Kähler manifolds and holonomy

lecture 4

Misha Verbitsky

Tel-Aviv University

December 23, 2010

Kähler manifolds

DEFINITION: An Riemannian metric g on an almost complex manifold M is called **Hermitian** if g(Ix, Iy) = g(x, y). In this case, $g(x, Iy) = g(Ix, I^2y) = -g(y, Ix)$, hence $\omega(x, y) := g(x, Iy)$ is skew-symmetric.

DEFINITION: The differential form $\omega \in \Lambda^{1,1}(M)$ is called the Hermitian form of (M, I, g).

REMARK: It is U(1)-invariant, hence of Hodge type (1,1).

DEFINITION: A complex Hermitian manifold (M, I, ω) is called **Kähler** if $d\omega = 0$. The cohomology class $[\omega] \in H^2(M)$ of a form ω is called **the Kähler** class of M, and ω the Kähler form.

Graded vector spaces and algebras

DEFINITION: A graded vector space is a space $V^* = \bigoplus_{i \in \mathbb{Z}} V^i$.

REMARK: If V^* is graded, the endomorphisms space $\operatorname{End}(V^*) = \bigoplus_{i \in \mathbb{Z}} \operatorname{End}^i(V^*)$ is also graded, with $\operatorname{End}^i(V^*) = \bigoplus_{j \in \mathbb{Z}} \operatorname{Hom}(V^j, V^{i+j})$

DEFINITION: A graded algebra (or "graded associative algebra") is an associative algebra $A^* = \bigoplus_{i \in \mathbb{Z}} A^i$, with the product compatible with the grading: $A^i \cdot A^j \subset A^{i+j}$.

REMARK: A bilinear map of graded paces which satisfies $A^i \cdot A^j \subset A^{i+j}$ is called **graded**, or **compatible with grading**.

REMARK: The category of graded spaces can be defined as a **category of vector spaces with** U(1)-action, with the weight decomposition providing the grading. Then a graded algebra is an associative algebra in the category of spaces with U(1)-action.

DEFINITION: An operator on a graded vector space is called **even (odd)** if it shifts the grading by even (odd) number. The **parity** \tilde{a} of an operator a is 0 if it is even, 1 if it is odd. We say that an operator is **pure** if it is even or odd.

Supercommutator

DEFINITION: A supercommutator of pure operators on a graded vector space is defined by a formula $\{a,b\} = ab - (-1)^{\tilde{a}\tilde{b}}ba$.

DEFINITION: A graded associative algebra is called **graded commutative** (or "supercommutative") if its supercommutator vanishes.

EXAMPLE: The Grassmann algebra is supercommutative.

DEFINITION: A graded Lie algebra (Lie superalgebra) is a graded vector space \mathfrak{g}^* equipped with a bilinear graded map $\{\cdot,\cdot\}: \mathfrak{g}^* \times \mathfrak{g}^* \longrightarrow \mathfrak{g}^*$ which is graded anticommutative: $\{a,b\} = -(-1)^{\tilde{a}\tilde{b}}\{b,a\}$ and satisfies the super Jacobi identity $\{c,\{a,b\}\} = \{\{c,a\},b\} + (-1)^{\tilde{a}\tilde{c}}\{a,\{c,b\}\}$

EXAMPLE: Consider the algebra $\operatorname{End}(A^*)$ of operators on a graded vector space, with supercommutator as above. Then $\operatorname{End}(A^*), \{\cdot, \cdot\}$ is a graded Lie algebra.

Lemma 1: Let d be an odd element of a Lie superalgebra, satisfying $\{d,d\}=0$, and L an even or odd element. Then $\{\{L,d\},d\}=0$.

