Kähler manifolds and holonomy

lecture 2

Misha Verbitsky

Tel-Aviv University

December 16, 2010,

Kähler manifolds

DEFINITION: An Riemannian metric g on an almost complex manifold M is called **Hermitian** if g(Ix, Iy) = g(x, y). In this case, $g(x, Iy) = g(Ix, I^2y) = -g(y, Ix)$, hence $\omega(x, y) := g(x, Iy)$ is skew-symmetric.

DEFINITION: The differential form $\omega \in \Lambda^{1,1}(M)$ is called **the Hermitian** form of (M, I, g).

REMARK: It is U(1)-invariant, hence of Hodge type (1,1).

DEFINITION: A complex Hermitian manifold (M, I, ω) is called Kähler if $d\omega = 0$. The cohomology class $[\omega] \in H^2(M)$ of a form ω is called **the Kähler** class of M, and ω the Kähler form.

Levi-Civita connection and Kähler geometry

DEFINITION: Let (M,g) be a Riemannian manifold. A connection ∇ is called **orthogonal** if $\nabla(g) = 0$. It is called **Levi-Civita** if it is torsion-free.

THEOREM: ("the main theorem of differential geometry") **For any Riemannian manifold, the Levi-Civita connection exists, and it is unique**.

THEOREM: Let (M, I, g) be an almost complex Hermitian manifold. Then the following conditions are equivalent.

(i) (M, I, g) is Kähler

(ii) One has $\nabla(I) = 0$, where ∇ is the Levi-Civita connection.

Holomorphic vector bundles

DEFINITION: A (smooth) vector bundle on a smooth manifold is a locally trivial sheaf of $C^{\infty}M$ -modules.

DEFINITION: A holomorphic vector bundle on a complex manifold is a locally trivial sheaf of \mathcal{O}_M -modules.

REMARK: A section b of a bundle B is often denoted as $b \in B$.

CLAIM: Let *B* be a holomorphic vector bundle. Consider the sheaf $B_{C^{\infty}} := B \otimes_{\mathcal{O}_M} C^{\infty} M$. It is clearly locally trivial, hence $B_{C^{\infty}}$ is a smooth vector bundle.

DEFINITION: $B_{C^{\infty}}$ is called a smooth vector bundle underlying *B*.

A holomorphic structure operator

DEFINITION: Let $d = d^{0,1} + d^{1,0}$ be the Hodge decomposition of the de Rham differential on a complex manifold, $d^{0,1} : \Lambda^{p,q}(M) \longrightarrow \Lambda^{p,q+1}(M)$ and $d^{1,0} : \Lambda^{p,q}(M) \longrightarrow \Lambda^{p+1,q}(M)$. The operators $d^{0,1}$, $d^{1,0}$ are denoted $\overline{\partial}$ and ∂ and called **the Dolbeault differentials**.

REMARK: From $d^2 = 0$, one obtains $\overline{\partial}^2 = 0$ and $\partial^2 = 0$.

REMARK: The operator $\overline{\partial}$ is \mathcal{O}_M -linear.

DEFINITION: Let *B* be a holomorphic vector bundle, and $\overline{\partial}$: $B_{C^{\infty}} \longrightarrow B_{C^{\infty}} \otimes \Lambda^{0,1}(M)$ an operator mapping $b \otimes f$ to $b \otimes \overline{\partial} f$, where $b \in B$ is a holomorphic section, and *f* a smooth function. This operator is called **a holomorphic** structure operator on *B*. It is correctly defined, because $\overline{\partial}$ is \mathcal{O}_M -linear.

REMARK: The kernel of $\overline{\partial}$ coincides with the set of holomorphic sections of *B*.

The $\overline{\partial}$ -operator on vector bundles

DEFINITION: A $\overline{\partial}$ -operator on a smooth bundle is a map $V \xrightarrow{\overline{\partial}} \Lambda^{0,1}(M) \otimes V$, satisfying $\overline{\partial}(fb) = \overline{\partial}(f) \otimes b + f\overline{\partial}(b)$ for all $f \in C^{\infty}M, b \in V$.

