Kähler manifolds and holonomy

lecture 2

Misha Verbitsky

Tel-Aviv University
December 16, 2010,

Kähler manifolds

DEFINITION: An Riemannian metric g on an almost complex manifiold M is called Hermitian if $g(I x, I y)=g(x, y)$. In this case, $g(x, I y)=g\left(I x, I^{2} y\right)=$ $-g(y, I x)$, hence $\omega(x, y):=g(x, I y)$ is skew-symmetric.

DEFINITION: The differential form $\omega \in \wedge^{1,1}(M)$ is called the Hermitian form of (M, I, g).

REMARK: It is $U(1)$-invariant, hence of Hodge type $(\mathbf{1}, \mathbf{1})$.
DEFINITION: A complex Hermitian manifold (M, I, ω) is called Kähler if $d \omega=0$. The cohomology class $[\omega] \in H^{2}(M)$ of a form ω is called the Kähler class of M, and ω the Kähler form.

Levi-Civita connection and Kähler geometry

DEFINITION: Let (M, g) be a Riemannian manifold. A connection ∇ is called orthogonal if $\nabla(g)=0$. It is called Levi-Civita if it is torsion-free.

THEOREM: ("the main theorem of differential geometry") For any Riemannian manifold, the Levi-Civita connection exists, and it is unique.

THEOREM: Let (M, I, g) be an almost complex Hermitian manifold. Then the following conditions are equivalent.
(i) (M, I, g) is Kähler
(ii) One has $\nabla(I)=0$, where ∇ is the Levi-Civita connection.

Holomorphic vector bundles

DEFINITION: A (smooth) vector bundle on a smooth manifold is a locally trivial sheaf of $C^{\infty} M$-modules.

DEFINITION: A holomorphic vector bundle on a complex manifold is a locally trivial sheaf of $\mathcal{O}_{M^{-}}$modules.

REMARK: A section b of a bundle B is often denoted as $b \in B$.

CLAIM: Let B be a holomorphic vector bundle. Consider the sheaf B_{C} : $=$ $B \otimes \mathcal{O}_{M} C^{\infty} M$. It is clearly locally trivial, hence $B_{C} \infty$ is a smooth vector bundle.

DEFINITION: $B_{C^{\infty}}$ is called a smooth vector bundle underlying B.

A holomorphic structure operator
DEFINITION: Let $d=d^{0,1}+d^{1,0}$ be the Hodge decomposition of the de Rham differential on a complex manifold, $d^{0,1}: \Lambda^{p, q}(M) \longrightarrow \Lambda^{p, q+1}(M)$ and $d^{1,0}: \wedge^{p, q}(M) \longrightarrow \wedge^{p+1, q}(M)$. The operators $d^{0,1}, d^{1,0}$ are denoted $\bar{\partial}$ and ∂ and called the Dolbeault differentials.

REMARK: From $d^{2}=0$, one obtains $\bar{\partial}^{2}=0$ and $\partial^{2}=0$.

REMARK: The operator $\bar{\partial}$ is \mathcal{O}_{M}-linear.
DEFINITION: Let B be a holomorphic vector bundle, and $\bar{\partial}: B_{C} \infty \longrightarrow B_{C^{\infty}} \otimes$ $\wedge^{0,1}(M)$ an operator mapping $b \otimes f$ to $b \otimes \bar{\partial} f$, where $b \in B$ is a holomorphic section, and f a smooth function. This operator is called a holomorphic structure operator on B. It is correctly defined, because $\bar{\partial}$ is $\mathcal{O}_{M^{-}}$linear.

REMARK: The kernel of $\bar{\partial}$ coincides with the set of holomorphic sections of B.

The $\bar{\partial}$-operator on vector bundles
DEFINITION: A $\bar{\partial}$-operator on a smooth bundle is a map $V \xrightarrow{\bar{\partial}} \Lambda^{0,1}(M) \otimes$ V, satisfying $\bar{\partial}(f b)=\bar{\partial}(f) \otimes b+f \bar{\partial}(b)$ for all $f \in C^{\infty} M, b \in V$.

