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Kähler manifolds

DEFINITION: An Riemannian metric g on an almost complex manifiold M

is called Hermitian if g(Ix, Iy) = g(x, y). In this case, g(x, Iy) = g(Ix, I2y) =

−g(y, Ix), hence ω(x, y) := g(x, Iy) is skew-symmetric.

DEFINITION: The differential form ω ∈ Λ1,1(M) is called the Hermitian

form of (M, I, g).

REMARK: It is U(1)-invariant, hence of Hodge type (1,1).

DEFINITION: A complex Hermitian manifold (M, I, ω) is called Kähler if

dω = 0. The cohomology class [ω] ∈ H2(M) of a form ω is called the Kähler

class of M , and ω the Kähler form.
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Levi-Civita connection and Kähler geometry

DEFINITION: Let (M, g) be a Riemannian manifold. A connection ∇ is

called orthogonal if ∇(g) = 0. It is called Levi-Civita if it is torsion-free.

THEOREM: (“the main theorem of differential geometry”)

For any Riemannian manifold, the Levi-Civita connection exists,

and it is unique.

THEOREM: Let (M, I, g) be an almost complex Hermitian manifold. Then

the following conditions are equivalent.

(i) (M, I, g) is Kähler

(ii) One has ∇(I) = 0, where ∇ is the Levi-Civita connection.
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Holomorphic vector bundles

DEFINITION: A (smooth) vector bundle on a smooth manifold is a locally

trivial sheaf of C∞M-modules.

DEFINITION: A holomorphic vector bundle on a complex manifold is a

locally trivial sheaf of OM-modules.

REMARK: A section b of a bundle B is often denoted as b ∈ B.

CLAIM: Let B be a holomorphic vector bundle. Consider the sheaf BC∞ :=

B ⊗OM C∞M . It is clearly locally trivial, hence BC∞ is a smooth vector

bundle.

DEFINITION: BC∞ is called a smooth vector bundle underlying B.

4



Kähler manifolds, lecture 2 M. Verbitsky

A holomorphic structure operator

DEFINITION: Let d = d0,1 + d1,0 be the Hodge decomposition of the de

Rham differential on a complex manifold, d0,1 : Λp,q(M)−→ Λp,q+1(M) and

d1,0 : Λp,q(M)−→ Λp+1,q(M). The operators d0,1, d1,0 are denoted ∂ and ∂

and called the Dolbeault differentials.

REMARK: From d2 = 0, one obtains ∂
2

= 0 and ∂2 = 0.

REMARK: The operator ∂ is OM-linear.

DEFINITION: Let B be a holomorphic vector bundle, and ∂ : BC∞ −→BC∞⊗
Λ0,1(M) an operator mapping b ⊗ f to b ⊗ ∂f , where b ∈ B is a holomorphic

section, and f a smooth function. This operator is called a holomorphic

structure operator on B. It is correctly defined, because ∂ is OM-linear.

REMARK: The kernel of ∂ coincides with the set of holomorphic sections

of B.
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The ∂-operator on vector bundles

DEFINITION: A ∂-operator on a smooth bundle is a map V
∂−→ Λ0,1(M)⊗

V , satisfying ∂(fb) = ∂(f)⊗ b+ f∂(b) for all f ∈ C∞M, b ∈ V .

REMARK: A ∂-operator on B can be extended to

∂ : Λ0,i(M)⊗ V −→ Λ0,i+1(M)⊗ V,

using ∂(η ⊗ b) = ∂(η)⊗ b+ (−1)η̃η ∧ ∂(b), where b ∈ V and η ∈ Λ0,i(M).

REMARK: If ∂ is a holomorphic structure operator, then ∂
2

= 0.

THEOREM: (Atiyah-Bott) Let ∂ : V −→ Λ0,1(M) ⊗ V be a ∂-operator,

satisfying ∂
2

= 0. Then B := ker ∂ ⊂ V is a holomorphic vector bundle of

the same rank.

REMARK: This statement is a vector bundle analogue of Newlander-Nirenberg

theorem.