Proof:
$$0 = \{L, \{d, d\}\} = \{\{L, d\}, d\} + (-1)^{\tilde{L}} \{d, \{L, d\}\} = 2\{\{L, d\}, d\}.$$

Hodge * **operator**

Let V be a vector space. A metric g on V induces a natural metric on each of its tensor spaces: $g(x_1 \otimes x_2 \otimes ... \otimes x_k, x_1' \otimes x_2' \otimes ... \otimes x_k') = g(x_1, x_1')g(x_2, x_2')...g(x_k, x_k').$

This gives a natural positive definite scalar product on differential forms over a Riemannian manifold (M,g): $g(\alpha,\beta) := \int_M g(\alpha,\beta) \operatorname{Vol}_M$

Another non-degenerate form is provided by the Poincare pairing: $\alpha, \beta \longrightarrow \int_M \alpha \wedge \beta$.

DEFINITION: Let M be a Riemannian n-manifold. Define the Hodge * operator $*: \Lambda^k M \longrightarrow \Lambda^{n-k} M$ by the following relation: $g(\alpha, \beta) = \int_M \alpha \wedge *\beta$.

REMARK: The Hodge * operator always exists. It is defined explicitly in an orthonormal basis $\xi_1,...,\xi_n \in \Lambda^1 M$:

$$*(\xi_{i_1} \wedge \xi_{i_2} \wedge ... \wedge \xi_{i_k}) = (-1)^s \xi_{j_1} \wedge \xi_{j_2} \wedge ... \wedge \xi_{j_{n-k}},$$

where $\xi_{j_1}, \xi_{j_2}, ..., \xi_{j_{n-k}}$ is a complementary set of vectors to $\xi_{i_1}, \xi_{i_2}, ..., \xi_{i_k}$, and s the signature of a permutation $(i_1, ..., i_k, j_1, ..., j_{n-k})$.

REMARK:
$$*^2|_{\Lambda^k(M)} = (-1)^{k(n-k)} \operatorname{Id}_{\Lambda^k(M)}$$

Hodge theory

CLAIM: On a compact Riemannian n-manifold, one has $d^*|_{\Lambda^k M} = (-1)^{nk} * d *$, where d^* denotes the adjoint operator, which is defined by the equation $(d\alpha, \gamma) = (\alpha, d^*\gamma)$.

Proof: Since

$$0 = \int_{M} d(\alpha \wedge \beta) = \int_{M} d(\alpha) \wedge \beta + (-1)^{\tilde{\alpha}} \alpha \wedge d(\beta),$$

one has $(d\alpha, *\beta) = (-1)^{\tilde{\alpha}}(\alpha, *d\beta)$. Setting $\gamma := *\beta$, we obtain

$$(d\alpha,\gamma) = (-1)^{\tilde{\alpha}}(\alpha,*d(*)^{-1}\gamma) = (-1)^{\tilde{\alpha}}(-1)^{\tilde{\alpha}(\tilde{n}-\tilde{\alpha})}(\alpha,*d*\gamma) = (-1)^{\tilde{\alpha}\tilde{n}}(\alpha,*d*\gamma).$$

DEFINITION: The anticommutator $\Delta := \{d, d^*\} = dd^* + d^*d$ is called **the Laplacian** of M. It is self-adjoint and positive definite: $(\Delta x, x) = (dx, dx) + (d^*x, d^*x)$. Also, Δ commutes with d and d^* (Lemma 1).

THEOREM: (The main theorem of Hodge theory)
There is a basis in the Hilbert space $L^2(\Lambda^*(M))$ consisting of eigenvectors of Δ .

THEOREM: ("Elliptic regularity for Δ ") Let $\alpha \in L^2(\Lambda^k(M))$ be an eigenvector of Δ . Then α is a smooth k-form.

De Rham cohomology

DEFINITION: The space $H^i(M) := \frac{\ker d|_{\Lambda^i M}}{d(\Lambda^{i-1}M)}$ is called **the de Rham cohomology of** M.

DEFINITION: A form α is called **harmonic** if $\Delta(\alpha) = 0$.

