let M be a manifold, B a bundle, A'M the differential forms, and V :

B— B & ALM a connection. We extend V to B ® APM — B & Aitlyp

in @ natural way, using the formula
Vibn) =V(b) An+ bR dn,
and define the curvature ©y of Vas VoV : B— B® A2M.

CLAIM: This operator is C°°M-linear.

REMARK: We shall consider ©g as an element of A°M ® End B, that is, an
End B-valued 2-form.

REMARK: Given vector fields X,Y € T'M, the curvature can be written in
terms of a connection as follows

CLAIM: Suppose that the structure group of B is reduced to its subgroup G,
and let V be a connection which preserves this reduction. This is the same
as to say that the connection form takes values in Al @ g(B). Then Oy lies
in A2M ® g(B).
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T he Lasso lemma

DEFINITION: A lasso is a loop of the following form:

,,,/

The round part is called a working part of a loop.
REMARK: (“The Lasso Lemma’”) Let {U;} be a covering of a manifold,

and ~ a loop. Then any contractible loop ~ is a product of several lasso,
with working part of each inside some U,.
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The Ambrose-Singer theorem

DEFINITION: Let (B, V) be a bundle with connection, © € A2(M)®End(B)
its curvature, and a,b € T, M tangent vectors. An endomorphism ©(a,b) €
End(B)|, is called a curvature element.

THEOREM: (Ambrose-Singer) The restricted holonomy group of B,V at
z € M is a Lie group, with its Lie algebra generated by all curvature
elements ©(a,b) € End(B)|, transported to z along all paths.

REMARK: Its proof follows from the Lasso lemma.
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Holonomy representation

DEFINITION: Let (M, g) be a Riemannian manifold, G its holonomy group.
A holonomy representation is the natural action of G on T'M.

THEOREM: (de Rham) Suppose that the holonomy representation is not
irreducible: Tp,M = V7 & Vo. Then M locally splits as M = My x M>, with
Vi=TMq, Vo =TM>.

Proof. Step 1: Using the parallel transform, we extend V7 @ V> to a splitting
of vector bundles T'M = By & B>, preserved by holonomy.

Step 2: The sub-bundles By, B> C TM are integrable: [By,B1] C B; (the
Levi-Civita connection is torsion-free)

Step 3: Taking the leaves of these integrable distributions, we obtain a
local decomposition M = My x M»>, with V7 =TMq, Vo =T Mo>.

Step 4: Since the splitting T'M = By & B> is preserved by the connection,
the leaves M4, M> are totally geodesic.

Step 5: Therefore, locally M splits (as a Riemannian manifold):
M = My x Mo, where M1, M> are any leaves of these foliations. =
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The de Rham splitting theorem

COROLLARY: Let M be a Riemannian manifold, and Holg(M) -2 End(TxM)
a reduced holonomy representation. Suppose that p is reducible: T,M =
VieVod..d V. Then G = Holg(M) also splits: G = G1 x Gy X ... X Gy,
with each G; acting trivially on all V; with j 7 3.

Proof: Locally, this statement follows from the local splitting of M proven
above. To obtain it globally in M, use the Lasso Lemma. m

THEOREM: (de Rham) A complete, simply connected Riemannian manifold
with non-irreducible holonomy splits as a Riemannian product.

REMARK: It is easy to find non-complete or non-simply connected coun-
terexamples to de Rham theorem.

THEOREM: (Simons, 1962) Let M be a manifold with irreducible holonomy.
Then either M is locally symmetric, or Hol(M) acts transitively on the
unit sphere in 7T, M.
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Berger’s theorem

THEOREM: (Berger's theorem, 1955) Let G be an irreducible holonomy
group of a Riemannian manifold which is not locally symmetric. Then G
belongs to the Berger’s list:

Berger’s list
Holonomy Geometry
SO(n) acting on R" Riemannian manifolds
U(n) acting on R" Kahler manifolds
SU(n) acting on R4"™, n > 2 | Calabi-Yau manifolds
Sp(n) acting on R*" hyperkihler manifolds
Sp(n) x Sp(1)/{+1} quaternionic-Kahler
acting on R4 n > 1 manifolds
G acting on R’ Go>-manifolds
Spin(7) acting on RS Spin(7)-manifolds

REMARK: There is one more group acting transitively on a sphere: Spin(9)
acting on S1° ¢ R16 In 1968, D. Alekseevsky has shown that a manifold

with holonomy Spin(9) is automatically locally symmetric.

REMARK: A similar list exists for non-orthogonal irreducible holonomy without torsion
(Merkulov, Schwachhofer, 1999).
17