DEFINITION: ∂-operator ∂ : V −→ Λ0,1(M) ⊗ V on a smooth manifold is

called a holomorphic structure operator, if ∂
2

= 0.
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Connections and holomorphic structure operators

DEFINITION: let (B,∇) be a smooth bundle with connection and a holo-

morphic structure ∂ B −→ Λ0,1(M) ⊗ B. Consider a Hodge decomposition of

∇, ∇ = ∇0,1 +∇1,0,

∇0,1 : V −→ Λ0,1(M)⊗ V, ∇1,0 : V −→ Λ1,0(M)⊗ V.

We say that ∇ is compatible with the holomorphic structure if ∇0,1 = ∂.

DEFINITION: An Hermitian holomorphic vector bundle is a smooth

complex vector bundle equipped with a Hermitian metric and a holomorphic

structure.

DEFINITION: A Chern connection on a holomorphic Hermitian vector

bundle is a connection compatible with the holomorphic structure and pre-

serving the metric.

THEOREM: On any holomorphic Hermitian vector bundle, the Chern con-

nection exists, and is unique.
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Curvature of a connection

DEFINITION: Let ∇ : B −→B⊗Λ1M be a connection on a smooth budnle.
Extend it to an operator on B-valued forms

B
∇−→ Λ1(M)⊗B ∇−→ Λ2(M)⊗B ∇−→ Λ3(M)⊗B ∇−→ ...

using ∇(η ⊗ b) = dη + (−1)η̃η ∧ ∇b. The operator ∇2 : B −→B ⊗ Λ2(M) is
called the curvature of ∇.

REMARK: The algebra of End(B)-valued forms naturally acts on Λ∗M ⊗B.
The curvature satisfies ∇2(fb) = d2fb+df ∧∇b−df ∧∇b+f∇2b = f∇2b, hence
it is C∞M-linear. We consider it as an End(B)-valued 2-form on M.

PROPOSITION: (Bianchi identity) Using the graded Jacobi identity, we
obtain [∇,∇2] = [∇2,∇] + [∇,∇2] = 0, hence [∇,∇2] = 0. This gives Bianchi
identity: ∇(ΘB) = 0.

REMARK: If B is a line bundle, EndB is trivial, and the curvature ΘB of
B is a closed 2-form.

DEFINITION: The cohomology class c1(B) :=
√
−1
2π [ΘB] ∈ H2(M) is called

the real first Chern class of a line bunlde B.

An exercise: Check that c1(B) is independent from a choice of ∇.
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Curvature of a holomorphic line bundle

REMARK: When speaking of a “curvature of a holomorphic bundle”,
one usually means the curvature of a Chern connection.

REMARK: Let B be a holomorphic Hermitian line bundle, and b its non-
degenerate section. Denote by η a (1,0)-form which satisfies ∇1,0b = η ⊗ b.
Then d|b|2 = Re g(∇1,0b, b) = Re η|b|2. This gives ∇1,0b = ∂|b|2

|b|2 b = 2∂ log |b|b.

REMARK: Then ΘB(b) = 2∂∂ log |b|b, that is, ΘB = −2∂∂ log |b|.

COROLLARY: If g′ = e2fg – two metrics on a holomorphic line bundle,
Θ,Θ′ their curvatures, one has Θ′ −Θ = −2∂∂f

CLAIM: Let η be a closed (1,1)-form in the same cohomology class as ΘB,h.
Then η is a curvature of a Chern connection on B, for some metric h′.

Proof: The difference ΘB,h− η is an exact (1,1)-form, hence belongs to an
image of ∂∂ (“∂∂-lemma”): ΘB,h − η = −2∂∂f. Then the curvature of a
metric h′ := e2fh satisfies ΘB,h −ΘB,h′ = −2∂∂f, hence η = ΘB,h′.

REMARK: Such metric is unique, up to a constant.
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Calabi-Yau manifolds

REMARK: Let B be a line bundle on a manifold. Using the long exact
sequence of cohomology associated with the exponential sequence

0−→ ZM −→ C∞M −→ (C∞M)∗ −→ 0,

we obtain 0−→H1(M, (C∞M)∗)−→H2(M,Z)−→ 0.