REMARK: Let α be a harmonic form. Then $(\Delta x, x) = (dx, dx) + (d^*x, d^*x)$, hence $\alpha \in \ker d \cap \ker d^*$

REMARK: The projection $\mathcal{H}^i(M) \longrightarrow H^i(M)$ from harmonic forms to cohomology is injective. Indeed, a form α lies in the kernel of such projection if $\alpha = d\beta$, but then $(\alpha, \alpha) = (\alpha, d\beta) = (d^*\alpha, \beta) = 0$.

THEOREM: The natural map $\mathcal{H}^i(M) \longrightarrow H^i(M)$ is an isomorphism (see the next page).

REMARK: Poincare duality immediately follows from this theorem.

Hodge theory and the cohomology

THEOREM: The natural map $\mathcal{H}^i(M) \longrightarrow H^i(M)$ is an isomorphism.

Proof. Step 1: Since $d^2 = 0$ and $(d^*)^2 = 0$, one has $\{d, \Delta\} = 0$. This means that Δ commutes with the de Rham differential.

Step 2: Consider the eigenspace decomposition $\Lambda^*(M) = \bigoplus_{\alpha} \mathcal{H}^*_{\alpha}(M)$, where α runs through all eigenvalues of Δ , and $\mathcal{H}^*_{\alpha}(M)$ is the corresponding eigenspace. For each α , de Rham differential defines a complex

$$\mathcal{H}^0_{\alpha}(M) \stackrel{d}{\longrightarrow} \mathcal{H}^1_{\alpha}(M) \stackrel{d}{\longrightarrow} \mathcal{H}^2_{\alpha}(M) \stackrel{d}{\longrightarrow} \dots$$

Step 3: On $\mathcal{H}^*_{\alpha}(M)$, one has $dd^* + d^*d = \alpha$. When $\alpha \neq 0$, and η closed, this implies $dd^*(\eta) + d^*d(\eta) = dd^*\eta = \alpha\eta$, hence $\eta = d\xi$, with $\xi := \alpha^{-1}d^*\eta$. This implies that the complexes $(\mathcal{H}^*_{\alpha}(M), d)$ don't contribute to cohomology.

Step 4: We have proven that

$$H^*(\Lambda^*M,d) = \bigoplus_{\alpha} H^*(\mathcal{H}^*_{\alpha}(M),d) = H^*(\mathcal{H}^*_{0}(M),d) = \mathcal{H}^*(M).$$

Supersymmetry in Kähler geometry

Let (M, I, g) be a Kaehler manifold, ω its Kaehler form. On $\Lambda^*(M)$, the following operators are defined.

- 0. d, d^* , Δ , because it is Riemannian.
- 1. $L(\alpha) := \omega \wedge \alpha$
- 2. $\Lambda(\alpha) := *L * \alpha$. It is easily seen that $\Lambda = L^*$.
- 3. The Weil operator $W|_{\Lambda^{p,q}(M)} = \sqrt{-1} \ (p-q)$

THEOREM: These operators generate a Lie superalgebra \mathfrak{a} of dimension (5|4), acting on $\Lambda^*(M)$. Moreover, the Laplacian Δ is central in \mathfrak{a} , hence \mathfrak{a} also acts on the cohomology of M.

REMARK: This is a convenient way to summarize the Kähler relations and the Lefschetz' $\mathfrak{sl}(2)$ -action.

Reference:

JM Figueroa-O'Farrill, C Koehl, B Spence, Supersymmetry and the cohomology of (hyper)Kaehler manifolds, arXiv:hep-th/9705161, Nucl.Phys. B503 (1997) 614-626

M. Verbitsky, Hyperkaehler manifolds with torsion, supersymmetry and Hodge theory, arXiv:math/0112215, Asian J. Math. Vol. 6, No. 4, pp. 679-712 (2002)

Elena Poletaeva, Superconformal algebras and Lie superalgebras of the Hodge theory, arXiv:hep-th/0209168, J.Nonlin.Math.Phys. 10 (2003) 141-147

The coordinate operators

Let V be an even-dimensional real vector space equipped with a scalar product, and $v_1,...,v_{2n}$ an orthonormal basis. Denote by $e_{v_i}: \Lambda^k V \longrightarrow \Lambda^{k+1} V$ an operator of multiplication, $e_{v_i}(\eta) = e_i \wedge \eta$. Let $i_{v_i}: \Lambda^k V \longrightarrow \Lambda^{k-1} V$ be an adjoint operator, $i_{v_i} = *e_{v_i}*$.

