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Kahler manifolds

DEFINITION: An Riemannian metric g on an almost complex manifiold M
is called Hermitian if g(Iz,Iy) = g(z,y). In this case, g(z, Iy) = g(Iz, I?%y) =
—g(y, Iz), hence w(x,y) := g(x, Iy) is skew-symmetric.

DEFINITION: The differential form w € AL1(M) is called the Hermitian
form of (M, 1,g).

REMARK: It is U(1)-invariant, hence of Hodge type (1,1).
DEFINITION: A complex Hermitian manifold (M, I,w) is called Kahler if

dw = 0. The cohomology class [w] € H2(M) of a form w is called the Kahler
class of M, and w the Kahler form.
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Levi-Civita connection and Kahler geometry

DEFINITION: Let (M,g) be a Riemannian manifold. A connection V is
called orthogonal if V(g) = 0. It is called Levi-Civita if it is torsion-free.

THEOREM: (“the main theorem of differential geometry’)
For any Riemannian manifold, the Levi-Civita connection exists,
and it is unique.

THEOREM: Let (M,1I,g) be an almost complex Hermitian manifold. Then
the following conditions are equivalent.

(i) (M, I,q) is Kahler

(ii) One has V(I) = 0, where V is the Levi-Civita connection.
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Holomorphic vector bundles

DEFINITION: A (smooth) vector bundle on a smooth manifold is a locally
trivial sheaf of C'°°M-modules.

DEFINITION: A holomorphic vector bundle on a complex manifold is a
locally trivial sheaf of O,/-modules.

REMARK: A section b of a bundle B is often denoted as b ¢ B.
CLAIM: Let B be a holomorphic vector bundle. Consider the sheaf Boco :=
B R0, C°M. It is clearly locally trivial, hence Bo~ is a smooth vector

bundle.

DEFINITION: By« is called a smooth vector bundle underlying B.
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A holomorphic structure operator

DEFINITION: Let d = d%! 4+ ¢¥0 be the Hodge decomposition of the de
Rham differential on a complex manifold, d%1 : AP9(M) — AP4T1(M) and
d10 . APA(NM) — APTLA(M). The operators d%1, d1:° are denoted & and 8
and called the Dolbeault differentials.

REMARK: From d2 = 0, one obtains > = 0 and 82 = 0.

REMARK: The operator 9 is Oy-linear.

DEFINITION: Let B be a holomorphic vector bundle, and 9 : Booo — Brooo®
/\O’l(M) an operator mapping b® f to b® 8f, where b € B is a holomorphic
section, and f a smooth function. This operator is called a holomorphic

structure operator on B. It is correctly defined, because 9 is O, -linear.

REMARK: The kernel of 0 coincides with the set of holomorphic sections
of B.
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The 0-operator on vector bundles

DEFINITION: A d-operator on a smooth bundle isa map V -2- AOL(M)®
V', satisfying 0(fb) = 0(f) @ b+ fo(b) for all f € C°M,bec V.

REMARK: A 0-operator on B can be extended to
9: N9V — AT eV,
using d(n ®b) = d(n) @b+ (=1)"y A d(b), where b e V and n € A9 (M).

REMARK: If 0 is a holomorphic structure operator, then 52

= 0.
THEOREM: (Atiyah-Bott) Let 9 : V — A%L(M) ® V be a H-operator,
satisfying 52 = 0. Then B :=kerd C V is a holomorphic vector bundle of
the same rank.

REMARK: This statement is a vector bundle analogue of Newlander-Nirenberg
theorem.

DEFINITION: d-operator 8 : V— A0 (M) ® V on a smooth manifold is
called a holomorphic structure operator, if 3° = 0.
§)
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Connections and holomorphic structure operators

DEFINITION: let (B,V) be a smooth bundle with connection and a holo-
morphic structure 0 B — /\O’l(M) ® B. Consider a Hodge decomposition of
vV, v=vol4vlo

Vol v — At ey, v v AP eV.

We say that V is compatible with the holomorphic structure if V91 = 3.

DEFINITION: An Hermitian holomorphic vector bundle is a smooth
complex vector bundle equipped with a Hermitian metric and a holomorphic
structure.

DEFINITION: A Chern connection on a holomorphic Hermitian vector
bundle is a connection compatible with the holomorphic structure and pre-
serving the metric.

THEOREM: On any holomorphic Hermitian vector bundle, the Chern con-
nection exists, and is unique.
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Curvature of a connection

DEFINITION: Let V: B— B®AM be a connection on a smooth budnle.
Extend it to an operator on B-valued forms

B L Al(WM)9B L A2(M)®B -5 AS(M)® B & ..

using V(n ® b) = dn + (=1)7n A Vb. The operator V2 : B— B® A2(M) is
called the curvature of V.

REMARK: The algebra of End(B)-valued forms naturally acts on A*M ® B.
The curvature satisfies V2(fb) = d2fb+df AVb—df AVb+ fV2b = fV2b, hence
it is C*°M-linear. We consider it as an End(B)-valued 2-form on M.

PROPOSITION: (Bianchi identity) Using the graded Jacobi identity, we
obtain [V, V?] = [V2,V]+[V, V2] =0, hence [V, V2] = 0. This gives Bianchi
identity: V(©p) =0.