DEFINITION: Let B be a complex line bundle, and ξB its defining element
in H1(M, (C∞M)∗). Its image in H2(M,Z) is called the integer first Chern
class of B.

REMARK: A complex line bundle B is (topologically) trivial if and only
if c1(B) = 0.

THEOREM: (Gauss-Bonnet) A real Chern class of a vector bundle is an
image of the integer Chern class c1(B,Z) under the natural homomorphism
H2(M,Z)−→H2(M,R).

DEFINITION: A first Chern class of a complex n-manifold is c1(Λn,0(M)).

DEFINITION:
A Calabi-Yau manifold is a compact Kaehler manifold with c1(M,Z) = 0.
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Calabi-Yau theorem

DEFINITION: Let (M, I, ω) be a Kaehler n-manifold, and K(M) := Λn,0(M)

its canonical bundle. We consider K(M) as a colomorphic line bundle,

K(M) = ΩnM . The natural Hermitian metric on K(M) is written as

(α, α′)−→
α ∧ α′

ωn
.

Denote by ΘK the curvature of the Chern connection on K(M). The Ricci

curvature Ric of M is symmetric 2-form Ric(x, y) = ΘK(x, Iy).

DEFINITION: A Kähler manifold is called Ricci-flat if its Ricci curvature

vanishes.

THEOREM: (Calabi-Yau)

Let (M, I, g) be Calabi-Yau manifold. Then there exists a unique Ricci-flat

Kaehler metric in any given Kaehler class.
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Calabi-Yau theorem and Monge-Ampère equation

REMARK: Let (M,ω) be a Kähler n-fold, and Ω a non-degenerate section
of K(M), Then |Ω|2 = Ω∧Ω

ωn If ω1 is a new Kaehler metric on (M, I), h, h1 the

associated metrics on K(M), then h
h1

=
ωn1
ωn

COROLLARY: A metric ω1 = ω + ∂∂ϕ is Ricci-flat if and only if (ω +
∂∂ϕ)n = ωnef , where −2∂∂f = ΘK,ω.

Proof: For such f , ϕ, one has log h
h1

= −f . This gives

ΘK,ω1
= ΘK,ω + ∂∂

h

h1
= ΘK,ω − 2∂∂f = 0.

THEOREM: (Calabi-Yau) Let (M,ω) be a compact Kaehler n-manifold,
and f any smooth function. Then there exists a unique up to a constant
function ϕ such that (ω + ddcϕ)n = Aefωn, where A is a positive constant
obtained from the formula

∫
M Aefωn =

∫
M ωn.

REMARK:

(ω + ddcϕ)n = Aefωn,

is called the Monge-Ampere equation.
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Uniqueness of solutions of complex Monge-Ampere equation

PROPOSITION: (Calabi) A complex Monge-Ampere equation has at

most one solution, up to a constant.

Proof. Step 1: Let ω1, ω2 be solutions of Monge-Ampere equation. Then

ωn1 = ωn2. By ddc-lemma, one has ω2 = ω1 + ddcψ. We need to show

ψ = const.

Step 2: This gives

0 = (ω1 + ddcψ)n − ωn1 = ddcψ ∧
n−1∑
i=0

ωi1 ∧ ω
n−1−i
2 .

Step 3: Let P :=
∑n−1
i=0 ω

i
1 ∧ ω

n−1−i
2 . This is a positive (n − 1, n − 1)-form.

There exists a Hermitian form ω3 on M such that ωn−1
3 = P .

Step 4: Since ddcψ∧P = 0, this gives ψddcψ∧P = 0. Stokes’ formula implies

0 =
∫
M
ψ ∧ ∂∂ψ ∧ P = −

∫
M
∂ψ ∧ ∂ψ ∧ P = −

∫
M
|∂ψ|23ω

n
3.

where | · |3 is the metric associated to ω3. Therefore ∂ψ = 0.
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