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Kahler manifolds

DEFINITION: An Riemannian metric g on an almost complex manifiold M
is called Hermitian if g(Iz,Iy) = g(z,y). In this case, g(z, Iy) = g(Iz, I?%y) =
—g(y, Iz), hence w(x,y) := g(x, Iy) is skew-symmetric.

DEFINITION: The differential form w € AL1(M) is called the Hermitian
form of (M, 1,g).

REMARK: It is U(1)-invariant, hence of Hodge type (1,1).
DEFINITION: A complex Hermitian manifold (M, I,w) is called Kahler if

dw = 0. The cohomology class [w] € H2(M) of a form w is called the Kahler
class of M, and w the Kahler form.
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Graded vector spaces and algebras
DEFINITION: A graded vector space is a space V* = @,z V.

REMARK: If V* is graded, the endomorphisms space End(V*) = @;cz End*(V*)
is also graded, with End'(V*) = @ ¢z Hom(VJ, Vit7)

DEFINITION: A graded algebra(or “graded associative algebra™) is an as-
sociative algebra A*™ = @,z A*, with the product compatible with the grading:
Al. AT C AV,

REMARK: A bilinear map of graded paces which satisfies A*- A7 ¢ A7 is
called graded, or compatible with grading.

REMARK: The category of graded spaces can be defined as a category of
vector spaces with U(1)-action, with the weight decomposition providing
the grading. Then a graded algebra is an associative algebra in the
category of spaces with U(1)-action.

DEFINITION: An operator on a graded vector space is called even (odd)
if it shifts the grading by even (odd) number. The parity a of an operator a
is O if it is even, 1 if it is odd. We say that an operator is pure if it is even
or odd.

3



Kahler manifolds, lecture 4 M. Verbitsky

Supercommutator

DEFINITION: A supercommutator of pure operators on a graded vector
space is defined by a formula {a,b} = ab — (—1)%ba.

DEFINITION: A graded associative algebra is called graded commutative
(or “supercommutative”) if its supercommutator vanishes.

EXAMPLE: The Grassmann algebra is supercommutative.

DEFINITION: A graded Lie algebra (Lie superalgebra) is a graded vector
space g* equipped with a bilinear graded map {-,-} : g* x g* — g* which
is graded anticommutative: {a,b} = —(—1)?{b,a} and satisfies the super
Jacobi identity {c, {a,b}} = {{c,a},b} + (—1)%{a, {c, b}}

EXAMPLE: Consider the algebra End(A*) of operators on a graded vector
space, with supercommutator as above. Then End(A*),{-,-} is a graded
Lie algebra.

Lemma 1: Let d be an odd element of a Lie superalgebra, satisfying {d,d} =
0, and L an even or odd element. Then {{L,d},d} = 0.

Proof: 0= {L,{d,d}} = {{L,d},d} + (-=1)2{d, {L,d}} = 2{{L,d},d}. m
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Hodge x operator

Let V be a vector space. A metric ¢ on V induces a natural metric
on each of its tensor spaces: g(z]1 ® T2 ® ... ® T, 2] ® 5 Q ... ® x),) =
g(z1,77)g(x2, 25)...9(x), 2).).

This gives a natural positive definite scalar product on differential forms
over a Riemannian manifold (M, g): g(o,B) = [y 9(a, B) VOl

Another non-degenerate form is provided by the Poincare pairing:.
o, — [jyanp.

DEFINITION: Let M be a Riemannian n-manifold. Define the Hodge x
operator x : A*M — A""kM by the following relation: g(a, 3) = [y a A *8.

REMARK: The Hodge x operator always exists. It is defined explicitly in
an orthonormal basis &1, ..., &n € AL M:

# (G N N NE ) = (1), NE, Ao NE
where §;,,&5,---,&5,_, 1S @ complementary set of vectors to &;,,&,, .-, §;,, and
s the signature of a permutation (i1, ...,%5, J1s s Jr—k)-

REMARK: 2|1y = (=10 1d oy
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Hodge theory

CLAIM: On a compact Riemannian n-manifold, one has d*‘/\kM = (—1)”’“*d*,
where d* denotes the adjoint operator, which is defined by the equation

(do,v) = (o, d*).
Proof: Since
0=/ dlanp) = [ d(@)AB+ (-1 nd(B),
one has (da, *8) = (—=1)%*(a, *dB3). Setting ~ := %3, we obtain
(da,y) = (—1)%(a, xd(*) " 1y) = (1) (1) =D (q, xdx7) = (—1)¥(a, *d*7).