REMARK: A $\bar{\partial}$-operator on B can be extended to

$$
\bar{\partial}: \wedge^{0, i}(M) \otimes V \longrightarrow \wedge^{0, i+1}(M) \otimes V,
$$

using $\bar{\partial}(\eta \otimes b)=\bar{\partial}(\eta) \otimes b+(-1)^{\tilde{\eta}} \eta \wedge \bar{\partial}(b)$, where $b \in V$ and $\eta \in \wedge^{0, i}(M)$.
REMARK: If $\bar{\partial}$ is a holomorphic structure operator, then $\bar{\partial}^{2}=0$.

THEOREM: (Atiyah-Bott) Let $\bar{\partial}: V \longrightarrow \wedge^{0,1}(M) \otimes V$ be a $\bar{\partial}$-operator, satisfying $\bar{\partial}^{2}=0$. Then $B:=\operatorname{ker} \bar{\partial} \subset V$ is a holomorphic vector bundle of the same rank.

REMARK: This statement is a vector bundle analogue of Newlander-Nirenberg theorem.

DEFINITION: $\bar{\partial}$-operator $\bar{\partial}: V \longrightarrow \wedge^{0,1}(M) \otimes V$ on a smooth manifold is called a holomorphic structure operator, if $\bar{\partial}^{2}=0$.

Connections and holomorphic structure operators

DEFINITION: let (B, ∇) be a smooth bundle with connection and a holomorphic structure $\bar{\partial} B \longrightarrow \wedge^{0,1}(M) \otimes B$. Consider a Hodge decomposition of $\nabla, \nabla=\nabla^{0,1}+\nabla^{1,0}$,

$$
\nabla^{0,1}: V \longrightarrow \wedge^{0,1}(M) \otimes V, \quad \nabla^{1,0}: V \longrightarrow \wedge^{1,0}(M) \otimes V .
$$

We say that ∇ is compatible with the holomorphic structure if $\nabla^{0,1}=\bar{\partial}$.
DEFINITION: An Hermitian holomorphic vector bundle is a smooth complex vector bundle equipped with a Hermitian metric and a holomorphic structure.

DEFINITION: A Chern connection on a holomorphic Hermitian vector bundle is a connection compatible with the holomorphic structure and preserving the metric.

THEOREM: On any holomorphic Hermitian vector bundle, the Chern connection exists, and is unique.

Curvature of a connection

DEFINITION: Let $\nabla: B \longrightarrow B \otimes \wedge^{1} M$ be a connection on a smooth budnle. Extend it to an operator on B-valued forms

$$
B \xrightarrow{\nabla} \wedge^{1}(M) \otimes B \xrightarrow{\nabla} \wedge^{2}(M) \otimes B \xrightarrow{\nabla} \wedge^{3}(M) \otimes B \xrightarrow{\nabla} \ldots
$$

using $\nabla(\eta \otimes b)=d \eta+(-1)^{\tilde{\eta}} \eta \wedge \nabla b$. The operator $\nabla^{2}: B \longrightarrow B \otimes \wedge^{2}(M)$ is called the curvature of ∇.

REMARK: The algebra of End (B)-valued forms naturally acts on $\wedge^{*} M \otimes B$. The curvature satisfies $\nabla^{2}(f b)=d^{2} f b+d f \wedge \nabla b-d f \wedge \nabla b+f \nabla^{2} b=f \nabla^{2} b$, hence it is $C^{\infty} M$-linear. We consider it as an End (B)-valued 2-form on M.

PROPOSITION: (Bianchi identity) Using the graded Jacobi identity, we obtain $\left[\nabla, \nabla^{2}\right]=\left[\nabla^{2}, \nabla\right]+\left[\nabla, \nabla^{2}\right]=0$, hence $\left[\nabla, \nabla^{2}\right]=0$. This gives Bianchi identity: $\nabla\left(\Theta_{B}\right)=0$.

REMARK: If B is a line bundle, End B is trivial, and the curvature Θ_{B} of B is a closed 2-form.