REMARK: If B is a line bundle, End B is trivial, and the curvature ©p of
B is a closed 2-form.

DEFINITION: The cohomology class c¢1(B) := —VQ;I[@B] € H2(M) is called
the real first Chern class of a line bunide B.

An exercise: Check that ¢1(B) is independent from a choice of V.
8
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Curvature of a holomorphic line bundle

REMARK: When speaking of a “curvature of a holomorphic bundle’,
one usually means the curvature of a Chern connection.

REMARK: Let B be a holomorphic Hermitian line bundle, and b its non-
degenerate section. Denote by n a (1,0)-form which satisfies V1.9 = n ® .

Then d|b|? = Re g(V1:9,b) = Ren|b|?. This gives V1.0p = ?5'2 b = 20109 |b|b.
REMARK: Then ©5(b) = 28d10g |blb, that is, © 5 = —209 1049 |b|.

COROLLARY: If ¢ = e2/g — two metrics on a holomorphic line bundle,
©, ©' their curvatures, one has ©' — © = —290f

CLAIM: Let  be a closed (1,1)-form in the same cohomology class as ©p .
Then 7 is a curvature of a Chern connection on B, for some metric h’.

Proof: The difference ©p ) —n is an exact (1,1)-form, hence belongs to an
image of 90 (“88—Iemma") Opp—n= —200f. Then the curvature of a
metric b/ := e?/h satisfies ©p ), — Op ) = —200f, hence n =Op /. w

REMARK: Such metric is unique, up to a constant.
O
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Calabi-Yau manifolds

REMARK: Let B be a line bundle on a manifold. Using the long exact
sequence of cohomology associated with the exponential sequence

0 —Zy — C°M — (C*°M)* — 0,
we obtain 0 — H1(M, (C>®M)*) — H2(M,Z) — 0.

DEFINITION: Let B be a complex line bundle, and &g its defining element
in HL(M, (C®°M)*). Its image in H2(M,Z) is called the integer first Chern
class of B.

REMARK: A complex line bundle B is (topologically) trivial if and only
if ¢1(B) = 0.

THEOREM: (Gauss-Bonnet) A real Chern class of a vector bundle is an
image of the integer Chern class c1(B,7Z) under the natural homomorphism
H2(M,7) — H?(M,R).

DEFINITION: A first Chern class of a complex n-manifold is ¢1 (A™9(M)).

DEFINITION:.:
A Calabi-Yau manifold is a compact Kaehler manifold with ¢1(M,Z) = 0.

10
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Calabi-Yau theorem

DEFINITION: Let (M, I,w) be a Kaehler n-manifold, and K (M) := A%0(M)
its canonical bundle. We consider K(M) as a colomorphic line bundle,
K(M) = Q"M. The natural Hermitian metric on K(M) is written as

aNa’

/
(aya) — &2

Denote by ©j the curvature of the Chern connection on K(M). The Ricci
curvature Ric of M is symmetric 2-form Ric(z,y) = O (x, Iy).

DEFINITION: A Kahler manifold is called Ricci-flat if its Ricci curvature
vanishes.

THEOREM: (Calabi-Yau)

Let (M, I,g) be Calabi-Yau manifold. Then there exists a unique Ricci-flat
Kaehler metric in any given Kaehler class.

11
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Calabi-Yau theorem and Monge-Ampere equation

REMARK: Let (M,w) be a Kahler n-fold, and €2 a non-degenerate section
of K(M), Then |Q|? = ch\nQ If wy is a new Kaehler metric on (M, ), h,hy the
h @1

associated metrics on K(M), then W = o

COROLLARY: A metric w; = w + 00y is Ricci-flat if and only if (v +
00p)" = w'el, where —299f = OK w-

Proof:. For such f, ¢, one has Ioghi1 = —f. This gives

—h _
Ok = OKw+ 00, = O, —200f =0.
1
H

THEOREM: (Calabi-Yau) Let (M,w) be a compact Kaehler n-manifold,
and f any smooth function. Then there exists a unique up to a constant
function ¢ such that (w + ddp)"® = Aefw™, where A is a positive constant
obtained from the formula [, Ae/w™ = [, w™.

REMARK:
(w4 ddp)™ = Aelw™,

IS called the Monge-Ampere equation.
12
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Uniqueness of solutions of complex Monge-Ampere equation

PROPOSITION: (Calabi) A complex Monge-Ampere equation has at
most one solution, up to a constant.

Proof. Step 1: Let wjy,wy be solutions of Monge-Ampere equation. Then
wy = wh. By dd°-lemma, one has wp = w; + dd“. We need to show

Y = const.

Step 2: This gives

n—1
0 = (w1 +dd)" — Wi = ddp A Y wi AWl
1=0

Step 3: Let P =Y 1w1 A wy —1=t This is a positive (n — 1,n — 1)-form.
There exists a Hermitian form w3 on M such that w5 ! = P.

Step 4: Since dd“yp AP = 0, this gives ydd“yp AP = 0. Stokes’ formula implies

O=/sz/\85¢/\P= —/Mazp/\észP: —/M|a¢|§w§.

where |- |3 is the metric associated to w3. Therefore 9y = 0. =
13