DEFINITION: The anticommutator A = {d,d*} = dd* + d*d is called the
Laplacian of M. It is self-adjoint and positive definite: (Ax,z) = (dz,dx) +
(d*x,d*x). Also, A commutes with d and d* (Lemma 1).

THEOREM: (The main theorem of Hodge theory)
There is a basis in the Hilbert space L2(A*(M)) consisting of eigenvec-
tors of A.

THEOREM: (“Elliptic regularity for A”) Let a € L2(A¥(M)) be an eigen-
vector of A. Then « is a smooth k-form.
§)
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De Rham cohomology

is called the de Rham coho-

DEFINITION: The space H:(M) :=
mology of M.

DEFINITION: A form « is called harmonic if A(«a) = 0.

REMARK: Let o be a harmonic form. Then (Axz,z) = (dz,dz) 4+ (d*x,d*z),
hence o € kerd N ker d*

REMARK: The projection H!(M) — H*(M) from harmonic forms to
cohomology is injective. Indeed, a form « lies in the kernel of such projection

if « = dg, but then (a,a) = (a,dB) = (d*a, 3) = 0.

THEOREM: The natural map H‘ (M) — H*(M) is an isomorphism
(see the next page).

REMARK: Poincare duality immediately follows from this theorem.



Kahler manifolds, lecture 4 M. Verbitsky

Hodge theory and the cohomology
THEOREM: The natural map H‘(M) — H'(M) is an isomorphism.

Proof. Step 1: Since d2 =0 and (d*)2 = 0, one has {d, A} = 0. This means
that A commutes with the de Rham differential.

Step 2: Consider the eigenspace decomposition A*(M)=&, H: (M), where o
runs through all eigenvalues of A, and ‘H},(M) is the corresponding eigenspace.
For each o, de Rham differential defines a complex

HO(M) - HE(M) L HA(M) L

Step 3: On H}, (M), one has dd* + d*d = a. When a # 0, and n closed, this
implies dd*(n) 4+ d*d(n) = dd*n = an, hence n = d¢, with &€ := a~1d*n. This
implies that the complexes (H}, (M),d) don’t contribute to cohomology.

Step 4: We have proven that
H*(N'M,d) =P H*(H;,(M),d) = H* (H§(M),d) = H*(M).
(8%
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Supersymmetry in Kahler geometry

Let (M,I,g) be a Kaehler manifold, w its Kaehler form. On A*(M), the
following operators are defined.

0. d, d*, A, because it is Riemannian.

1. L(a) (= w A«

2. N(a) := xL x . It is easily seen that A = L*.
3. The Weil operator W‘,\p,q(M) =+v—-1(p—q)

THEOREM: These operators generate a Lie superalgebra a of dimen-
sion (5|4), acting on A*(M). Moreover, the Laplacian A is central in a, hence
a also acts on the cohomology of M.

REMARK: This is a convenient way to summarize the Kahler relations and
the Lefschetz' sl(2)-action.
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The coordinate operators

Let V be an even-dimensional real vector space equipped with a scalar prod-
uct, and w1, ...,v2, an orthonormal basis. Denote by ey, : AFV — ATV an
operator of multiplication, ey (n) = e; An. Let iy, : AV — A1V be an
adjoint operator, i,, = *ey,*.

CLAIM: The operators eqy;, i,;, Id are a basis of an odd Heisenberg Lie
superalgebra 5, with the only non-trivial supercommutator given by the
formula {ey;,iv,} = 9; ;1d.

Now, consider the tensor w = > ;vp;_1 Awvg;, and let L(a) = w A a, and
N\ = L* be the corresponding Hodge operators.

CLAIM: From the commutator relations in $, one obtains immediately that
2n 2n
H:=[L,N\ = [Z 6”2i—1ev2i7ziv2i—liv2i] = D eviy; — ) e,
i=1 i=1
IS a scalar operator acting as £ — n on k-forms.
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Integrability of the complex structure

CLAIM: (“Cartan’s formula” ) The de Rham differential of can be expressed
through the commutator of vector fields:

dn(X1, .. Xg+1) = > (1) IDx (n(X1, s Xiy ooy X 1)
o Z(_1)2+J+1T}([XZ) X]]) Xl? T Xia T Xja T Xd—|—1>'
i<j
For a 1-form 7, this gives dn(X1, X2) = Dx,n(X2) —Dx,n(X1)—n([X1, X2]).

COROLLARY: Let (M,I) be an almost complex manifold. Then the fol-
lowing assertions are equivalent.

(i) dn c A92(M) @ ALI(A) for any n € AO1(M).
(ii) I is integrable.