CLAIM: The operators e_{v_i} , i_{v_i} , Id are a basis of an odd Heisenberg Lie superalgebra \mathfrak{H} , with the only non-trivial supercommutator given by the formula $\{e_{v_i}, i_{v_i}\} = \delta_{i,j} \operatorname{Id}$.

Now, consider the tensor $\omega = \sum_{i=1}^{n} v_{2i-1} \wedge v_{2i}$, and let $L(\alpha) = \omega \wedge \alpha$, and $\Lambda := L^*$ be the corresponding **Hodge operators**.

CLAIM: From the commutator relations in \mathfrak{H} , one obtains immediately that

$$H := [L, \Lambda] = \left[\sum_{i=1}^{n} e_{v_{2i-1}} e_{v_{2i}}, \sum_{i=1}^{n} i_{v_{2i-1}} i_{v_{2i}} \right] = \sum_{i=1}^{2n} e_{v_i} i_{v_i} - \sum_{i=1}^{2n} i_{v_i} e_{v_i},$$

is a scalar operator acting as k-n on k-forms.

Integrability of the complex structure

CLAIM: ("Cartan's formula") The de Rham differential of can be expressed through the commutator of vector fields:

$$d\eta(X_1, ... X_{d+1}) = \sum_{i=1}^{d+1} D_{X_i}(\eta(X_1, ..., \check{X}_i, ..., X_{d+1}) - \sum_{i=1}^{d+1} (-1)^{i+j+1} \eta([X_i, X_j], X_1, ..., \check{X}_i, ..., \check{X}_j, ..., X_{d+1}).$$

For a 1-form η , this gives $d\eta(X_1, X_2) = D_{X_1}\eta(X_2) - D_{X_2}\eta(X_1) - \eta([X_1, X_2])$.

COROLLARY: Let (M,I) be an almost complex manifold. Then the following assertions are equivalent.

- (i) $d\eta \subset \Lambda^{0,2}(M) \oplus \Lambda^{1,1}(M)$ for any $\eta \in \Lambda^{0,1}(M)$.
- (ii) *I* is integrable.

REMARK: This is equivalent to $d|_{\Lambda^1 M}$ having only two Hodge components: $d=d^{1,0}+d^{0,1}$ (for a non-integrable complex structure, there are 4: $d=d^{2,-1}+d^{1,0}+d^{0,1}+d^{-1,2}$).

REMARK: Since Λ^*M is multiplicatively generated by $\Lambda^1(M)$, the decomposition $d=d^{2,-1}+d^{1,0}+d^{0,1}+d^{-1,2}$ holds for any almost complex manifold.

Integrability and the Hodge decomposition

CLAIM: A manifold (M,I) is integrable if and only if $(d^{0,1})^2|_{C^{\infty}M}=0$.

Proof. Step 1: The bundle $\Lambda^{1,0}(M)$ is generated over $C^{\infty}M$ by $d^{1,0}(C^{\infty}M)$. Indeed, it is n-dimensional, $n=\dim_{\mathbb{C}}M$ and to prove this one needs to find n functions $f_1,...,f_n$ with $d^{1,0}f_i$ linearly independent at a point. This is done by taking 2n functions $f_1,...,f_{2n}$ with df_i linearly independent, and finding an appropriate subset.

