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Kähler manifolds

DEFINITION: An Riemannian metric g on an almost complex manifiold M

is called Hermitian if g(Ix, Iy) = g(x, y). In this case, g(x, Iy) = g(Ix, I2y) =

−g(y, Ix), hence ω(x, y) := g(x, Iy) is skew-symmetric.

DEFINITION: The differential form ω ∈ Λ1,1(M) is called the Hermitian

form of (M, I, g).

REMARK: It is U(1)-invariant, hence of Hodge type (1,1).

DEFINITION: A complex Hermitian manifold (M, I, ω) is called Kähler if

dω = 0. The cohomology class [ω] ∈ H2(M) of a form ω is called the Kähler

class of M , and ω the Kähler form.
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Levi-Civita connection and Kähler geometry

DEFINITION: Let (M, g) be a Riemannian manifold. A connection ∇ is

called orthogonal if ∇(g) = 0. It is called Levi-Civita if it is torsion-free.

THEOREM: (“the main theorem of differential geometry”)

For any Riemannian manifold, the Levi-Civita connection exists,

and it is unique.

THEOREM: Let (M, I, g) be an almost complex Hermitian manifold. Then

the following conditions are equivalent.

(i) (M, I, g) is Kähler

(ii) One has ∇(I) = 0, where ∇ is the Levi-Civita connection.
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Holonomy group

DEFINITION: (Cartan, 1923) Let (B,∇) be a vector bundle with connec-
tion over M . For each loop γ based in x ∈ M , let Vγ,∇ : B|x −→B|x be
the corresponding parallel transport along the connection. The holonomy
group of (B,∇) is a group generated by Vγ,∇, for all loops γ. If one takes
all contractible loops instead, Vγ,∇ generates the local holonomy, or the
restricted holonomy group.

REMARK: A bundle is flat (has vanishing curvature) if and only if its
restricted holonomy vanishes.

REMARK: If ∇(ϕ) = 0 for some tensor ϕ ∈ B⊗i ⊗ (B∗)⊗j, the holonomy
group preserves ϕ.

DEFINITION: Holonomy of a Riemannian manifold is holonomy of its
Levi-Civita connection.

EXAMPLE: Holonomy of a Riemannian manifold lies in O(TxM, g|x) = O(n).

EXAMPLE: Holonomy of a Kähler manifold lies in U(TxM, g|x, I|x) = U(n).

REMARK: The holonomy group does not depend on the choice of a
point x ∈M.
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The Berger’s list

THEOREM: (de Rham) A complete, simply connected Riemannian manifold

with non-irreducible holonomy splits as a Riemannian product.

THEOREM: (Berger’s theorem, 1955) Let G be an irreducible holonomy

group of a Riemannian manifold which is not locally symmetric. Then G

belongs to the Berger’s list:

Berger’s list

Holonomy Geometry

SO(n) acting on Rn Riemannian manifolds

U(n) acting on R2n Kähler manifolds

SU(n) acting on R2n, n > 2 Calabi-Yau manifolds

Sp(n) acting on R4n hyperkähler manifolds

Sp(n)× Sp(1)/{±1} quaternionic-Kähler

acting on R4n, n > 1 manifolds

G2 acting on R7 G2-manifolds

Spin(7) acting on R8 Spin(7)-manifolds
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Chern connection

DEFINITION: Let B be a holomorphic vector bundle, and ∂ : BC∞ −→BC∞⊗
Λ0,1(M) an operator mapping b ⊗ f to b ⊗ ∂f , where b ∈ B is a holomorphic
section, and f a smooth function. This operator is called a holomorphic
structure operator on B. It is correctly defined, because ∂ is OM-linear.

REMARK: A section b ∈ B is holomorphic iff ∂(b) = 0

DEFINITION: let (B,∇) be a smooth bundle with connection and a holo-
morphic structure ∂ : B −→ Λ0,1(M)⊗B. Consider the Hodge decomposition
of ∇, ∇ = ∇0,1 +∇1,0. We say that ∇ is compatible with the holomorphic
structure if ∇0,1 = ∂.