REMARK: A $\overline{\partial}$ -operator on *B* can be extended to

 $\overline{\partial}: \Lambda^{0,i}(M) \otimes V \longrightarrow \Lambda^{0,i+1}(M) \otimes V,$

using $\overline{\partial}(\eta \otimes b) = \overline{\partial}(\eta) \otimes b + (-1)^{\tilde{\eta}} \eta \wedge \overline{\partial}(b)$, where $b \in V$ and $\eta \in \Lambda^{0,i}(M)$.

REMARK: If $\overline{\partial}$ is a holomorphic structure operator, then $\overline{\partial}^2 = 0$.

THEOREM: (Atiyah-Bott) Let $\overline{\partial}$: $V \longrightarrow \Lambda^{0,1}(M) \otimes V$ be a $\overline{\partial}$ -operator, satisfying $\overline{\partial}^2 = 0$. Then $B := \ker \overline{\partial} \subset V$ is a holomorphic vector bundle of the same rank.

REMARK: This statement is a vector bundle analogue of Newlander-Nirenberg theorem.

DEFINITION: $\overline{\partial}$ -operator $\overline{\partial}$: $V \longrightarrow \Lambda^{0,1}(M) \otimes V$ on a smooth manifold is called a holomorphic structure operator, if $\overline{\partial}^2 = 0$.

Connections and holomorphic structure operators

DEFINITION: let (B, ∇) be a smooth bundle with connection and a holomorphic structure $\overline{\partial} B \longrightarrow \Lambda^{0,1}(M) \otimes B$. Consider a Hodge decomposition of $\nabla, \nabla = \nabla^{0,1} + \nabla^{1,0}$,

$$\nabla^{0,1}: V \longrightarrow \Lambda^{0,1}(M) \otimes V, \quad \nabla^{1,0}: V \longrightarrow \Lambda^{1,0}(M) \otimes V.$$

We say that ∇ is compatible with the holomorphic structure if $\nabla^{0,1} = \overline{\partial}$.

DEFINITION: An Hermitian holomorphic vector bundle is a smooth complex vector bundle equipped with a Hermitian metric and a holomorphic structure.

DEFINITION: A Chern connection on a holomorphic Hermitian vector bundle is a connection compatible with the holomorphic structure and preserving the metric.

THEOREM: On any holomorphic Hermitian vector bundle, **the Chern connection exists, and is unique.**

Curvature of a connection

DEFINITION: Let ∇ : $B \longrightarrow B \otimes \Lambda^1 M$ be a connection on a smooth budnle. Extend it to an operator on *B*-valued forms

$$B \xrightarrow{\nabla} \Lambda^{1}(M) \otimes B \xrightarrow{\nabla} \Lambda^{2}(M) \otimes B \xrightarrow{\nabla} \Lambda^{3}(M) \otimes B \xrightarrow{\nabla} \dots$$

using $\nabla(\eta \otimes b) = d\eta + (-1)^{\tilde{\eta}} \eta \wedge \nabla b$. The operator $\nabla^2 : B \longrightarrow B \otimes \Lambda^2(M)$ is called **the curvature** of ∇ .

REMARK: The algebra of End(*B*)-valued forms naturally acts on $\Lambda^* M \otimes B$. The curvature satisfies $\nabla^2(fb) = d^2fb + df \wedge \nabla b - df \wedge \nabla b + f\nabla^2 b = f\nabla^2 b$, hence it is $C^{\infty}M$ -linear. We consider it as an End(*B*)-valued 2-form on *M*.