Step 2: Then, the integrability condition $d(\Lambda^{1,0}(M)) \subset \Lambda^{2,0}(M) \oplus \Lambda^{1,1}(M)$ is equivalent to $dd^{1,0}(C^{\infty}M) \subset \Lambda^{2,0}(M) \oplus \Lambda^{1,1}(M) \Leftrightarrow d^{-1,2}(d^{1,0}(C^{\infty}M)) = 0$.

Step 3: The (0,2) component of $d^2 = 0$ gives $\{d^{-1,2}, d^{1,0}\} = \{d^{0,1}, d^{0,1}\} = 2(d^{0,1})^2 = 0$. From Step 2, we obtain that $(d^{0,1})^2|_{C^{\infty}M} = 0$ is equivalent to integrability. ■

REMARK: The above claim provides an equivalence $d^{2,-1}=0\Leftrightarrow \{d^{-1,2},d^{1,0}\}=0\Leftrightarrow (d^{0,1})^2=0.$

The twisted differential d^c

DEFINITION: The **twisted differential** is defined as $d^c := IdI^{-1}$.

CLAIM: Let (M,I) be a complex manifold. Then $\partial:=\frac{d+\sqrt{-1}\,d^c}{2}$, $\overline{\partial}:=\frac{d-\sqrt{-1}\,d^c}{2}$ are the Hodge components of d, $\partial=d^{1,0}$, $\overline{\partial}=d^{0,1}$.

Proof: Let V be a space generated by d, IdI. The natural action of U(1) generated by $e^{\mathcal{W}}$ preserves V. Since d has only two Hodge components. U(1) acts with weights $\sqrt{-1}$ and $-\sqrt{-1}$, and its Hodge components are expressed as above. \blacksquare

CLAIM: On a complex manifold, one has $d^c = [\mathcal{W}, d]$.

Proof: Clearly, $[\mathcal{W}, d^{1,0}] = \sqrt{-1} d^{1,0}$ and $[\mathcal{W}, d^{0,1}] = -\sqrt{-1} d^{0,1}$. Adding these equations, obtain $d^c = [\mathcal{W}, d]$.

COROLLARY: $\{d, d^c\} = \{d, \{d, W\}\} = 0$ (Lemma 1).

De Rham differential on Kaehler manifolds

THEOREM: The following statements are equivalent.

1. I is integrable. 2. $\partial^2 = 0$. 3. $\overline{\partial}^2 = 0$. 4. $dd^c = -d^c d$ 5. $dd^c = 2\sqrt{-1} \partial \overline{\partial}$.

DEFINITION: The operator dd^c is called the pluri-Laplacian.

THEOREM: Let M be a Kaehler manifold. One has the following identities ("Kähler identities").

$$[\Lambda, \partial] = \sqrt{-1} \,\overline{\partial}^*, \quad [L, \overline{\partial}] = -\sqrt{-1} \,\partial^*, \quad [\Lambda, \overline{\partial}^*] = -\sqrt{-1} \,\partial, \quad [L, \partial^*] = \sqrt{-1} \,\overline{\partial}.$$

Equivalently,

$$[\Lambda, d] = (d^c)^*, \qquad [L, d^*] = -d^c, \qquad [\Lambda, d^c] = -d^*, \qquad [L, (d^c)^*] = d.$$

Laplacians and supercommutators

THEOREM: Let

$$\Delta_d := \{d, d^*\}, \quad \Delta_{d^c} := \{d^c, d^{c*}\}, \quad \Delta_{\partial} := \{\partial, \partial^*\}, \Delta_{\overline{\partial}} := \{\overline{\partial}, \overline{\partial}^*\}.$$

Then $\Delta_d = \Delta_{d^c} = 2\Delta_{\overline{\partial}} = 2\Delta_{\overline{\partial}}$. In particular, Δ_d preserves the Hodge decomposition.