DEFINITION: An Hermitian holomorphic vector bundle is a smooth
complex vector bundle equipped with a Hermitian metric and a holomorphic
structure.

DEFINITION: A Chern connection on a holomorphic Hermitian vector
bundle is a connection compatible with the holomorphic structure and pre-
serving the metric.

THEOREM: On any holomorphic Hermitian vector bundle, the Chern con-
nection exists, and is unique.
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Calabi-Yau manifolds

DEFINITION:
A Calabi-Yau manifold is a compact Kaehler manifold with c1(M,Z) = 0.

DEFINITION: Let (M, I, ω) be a Kaehler n-manifold, and K(M) := Λn,0(M)
its canonical bundle. We consider K(M) as a colomorphic line bundle,
K(M) = ΩnM . The natural Hermitian metric on K(M) is written as

(α, α′)−→
α ∧ α′

ωn
.

Denote by ΘK the curvature of the Chern connection on K(M). The Ricci
curvature Ric of M is symmetric 2-form Ric(x, y) = ΘK(x, Iy).

DEFINITION: A Kähler manifold is called Ricci-flat if its Ricci curvature
vanishes.

THEOREM: (Calabi-Yau)
Let (M, I, g) be Calabi-Yau manifold. Then there exists a unique Ricci-flat
Kaehler metric in any given Kaehler class.

REMARK: Converse is also true: any Ricci-flat Kähler manifold has a
finite covering which is Calabi-Yau. This is due to Bogomolov.
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Bochner’s vanishing

THEOREM: (Bochner vanishing theorem) On a compact Ricci-flat Calabi-
Yau manifold, any holomorphic p-form η is parallel with respect to the
Levi-Civita connection: ∇(η) = 0.

REMARK: Its proof uses spinors (see below).

DEFINITION: A holomorphic symplectic manifold is a manifold admitting
a non-degenerate, holomorphic symplectic form.

REMARK: A holomorphic symplectic manifold is Calabi-Yau. The top ex-
terior power of a holomorphic symplectic form is a non-degenerate section
of canonical bundle.

REMARK: Due to Bochner’s vanishing, holonomy of Ricci-flat Calabi-
Yau manifold lies in SU(n), and holonomy of Ricci-flat holomorphically
symplectic manifold lies in Sp(n).

DEFINITION: A holomorphically symplectic Ricci-flat Kaehler manifold is
called hyperkähler.

REMARK: Since Sp(n) = SU(H, n), a hyperkähler manifold admits quater-
nionic action in its tangent bundle.
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Bogomolov’s decomposition theorem

THEOREM: (Cheeger-Gromoll) Let M be a compact Ricci-flat Rieman-
nian manifold with π1(M) infinite. Then a universal covering of M is a
product of R and a Ricci-flat manifold.

COROLLARY: A fundamental group of a compact Ricci-flat Riemannian
manifold is “virtually polycyclic”: it is projected to a free abelian sub-
group with finite kernel.

REMARK: This is equivalent to any compact Ricci-flat manifold having a
finite covering which has free abelian fundamental group.

REMARK: This statement contains the Bieberbach’s solution of Hilbert’s
18-th problem on classification of crystallographic groups.

THEOREM: (Bogomolov’s decomposition) Let M be a compact, Ricci-
flat Kaehler manifold. Then there exists a finite covering M̃ of M which
is a product of Kaehler manifolds of the following form:

M̃ = T ×M1 × ...×Mi ×K1 × ...×Kj,
with all Mi, Ki simply connected, T a torus, and Hol(Ml) = Sp(nl), Hol(Kl) =
SU(ml)
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Harmonic forms

Let V be a vector space. A metric g on V induces a natural metric
on each of its tensor spaces: g(x1 ⊗ x2 ⊗ ... ⊗ xk, x

′
1 ⊗ x′2 ⊗ ... ⊗ x′k) =

g(x1, x
′
1)g(x2, x

′
2)...g(xk, x

′
k).