REMARK: This is equivalent to d‘/\lM having only two Hodge components:

d = d10 4+ 491 (for a non-integrable complex structure, there are 4: d =
d2’_1 —|—d1>0—|—do>1 —|—d_1’2).

REMARK: Since A*M is multiplicatively generated by Al(M), the decom-
position d = d4~-1 4+ 419 4+ ¢01 4+ ¢—1.2 holds for any almost complex
manifold.

12



Kahler manifolds, lecture 4 M. Verbitsky

Integrability and the Hodge decomposition
CLAIM: A manifold (M, 1) is integrable if and only if (d%1)2| ), = O.

Proof. Step 1: The bundle A19(M) is generated over C>®°M by
d1-O(C>°M). Indeed, it is n-dimensional, n = dimg M and to prove this one
needs to find n functions fy, ..., fn with d19f; linearly independent at a point.
This is done by taking 2n functions f1,..., fo,, with df; linearly independent,
and finding an appropriate subset.

Step 2: Then, the integrability condition d(ALO(M)) c A2O(M) e ALL(M) is
equivalent to dd1-9(C>®M) c A2O(M) o ALI(M) < da=12(d10(Cc>*Mm)) = 0.

Step 3: The (0,2) component of d2 = 0 gives {d~ 12, d1.0} = {491 491} =
2(d%1)2 = 0. From Step 2, we obtain that (d®1)?|-~,; = 0 is equivalent to
integrability. =

REMARK: The above claim provides an equivalence d2~1 = 0 <
{d—l,Q,dl,O} —0 < (dO,l)Q — 0.
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The twisted differential d°
DEFINITION: The twisted differential is defined as d¢ := IdI 1.

CLAIM: Let (M,I) be a complex manifold. Then 0 = d+v2_1dc, 0 =
d_Vz_ldc are the Hodge components of d, 8 = d10, § = d91.

Proof: Let V be a space generated by d,IdI. The natural action of U(1)
generated by eV preserves V. Since d has only two Hodge components.
U(1) acts with weights /-1 and —/—1, and its Hodge components are
expressed as above. m

CLAIM: On a complex manifold, one has d¢ = [W, d].

Proof: Clearly, [W,d?0] =/=1d10 and [W,d%1] = —v/=1d%1. Adding these
equations, obtain d¢ = [W,d].

COROLLARY: {d,d‘} = {d,{d,W}} =0 (Lemma 1).
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De Rham differential on Kaehler manifolds

THEOREM: The following statements are equivalent.

72

1. I is integrable. 2. 82 =0. 3. 8 =0. 4. dd°= —d°d 5. dd¢ = 2+/—1 H9.

DEFINITION: The operator dd¢ is called the pluri-Laplacian.

THEOREM: Let M be a Kaehler manifold. One has the following identities
( “Kahler idenitities”).

N0l =v—=10", [L,J]=—-/—-108% [NO]=—-v—-10, |[L,0]=+vV-10.
Equivalently,

A, d] = (d°)7, [L,d*] = —df, A, d°] = —d¥, [L, (d°)*] = d.
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Laplacians and supercommutators

THEOREM: Let
Agi=A{d,d*}, Age:={dd"}, Dy:={8,0"},05:={0,0"}.

Then Ay = Ay = 2A5 = 2A5. In particular, Ay preserves the Hodge
decomposition.

Proof: By Kodaira relations, {d,d‘} = 0. Graded Jacobi identity gives
{d7 d*} — _{da {/\7 dc}} — {{/\7d}7 dc} — {dc7 dc*}°

Same calculation with 9,8 gives Ay = A5.. Also, {9,0"} = v=1{8,{A,0}} =
0, (Lemma 1), and the same argument implies that all anticommutators
9,0, etc. all vanish except {0,0*} and {9,0"}. This gives Ay = Ay+ Ay,
|

DEFINITION: The operator A := A, is called the Laplacian.

REMARK: We have proved that operators L, A,d, )V generate a Lie su-
peralgebra of dimension (5/4) (5 even, 4 odd), with a 1-dimensional

center RA.
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The Lefschetz si(2)-action

COROLLARY: The operators L,\, H form a basis of a Lie algebra isomor-
phic to si(2), with relations

(LAl = H, [H,L]=2L, [H,A]=-2A.

DEFINITION: L, A, H is called the Lefschetz s((2)-triple.
REMARK: Finite-dimensional representations of s/(2) are semisimple.