PROPOSITION: (Bianchi identity) Using the **graded Jacobi identity**, we obtain $[\nabla, \nabla^2] = [\nabla^2, \nabla] + [\nabla, \nabla^2] = 0$, hence $[\nabla, \nabla^2] = 0$. This gives **Bianchi identity:** $\nabla(\Theta_B) = 0$.

REMARK: If *B* is a line bundle, End *B* is trivial, and the curvature Θ_B of *B* is a closed 2-form.

DEFINITION: The cohomology class $c_1(B) := \frac{\sqrt{-1}}{2\pi} [\Theta_B] \in H^2(M)$ is called **the real first Chern class of a line bundle** *B*.

An exercise: Check that $c_1(B)$ is independent from a choice of ∇ .

Curvature of a holomorphic line bundle

REMARK: When speaking of a "curvature of a holomorphic bundle", one usually means the curvature of a Chern connection.

REMARK: Let *B* be a holomorphic Hermitian line bundle, and *b* its nondegenerate section. Denote by η a (1,0)-form which satisfies $\nabla^{1,0}b = \eta \otimes b$. Then $d|b|^2 = \operatorname{Re} g(\nabla^{1,0}b, b) = \operatorname{Re} \eta |b|^2$. This gives $\nabla^{1,0}b = \frac{\partial |b|^2}{|b|^2}b = 2\partial \log |b|b$.

REMARK: Then $\Theta_B(b) = 2\overline{\partial}\partial \log |b|b$, that is, $\Theta_B = -2\partial\overline{\partial} \log |b|$.

COROLLARY: If $g' = e^{2f}g$ – two metrics on a holomorphic line bundle, Θ, Θ' their curvatures, one has $\Theta' - \Theta = -2\partial\overline{\partial}f$

CLAIM: Let η be a closed (1,1)-form in the same cohomology class as $\Theta_{B,h}$. **Then** η **is a curvature of a Chern connection** on B, for some metric h'.

Proof: The difference $\Theta_{B,h} - \eta$ is an exact (1,1)-form, hence **belongs to an image of** $\partial \overline{\partial}$ (" $\partial \overline{\partial}$ -lemma"): $\Theta_{B,h} - \eta = -2\partial \overline{\partial} f$. Then the curvature of a metric $h' := e^{2f}h$ satisfies $\Theta_{B,h} - \Theta_{B,h'} = -2\partial \overline{\partial} f$, hence $\eta = \Theta_{B,h'}$.

REMARK: Such metric is unique, up to a constant.

Calabi-Yau manifolds

REMARK: Let *B* be a line bundle on a manifold. Using the long exact sequence of cohomology associated with the exponential sequence

$$0 \longrightarrow \mathbb{Z}_M \longrightarrow C^{\infty}M \longrightarrow (C^{\infty}M)^* \longrightarrow 0,$$

we obtain $0 \longrightarrow H^1(M, (C^{\infty}M)^*) \longrightarrow H^2(M, \mathbb{Z}) \longrightarrow 0$.

DEFINITION: Let *B* be a complex line bundle, and ξ_B its defining element in $H^1(M, (C^{\infty}M)^*)$. Its image in $H^2(M, \mathbb{Z})$ is called **the integer first Chern** class of *B*.

REMARK: A complex line bundle *B* is (topologically) trivial if and only if $c_1(B) = 0$.

THEOREM: (Gauss-Bonnet) A real Chern class of a vector bundle is an image of the integer Chern class $c_1(B,\mathbb{Z})$ under the natural homomorphism $H^2(M,\mathbb{Z}) \longrightarrow H^2(M,\mathbb{R})$.

DEFINITION: A first Chern class of a complex *n*-manifold is $c_1(\Lambda^{n,0}(M))$.

DEFINITION:

A Calabi-Yau manifold is a compact Kaehler manifold with $c_1(M,\mathbb{Z}) = 0$.