This gives a natural positive definite scalar product on differential forms
over a Riemannian manifold (M, g): g(α, β) :=

∫
M g(α, β) VolM . The topol-

ogy induced by this metric is called L2-topology.

DEFINITION: Let d be the de Rham differential and d∗ denote the adjoint
operator. The Laplace operator is defined as ∆ := dd∗ + d∗d. A form is
called harmonic if it lies in ker ∆.

THEOREM: The image of ∆ is closed in L2-topology on differential
forms.

REMARK: This is a very difficult theorem!

REMARK: On a compact manifold, the form η is harmonic iff dη = d∗η = 0.
Indeed, (∆x, x) = (dx, dx) + (d∗x, d∗x).

COROLLARY: This defines a map Hi(M)
τ−→ Hi(M) from harmonic forms

to cohomology.
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Hodge theory

THEOREM: (Hodge theory for Riemannian manifolds)
On a compact Riemannian manifold, the map Hi(M)

τ−→ Hi(M) to co-
homology is an isomorphism.

Proof. Step 1: ker d ⊥ im d∗ and im d ⊥ ker d∗. Therefore, a harmonic
form is orthogonal to im d. This implies that τ is injective.

Step 2: η⊥ im ∆ if and only if η is harmonic. Indeed, (η,∆x) = (∆x, x).

Step 3: Since im ∆ is closed, every closed form η is decomposed as
η = ηh + η′, where ηh is harmonic, and η′ = ∆α.

Step 4: When η is closed, η′ is also closed. Then 0 = (dη, dα) = (η, d∗dα) =
(∆α, d∗dα) = (dd∗α, d∗dα) + (d∗dα, d∗dα). The term (dd∗α, d∗dα) vanishes,
because d2 = 0, hence (d∗dα, d∗dα) = 0. This gives d∗dα = 0, and (d∗dα, α) =
(dα, dα) = 0. We have shown that for any closed η decomposing as
η = ηh + η′, with η′ = ∆α, α is closed

Step 5: This gives η′ = dd∗α, hence η is a sum of an exact form and a
harmonic form.

REMARK: This gives a way of obtaining the Poincare duality via PDE.
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Hodge decomposition on cohomology

THEOREM: (this theorem will be proven in the next lecture)
On a compact Kaehler manifold M , the Hodge decomposition is compati-
ble with the Laplace operator. This gives a decomposition of cohomology,
Hi(M) =

⊕
p+q=iH

p,q(M), with Hp,q(M) = Hq,p(M).

COROLLARY: Hp(M) is even-dimensional for odd p.

The Hodge diamond:

Hn,n

Hn,n−1 Hn−1,n

Hn,n−2 Hn−1,n−1 Hn−2,n

... ... ... ... ...

H2,0 H1,1 H0,2

H1,0 H0,1

H0,0

REMARK: Hp,0(M) is the space of holomorphic p-forms. Indeed, dd∗+
d∗d = 2(∂∂

∗
+∂
∗
∂) (next lecture), hence a holomorphic form on a compact

Kähler manifold is closed.
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Holomorphic Euler characteristic

DEFINITION: A holomorphic Euler characteristic χ(M) of a Kähler man-
ifold is a sum

∑
(−1)p dimHp,0(M).

THEOREM: (Riemann-Roch-Hirzebruch) For an n-fold, χ(M) can be ex-
pressed as a polynomial expressions of the Chern classes, χ(M) = tdn
where tdn is an n-th component of the Todd polynomial,

td(M) = 1 +
1

2
c1 +

1

12
(c2

1 + c2) +
1

24
c1c2 +

1

720
(−c4

1 + 4c2
1c2 + c1c3 + 3c2

22− c4) + ...

REMARK: The Chern classes are obtained as polynomial expression of the
curvature (Gauss-Bonnet). Therefore χ(M̃) = pχ(M) for any unramified
p-fold covering M̃ −→M.