DEFINITION: The cohomology class $c_{1}(B):=\frac{\sqrt{-1}}{2 \pi}\left[\Theta_{B}\right] \in H^{2}(M)$ is called the real first Chern class of a line bunlde B.

An exercise: Check that $c_{1}(B)$ is independent from a choice of ∇.

Curvature of a holomorphic line bundle

REMARK: When speaking of a "curvature of a holomorphic bundle", one usually means the curvature of a Chern connection.

REMARK: Let B be a holomorphic Hermitian line bundle, and b its nondegenerate section. Denote by η a (1,0)-form which satisfies $\nabla^{1,0} b=\eta \otimes b$. Then $d|b|^{2}=\operatorname{Re} g\left(\nabla^{1,0} b, b\right)=\operatorname{Re} \eta|b|^{2}$. This gives $\nabla^{1,0} b=\frac{\partial|b|^{2}}{|b|^{2}} b=2 \partial \log |b| b$.

REMARK: Then $\Theta_{B}(b)=2 \bar{\partial} \partial \log |b| b$, that is, $\Theta_{B}=-2 \partial \bar{\partial} \log |b|$.
COROLLARY: If $g^{\prime}=e^{2 f} g$ - two metrics on a holomorphic line bundle, Θ, Θ^{\prime} their curvatures, one has $\Theta^{\prime}-\Theta=-2 \partial \bar{\partial} f$

CLAIM: Let η be a closed (1,1)-form in the same cohomology class as $\Theta_{B, h}$. Then η is a curvature of a Chern connection on B, for some metric h^{\prime}.

Proof: The difference $\Theta_{B, h}-\eta$ is an exact (1,1)-form, hence belongs to an image of $\partial \bar{\partial}$ (" $\partial \bar{\partial}$-lemma"): $\Theta_{B, h}-\eta=-2 \partial \bar{\partial} f$. Then the curvature of a metric $h^{\prime}:=e^{2 f} h$ satisfies $\Theta_{B, h}-\Theta_{B, h^{\prime}}=-2 \partial \bar{\partial} f$, hence $\eta=\Theta_{B, h^{\prime}}$.

REMARK: Such metric is unique, up to a constant.

Calabi-Yau manifolds

REMARK: Let B be a line bundle on a manifold. Using the long exact sequence of cohomology associated with the exponential sequence

$$
0 \longrightarrow \mathbb{Z}_{M} \longrightarrow C^{\infty} M \longrightarrow\left(C^{\infty} M\right)^{*} \longrightarrow 0,
$$

we obtain $0 \longrightarrow H^{1}\left(M,\left(C^{\infty} M\right)^{*}\right) \longrightarrow H^{2}(M, \mathbb{Z}) \longrightarrow 0$.
DEFINITION: Let B be a complex line bundle, and ξ_{B} its defining element in $H^{1}\left(M,\left(C^{\infty} M\right)^{*}\right)$. Its image in $H^{2}(M, \mathbb{Z})$ is called the integer first Chern class of B.

REMARK: A complex line bundle B is (topologically) trivial if and only if $c_{1}(B)=0$.

THEOREM: (Gauss-Bonnet) A real Chern class of a vector bundle is an image of the integer Chern class $c_{1}(B, \mathbb{Z})$ under the natural homomorphism $H^{2}(M, \mathbb{Z}) \longrightarrow H^{2}(M, \mathbb{R})$.

DEFINITION: A first Chern class of a complex n-manifold is $c_{1}\left(\Lambda^{n, 0}(M)\right)$.
DEFINITION:
A Calabi-Yau manifold is a compact Kaehler manifold with $c_{1}(M, \mathbb{Z})=0$.