Proof: By Kodaira relations, $\{d, d^c\} = 0$. Graded Jacobi identity gives

$${d, d^*} = -{d, {\Lambda, d^c}} = {{\Lambda, d}, d^c} = {d^c, d^{c^*}}.$$

Same calculation with $\partial, \overline{\partial}$ gives $\Delta_{\partial} = \Delta_{\overline{\partial}}$. Also, $\{\partial, \overline{\partial}^*\} = \sqrt{-1} \{\partial, \{\Lambda, \partial\}\} = 0$, (Lemma 1), and the same argument implies that **all anticommutators** $\partial, \overline{\partial}^*$, etc. all vanish except $\{\partial, \partial^*\}$ and $\{\overline{\partial}, \overline{\partial}^*\}$. This gives $\Delta_d = \Delta_{\partial} + \Delta_{\overline{\partial}}$.

DEFINITION: The operator $\Delta := \Delta_d$ is called the Laplacian.

REMARK: We have proved that operators L, Λ, d, W generate a Lie superalgebra of dimension (5|4) (5 even, 4 odd), with a 1-dimensional center $\mathbb{R}\Delta$.

The Lefschetz $\mathfrak{s}l(2)$ -action

COROLLARY: The operators L, Λ, H form a basis of a Lie algebra isomorphic to $\mathfrak{sl}(2)$, with relations

$$[L, \Lambda] = H, \quad [H, L] = 2L, \quad [H, \Lambda] = -2\Lambda.$$

DEFINITION: L, Λ, H is called the Lefschetz $\mathfrak{sl}(2)$ -triple.

REMARK: Finite-dimensional representations of $\mathfrak{sl}(2)$ are semisimple.

REMARK: A simple finite-dimensional representation V of $\mathfrak{sl}(2)$ is generated by $v \in V$ which satisfies $\Lambda(v) = 0$, H(v) = pv ("lowest weight vector"), where $p \in \mathbb{Z}^{\geqslant 0}$. Then $v, L(v), L^2(v), ..., L^p(v)$ form a basis of $V_p := V$. This representation is determined uniquely by p.

REMARK: In this basis, H acts diagonally: $H(L^i(v)) = (2i - p)L^i(v)$.

REMARK: One has $V_p = \operatorname{Sym}^p V_1$, where V_1 is a 2-dimensional tautological representation. It is called a weight p representation of $\mathfrak{sl}(2)$.

COROLLARY: For a finite-dimensional representation V of $\mathfrak{sl}(2)$, denote by $V^{(i)}$ the eigenspaces of H, with $H|_{V^{(i)}}=i$. Then L^i induces an isomorphism $V^{(-i)} \stackrel{L^i}{\longrightarrow} V^{(i)}$ for any i>0.

Lefschetz action on cohomology.

From the supersymmetry theorem, the following result follows.

COROLLARY: The $\mathfrak{s}l(2)$ -action $\langle L, \Lambda, H \rangle$ and the action of Weil operator commute with Laplacian, hence **preserve the harmonic forms on a Kähler manifold**.

COROLLARY: Any cohomology class can be represented as a sum of closed (p,q)-forms, giving a decomposition $H^i(M) = \bigoplus_{p+q=i} H^{p,q}(M)$, with $\overline{H^{p,q}(M)} = H^{q,p}(M)$.

COROLLARY: odd cohomology of a compact Kähler manifold are even-dimensional.

COROLLARY: Let M be a compact, Kähler manifold of complex dimension n, and i+p+q=n. Then L^i defines the Lefschetz isomorphism $H^{p,q} \stackrel{L^i}{\longrightarrow} H^{p+2i,q+2i}(M)$

The Hodge diamond:

 $H^{n,n}$ $H^{n,n-1}$ $H^{n-1,n}$ $H^{n-1,n-1}$ $H^{n,n-2}$ $H^{n-2,n}$ $H^{n,n-3}(M)$ $H^{n-1,n-2}(M)$ $H^{n-2,n-1}(M)$ $H^{n-3,n}(M)$ $H^{2,1}(M)$ $H^{1,2}(M)$ $H^{3,0}(M)$ $H^{0,3}(M)$ $H^{2,0}$ $H^{1,1}$ $H^{0,2}$ $H^{1,0}$ $H^{0,1}$ $H^{0,0}$

Hyperkähler manifolds

DEFINITION: (E. Calabi, 1978)

Let (M,g) be a Riemannian manifold equipped with three complex structure operators $I, J, K: TM \longrightarrow TM$, satisfying the quaternionic relation

$$I^2 = J^2 = K^2 = IJK = -\operatorname{Id}$$
.