REMARK: A simple finite-dimensional representation V of sl(2) is generated
by v € V which satisfies A(v) = 0, H(v) = pv (“lowest weight vector”),
where p € ZZ0. Then v, L(v), L?(v), ..., LP(v) form a basis of V, := V. This
representation is determined uniquely by »p.

REMARK: In this basis, H acts diagonally: H(L'(v)) = (2i — p)L*(v).

REMARK: One has V), = SymPVy, where V; is a 2-dimensional tautological
representation. It is called a weight p representation of si(2).

COROLLARY: For a finite-dimensional representation V' of s/(2), denote by
V() the eigenspaces of H, with H|;,;; = ¢. Then L' induces an isomorphism

v L, v for any i > O.
17
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Lefschetz action on cohomology.
From the supersymmetry theorem, the following result follows.

COROLLARY: The si(2)-action (L,A\, H) and the action of Weil operator
commute with Laplacian, hence preserve the harmonic forms on a Kahler
manifold.

COROLLARY: Any cohomology class can be represented as a sum of
closed (p,q)-forms, giving a decomposition H*(M) = Dp+q=i HP1(M), with
HP:9(M) = H?P(M).

COROLLARY: odd cohomology of a compact Kahler manifold are
even-dimensional.

COROLLARY: Let M be a compact, Kahler manifold of complex dimension

n, and 1+p—+qg=mn. Then L' defines the Lefschetz isomorphism HP:4 L,
Hp+2i,q+2i(M)
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The Hodge diamond:

Hmn
Hn,n—l Hn—l,n
Hn,n—Q Hn—l,n—l Hn—2,n
Hn,n—3(M) Hn—l,n—Q(M) Hn—2,n—1 (M) Hn—3,n(M)
H3,O(M) H2,1(M) Hl,Q(M) HO’3(M)
H2,0 Hl,l HO,2
Hl,O HO,l
H0,0
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Hyperkahler manifolds

DEFINITION: (E. Calabi, 1978)

Let (M, g) be a Riemannian manifold equipped with three complex structure

operators I,J, K . T'M — T'M, satisfying the quaternionic relation
[°=J°=K?’=J1JK=-1d.

Suppose that I, J, K are Kahler. Then (M, I, J, K, g) is called hyperkahler.

REMARK: A hyperkahler manifold M is equipped with 3 symplectic forms
wyr, wj, wrg. The form Q = w;+ +v/—1wg IS a holomorphic symplectic
2-formon (M,[). =

THEOREM: (Calabi-Yau) Let M be a compact, holomorphically symplectic
Kahler manifold. Then M admits a hyperkahler metric, which is uniquely
determined by the cohomology class of its Kahler form wy.

Hyperkahler geometry is essentially the same as holomorphic symplectic ge-
ometry
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Supersymmetry in hyperkahler geometry

Let (M, I,J,K,g) be a hyperkaehler manifold, w;, wj, wg its Kaehler forms.
On A*(M), the following operators are defined.

0. d, d*, A, because it is Riemannian.
1. LI(OA) = wy N\«
2. Ni(a) ;= *Ly*a. It is easily seen that A; = L7.

3. Three Weil operators WI‘Ap,q(M,I) =+/—-1(p—q), WJ|/\p,q(M’J) =V—-1(p—q),
WK‘AP,Q(M,K) =v-1(—-9)

THEOREM: These operators generate a Lie superalgebra a of dimen-
sion (11|8), acting on A*(M). Moreover, the Laplacian A is central in a,
hence a also acts on the cohomology of M.

REMARK: The Weil operators form the Lie algebra su(2) of unitary quater-
nions. This means that the quaternionic action belongs to a. In particular,
LJ,LK,/\J and /\K'

REMARK: The twisted de Rham differentials dj,d s, dy, associated to I, J, K
also belong to a: d;f = [W],d], dJ = [WJ,d], di = [WK,d]
21
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Supersymmetry and the Hodge decomposition
REMARK: 1. [L;,A\j] =Wk, [Lj,\g] =Wy, [Li,A\g] = -W}.
2. The even part of a is isomorphic to sp(1,1,H) R - A.

3. The odd part (d,d;,dy,dg,d,*d},d%,dy) generates the 9-dimensional
odd Heisenberg algebra, with the only non-trivial supercommutators being

{d,d*} = {d;, dj} = {dy, d}} = {dg, d}} = A

4. The action of aecpven On a,4q IS the fundamental representation of
sp(1,1,H) in H?, with the quaternionic Hermitian metric on a, ; provided
by the anticommutator.

REMARK: The weight decomposition of the sp(1,1,H) = so(1,4)-action on
H*(M) coincides with the Hodge decomposition.
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