Calabi-Yau theorem

DEFINITION: Let (M, I, ω) be a Kaehler n-manifold, and $K(M):=\wedge^{n, 0}(M)$ its canonical bundle. We consider $K(M)$ as a colomorphic line bundle, $K(M)=\Omega^{n} M$. The natural Hermitian metric on $K(M)$ is written as

$$
\left(\alpha, \alpha^{\prime}\right) \longrightarrow \frac{\alpha \wedge \bar{\alpha}^{\prime}}{\omega^{n}} .
$$

Denote by Θ_{K} the curvature of the Chern connection on $K(M)$. The Ricci curvature Ric of M is symmetric 2-form $\operatorname{Ric}(x, y)=\Theta_{K}(x, I y)$.

DEFINITION: A Kähler manifold is called Ricci-flat if its Ricci curvature vanishes.

THEOREM: (Calabi-Yau)
Let (M, I, g) be Calabi-Yau manifold. Then there exists a unique Ricci-flat Kaehler metric in any given Kaehler class.

Calabi-Yau theorem and Monge-Ampère equation

REMARK: Let (M, ω) be a Kähler n-fold, and Ω a non-degenerate section of $K(M)$, Then $|\Omega|^{2}=\frac{\Omega \wedge \bar{\Omega}}{\omega^{n}}$ If ω_{1} is a new Kaehler metric on $(M, I), h, h_{1}$ the associated metrics on $K(M)$, then $\frac{h}{h_{1}}=\frac{\omega_{1}^{n}}{\omega^{n}}$

COROLLARY: A metric $\omega_{1}=\omega+\partial \bar{\partial} \varphi$ is Ricci-flat if and only if $(\omega+$ $\partial \bar{\partial} \varphi)^{n}=\omega^{n} e^{f}$, where $-2 \partial \bar{\partial} f=\Theta_{K, \omega}$.

Proof: For such f, φ, one has $\log \frac{h}{h_{1}}=-f$. This gives

$$
\Theta_{K, \omega_{1}}=\Theta_{K, \omega}+\partial \bar{\partial} \frac{h}{h_{1}}=\Theta_{K, \omega}-2 \partial \bar{\partial} f=0
$$

THEOREM: (Calabi-Yau) Let (M, ω) be a compact Kaehler n-manifold, and f any smooth function. Then there exists a unique up to a constant function φ such that $\left(\omega+d d^{c} \varphi\right)^{n}=A e^{f} \omega^{n}$, where A is a positive constant obtained from the formula $\int_{M} A e^{f} \omega^{n}=\int_{M} \omega^{n}$.

REMARK:

$$
\left(\omega+d d^{c} \varphi\right)^{n}=A e^{f} \omega^{n}
$$

is called the Monge-Ampere equation.

Uniqueness of solutions of complex Monge-Ampere equation

PROPOSITION: (Calabi) A complex Monge-Ampere equation has at most one solution, up to a constant.

Proof. Step 1: Let ω_{1}, ω_{2} be solutions of Monge-Ampere equation. Then $\omega_{1}^{n}=\omega_{2}^{n}$. By $d d^{c}$-lemma, one has $\omega_{2}=\omega_{1}+d d^{c} \psi$. We need to show $\psi=$ const.

Step 2: This gives

$$
0=\left(\omega_{1}+d d^{c} \psi\right)^{n}-\omega_{1}^{n}=d d^{c} \psi \wedge \sum_{i=0}^{n-1} \omega_{1}^{i} \wedge \omega_{2}^{n-1-i} .
$$

Step 3: Let $P:=\sum_{i=0}^{n-1} \omega_{1}^{i} \wedge \omega_{2}^{n-1-i}$. This is a positive ($n-1, n-1$)-form. There exists a Hermitian form ω_{3} on M such that $\omega_{3}^{n-1}=P$.

Step 4: Since $d d^{c} \psi \wedge P=0$, this gives $\psi d d^{c} \psi \wedge P=0$. Stokes' formula implies

$$
0=\int_{M} \psi \wedge \partial \bar{\partial} \psi \wedge P=-\int_{M} \partial \psi \wedge \bar{\partial} \psi \wedge P=-\int_{M}|\partial \psi|_{3}^{2} \omega_{3}^{n} .
$$

where $\|\left._{\cdot}\right|_{3}$ is the metric associated to ω_{3}. Therefore $\bar{\partial} \psi=0$.