REMARK: Bochner’s vanishing and the classical invariants theory imply:

1. When Hol(M) = SU(n), we have dimHp,0(M) = 1 for p = 1, n, and 0
otherwise. In this case, χ(M) = 2 for even n and 0 for odd.

2. When Hol(M) = Sp(n),we have dimHp,0(M) = 1 for even p 0 6 p 6 2n,
and 0 otherwise. In this case, χ(M) = n+ 1.

COROLLARY: π1(M) = 0 if Hol(M) = Sp(n), or Hol(M) = SU(2n). If
Hol(M) = SU(2n+ 1), π1(M) is finite.
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Spinors and Clifford algebras

DEFINITION: A Clifford algebra of a vector space V with a scalar product
q is an algebra generated by V with a relation xy + yx = q(x, y)1.

REMARK: A Clifford algebra of a complex vector space with V = Cn with

q non-degenerate is isomorphic to Mat
(
Cn/2

)
(n even) and Mat

(
C
n−1

2

)
⊕

Mat
(

C
n−1

2

)
(n odd).

DEFINITION: The space of spinors of a complex vector space V, q is a
fundamental representation of Cl(V ) (n even) and one of two fundamental

representations of the components of Mat
(

C
n−1

2

)
⊕Mat

(
C
n−1

2

)
(n odd).

REMARK: A 2-sheeted covering Spin(V )−→ SO(V ) naturally acts on the
spinor space, which is called the spin representation of Spin(V ).

DEFINITION: Let Γ be a principal SO(n)-bundle of a Riemannian oriented
manifold M . We say that M is a spin-manifold, if Γ can be reduced to a
Spin(n)-bundle.

REMARK: This happens precisely when the second Stiefel-Whitney
class w2(M) vanishes.
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Spinor bundles and Dirac operator

DEFINITION: A bundle of spinors on a spin-manifold M is a vector bundle

associated to the principal Spin(n)-bundle and a spin representation.

DEFINITION: Consider the map TM⊗Spin −→ Spin induced by the Clifford

multiplication. One defines the Dirac operator D : Spin −→ Spin as a

composition of ∇ : Spin −→ Λ1M ⊗Spin = TM ⊗Spin and the multiplication.

DEFINITION: A harmonic spinor is a spinor ψ such that D(ψ) = 0.

THEOREM: (Bochner’s vanishing) A harmonic spinor ψ on a compact man-

ifold with vanishing scalar curvature Sc = Tr(Ric) satisfies ∇ψ = 0.

Proof: The coarse Laplacian ∇∗∇ is expressed through the Dirac op-

erator using the Lichnerowitz formula ∇∗∇ − D2 = −1
4Sc. When these

two operators are equal, any harmonic spinor ψ lies in ker∇∗∇, giving

(ψ,∇∗∇ψ) = (∇ψ,∇ψ) = 0.
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Bochner’s vanishing on Kaehler manifolds

REMARK: A Kaehler manifold is spin if and only if c1(M) is even, or,

equivalently, if there exists a square root of a canonical bundle K1/2.

REMARK: On a Kaehler manifold of complex dimension n, one has a

natural isomorphism between the spinor bundle and Λ∗,0(M)⊗K1/2 (for

n even) and Λ2∗,0(M)⊗K1/2 (for n odd).

REMARK: On a Kähler manifold, the Dirac operator corresponds to ∂+ ∂∗.

COROLLARY: On a Ricci-flat Kähler manifold, all α ∈ ker(∂+∂∗)
∣∣∣Λ∗,0(M)

ara parallel.

REMARK: ker ∂ + ∂∗ = ker{∂, ∂∗}, where {·, ·} denotes the anticommutator.

However, {∂, ∂∗} = {∂, ∂∗} as Kähler identities imply. Therefore, on a Kähler

manifold, harmonic spinors are holomorphic forms.

THEOREM: (Bochner’s vanishing) Let M be a Ricci-flat Kaehler manifold,

and Ω ∈ Λp,0(M) a holomorphic differential form. Then ∇Ω = 0.
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