Calabi-Yau theorem

DEFINITION: Let (M, I, ω) be a Kaehler *n*-manifold, and $K(M) := \Lambda^{n,0}(M)$ its **canonical bundle**. We consider K(M) as a colomorphic line bundle, $K(M) = \Omega^n M$. The natural Hermitian metric on K(M) is written as

$$(\alpha, \alpha') \longrightarrow \frac{\alpha \wedge \overline{\alpha}'}{\omega^n}.$$

Denote by Θ_K the curvature of the Chern connection on K(M). The **Ricci** curvature Ric of M is symmetric 2-form $\operatorname{Ric}(x, y) = \Theta_K(x, Iy)$.

DEFINITION: A Kähler manifold is called **Ricci-flat** if its Ricci curvature vanishes.

THEOREM: (Calabi-Yau)

Let (M, I, g) be Calabi-Yau manifold. Then there exists a unique Ricci-flat Kaehler metric in any given Kaehler class.

Calabi-Yau theorem and Monge-Ampère equation

REMARK: Let (M, ω) be a Kähler *n*-fold, and Ω a non-degenerate section of K(M), Then $|\Omega|^2 = \frac{\Omega \wedge \overline{\Omega}}{\omega^n}$ If ω_1 is a new Kaehler metric on (M, I), h, h_1 the associated metrics on K(M), then $\frac{h}{h_1} = \frac{\omega_1^n}{\omega^n}$

COROLLARY: A metric $\omega_1 = \omega + \partial \overline{\partial} \varphi$ is Ricci-flat if and only if $(\omega + \partial \overline{\partial} \varphi)^n = \omega^n e^f$, where $-2\partial \overline{\partial} f = \Theta_{K,\omega}$.

Proof: For such f, φ , one has $\log \frac{h}{h_1} = -f$. This gives

$$\Theta_{K,\omega_1} = \Theta_{K,\omega} + \partial \overline{\partial} \frac{h}{h_1} = \Theta_{K,\omega} - 2\partial \overline{\partial} f = 0.$$

THEOREM: (Calabi-Yau) Let (M, ω) be a compact Kaehler *n*-manifold, and *f* any smooth function. Then there exists a unique up to a constant function φ such that $(\omega + dd^c \varphi)^n = Ae^f \omega^n$, where *A* is a positive constant obtained from the formula $\int_M Ae^f \omega^n = \int_M \omega^n$.

REMARK:

$$(\omega + dd^c \varphi)^n = A e^f \omega^n,$$

is called the Monge-Ampere equation.

M. Verbitsky

Uniqueness of solutions of complex Monge-Ampere equation

PROPOSITION: (Calabi) **A complex Monge-Ampere equation has at most one solution,** up to a constant.

Proof. Step 1: Let ω_1, ω_2 be solutions of Monge-Ampere equation. Then $\omega_1^n = \omega_2^n$. By dd^c -lemma, one has $\omega_2 = \omega_1 + dd^c\psi$. We need to show $\psi = const$.

Step 2: This gives

$$0 = (\omega_1 + dd^c \psi)^n - \omega_1^n = dd^c \psi \wedge \sum_{i=0}^{n-1} \omega_1^i \wedge \omega_2^{n-1-i}.$$

Step 3: Let $P := \sum_{i=0}^{n-1} \omega_1^i \wedge \omega_2^{n-1-i}$. This is a positive (n-1, n-1)-form. **There exists a Hermitian form** ω_3 **on** M **such that** $\omega_3^{n-1} = P$.

Step 4: Since $dd^c\psi \wedge P = 0$, this gives $\psi dd^c\psi \wedge P = 0$. Stokes' formula implies

$$0 = \int_{M} \psi \wedge \partial \overline{\partial} \psi \wedge P = -\int_{M} \partial \psi \wedge \overline{\partial} \psi \wedge P = -\int_{M} |\partial \psi|_{3}^{2} \omega_{3}^{n}.$$

where $|\cdot|_3$ is the metric associated to ω_3 . Therefore $\overline{\partial}\psi = 0$.