Suppose that I, J, K are Kähler. Then (M, I, J, K, g) is called hyperkähler.

REMARK: A hyperkähler manifold M is equipped with 3 symplectic forms ω_I , ω_J , ω_K . The form $\Omega := \omega_J + \sqrt{-1} \, \omega_K$ is a holomorphic symplectic 2-form on (M,I).

THEOREM: (Calabi-Yau) Let M be a compact, holomorphically symplectic Kähler manifold. Then M admits a hyperkähler metric, which is uniquely determined by the cohomology class of its Kähler form ω_I .

Hyperkähler geometry is essentially the same as holomorphic symplectic geometry

Supersymmetry in hyperkähler geometry

Let (M, I, J, K, g) be a hyperkaehler manifold, ω_I , ω_J , ω_K its Kaehler forms. On $\Lambda^*(M)$, the following operators are defined.

- 0. d, d^* , Δ , because it is Riemannian.
- 1. $L_I(\alpha) := \omega_I \wedge \alpha$
- 2. $\Lambda_I(\alpha) := *L_I * \alpha$. It is easily seen that $\Lambda_I = L_J^*$.
- 3. Three Weil operators $W_I\big|_{\Lambda^{p,q}(M,I)}=\sqrt{-1}\,(p-q)$, $W_J\big|_{\Lambda^{p,q}(M,J)}=\sqrt{-1}\,(p-q)$, $W_K\big|_{\Lambda^{p,q}(M,K)}=\sqrt{-1}\,(p-q)$

THEOREM: These operators generate a Lie superalgebra \mathfrak{a} of dimension (11|8), acting on $\Lambda^*(M)$. Moreover, the Laplacian Δ is central in \mathfrak{a} , hence \mathfrak{a} also acts on the cohomology of M.

REMARK: The Weil operators form the Lie algebra $\mathfrak{su}(2)$ of unitary quaternions. This means that the quaternionic action belongs to \mathfrak{a} . In particular, L_J, L_K, Λ_J and Λ_K .

REMARK: The twisted de Rham differentials d_I, d_J, d_K , associated to I, J, K also belong to \mathfrak{a} : $d_I = [W_I, d]$, $d_J = [W_J, d]$, $d_K = [W_K, d]$

Supersymmetry and the Hodge decomposition

REMARK: 1. $[L_I, \Lambda_J] = W_K$, $[L_J, \Lambda_K] = W_I$, $[L_I, \Lambda_K] = -W_J$.

- 2. The even part of \mathfrak{a} is isomorphic to $\mathfrak{sp}(1,1,\mathbb{H}) \oplus \mathbb{R} \cdot \Delta$.
- 3. The odd part $\langle d, d_I, d_J, d_K, d, d_I^*, d_J^*, d_K^* \rangle$ generates the 9-dimensional odd Heisenberg algebra, with the only non-trivial supercommutators being $\{d, d^*\} = \{d_I, d_I^*\} = \{d_J, d_J^*\} = \{d_K, d_K^*\} = \Delta$
- 4. The action of \mathfrak{a}_{even} on \mathfrak{a}_{odd} is the fundamental representation of $\mathfrak{sp}(1,1,\mathbb{H})$ in \mathbb{H}^2 , with the quaternionic Hermitian metric on \mathfrak{a}_{odd} provided by the anticommutator.

REMARK: The weight decomposition of the $\mathfrak{sp}(1,1,\mathbb{H}) = \mathfrak{so}(1,4)$ -action on $H^*(M)$ coincides with the Hodge decomposition.