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Kähler manifolds

DEFINITION: An Riemannian metric g on an almost complex manifiold M

is called Hermitian if g(Ix, Iy) = g(x, y). In this case, g(x, Iy) = g(Ix, I2y) =

−g(y, Ix), hence ω(x, y) := g(x, Iy) is skew-symmetric.

DEFINITION: The differential form ω ∈ Λ1,1(M) is called the Hermitian

form of (M, I, g).

REMARK: It is U(1)-invariant, hence of Hodge type (1,1).

DEFINITION: A complex Hermitian manifold (M, I, ω) is called Kähler if

dω = 0. The cohomology class [ω] ∈ H2(M) of a form ω is called the Kähler

class of M , and ω the Kähler form.

2



Kähler manifolds, lecture 4 M. Verbitsky

Graded vector spaces and algebras

DEFINITION: A graded vector space is a space V ∗ =
⊕
i∈Z V

i.

REMARK: If V ∗ is graded, the endomorphisms space End(V ∗) =
⊕
i∈Z Endi(V ∗)

is also graded, with Endi(V ∗) =
⊕
j∈Z Hom(V j, V i+j)

DEFINITION: A graded algebra(or “graded associative algebra”) is an as-
sociative algebra A∗ =

⊕
i∈ZA

i, with the product compatible with the grading:
Ai ·Aj ⊂ Ai+j.

REMARK: A bilinear map of graded paces which satisfies Ai · Aj ⊂ Ai+j is
called graded, or compatible with grading.

REMARK: The category of graded spaces can be defined as a category of
vector spaces with U(1)-action, with the weight decomposition providing
the grading. Then a graded algebra is an associative algebra in the
category of spaces with U(1)-action.

DEFINITION: An operator on a graded vector space is called even (odd)
if it shifts the grading by even (odd) number. The parity ã of an operator a
is 0 if it is even, 1 if it is odd. We say that an operator is pure if it is even
or odd.
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Supercommutator

DEFINITION: A supercommutator of pure operators on a graded vector
space is defined by a formula {a, b} = ab− (−1)ã̃bba.

DEFINITION: A graded associative algebra is called graded commutative
(or “supercommutative”) if its supercommutator vanishes.

EXAMPLE: The Grassmann algebra is supercommutative.

DEFINITION: A graded Lie algebra (Lie superalgebra) is a graded vector
space g∗ equipped with a bilinear graded map {·, ·} : g∗ × g∗ −→ g∗ which
is graded anticommutative: {a, b} = −(−1)ã̃b{b, a} and satisfies the super
Jacobi identity {c, {a, b}} = {{c, a}, b}+ (−1)ãc̃{a, {c, b}}

EXAMPLE: Consider the algebra End(A∗) of operators on a graded vector
space, with supercommutator as above. Then End(A∗), {·, ·} is a graded
Lie algebra.

Lemma 1: Let d be an odd element of a Lie superalgebra, satisfying {d, d} =
0, and L an even or odd element. Then {{L, d}, d} = 0.

Proof: 0 = {L, {d, d}} = {{L, d}, d}+ (−1)L̃{d, {L, d}} = 2{{L, d}, d}.
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Hodge ∗ operator

Let V be a vector space. A metric g on V induces a natural metric
on each of its tensor spaces: g(x1 ⊗ x2 ⊗ ... ⊗ xk, x

′
1 ⊗ x′2 ⊗ ... ⊗ x′k) =

g(x1, x
′
1)g(x2, x

′
2)...g(xk, x

′
k).

This gives a natural positive definite scalar product on differential forms
over a Riemannian manifold (M, g): g(α, β) :=

∫
M g(α, β) VolM

Another non-degenerate form is provided by the Poincare pairing:
α, β −→

∫
M α ∧ β.

DEFINITION: Let M be a Riemannian n-manifold. Define the Hodge ∗
operator ∗ : ΛkM −→ Λn−kM by the following relation: g(α, β) =

∫
M α ∧ ∗β.

REMARK: The Hodge ∗ operator always exists. It is defined explicitly in
an orthonormal basis ξ1, ..., ξn ∈ Λ1M :

∗(ξi1 ∧ ξi2 ∧ ... ∧ ξik) = (−1)sξj1 ∧ ξj2 ∧ ... ∧ ξjn−k,
where ξj1, ξj2, ..., ξjn−k is a complementary set of vectors to ξi1, ξi2, ..., ξik, and
s the signature of a permutation (i1, ..., ik, j1, ..., jn−k).

REMARK: ∗2
∣∣∣Λk(M) = (−1)k(n−k) IdΛk(M)
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Hodge theory

CLAIM: On a compact Riemannian n-manifold, one has d∗
∣∣∣ΛkM = (−1)nk∗d∗,

where d∗ denotes the adjoint operator, which is defined by the equation
(dα, γ) = (α, d∗γ).

Proof: Since

0 =
∫
M
d(α ∧ β) =

∫
M
d(α) ∧ β + (−1)α̃α ∧ d(β),

one has (dα, ∗β) = (−1)α̃(α, ∗dβ). Setting γ := ∗β, we obtain

(dα, γ) = (−1)α̃(α, ∗d(∗)−1γ) = (−1)α̃(−1)α̃(ñ−α̃)(α, ∗d∗γ) = (−1)α̃ñ(α, ∗d∗γ).

DEFINITION: The anticommutator ∆ := {d, d∗} = dd∗ + d∗d is called the
Laplacian of M . It is self-adjoint and positive definite: (∆x, x) = (dx, dx) +
(d∗x, d∗x). Also, ∆ commutes with d and d∗ (Lemma 1).

THEOREM: (The main theorem of Hodge theory)
There is a basis in the Hilbert space L2(Λ∗(M)) consisting of eigenvec-
tors of ∆.

THEOREM: (“Elliptic regularity for ∆”) Let α ∈ L2(Λk(M)) be an eigen-
vector of ∆. Then α is a smooth k-form.
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De Rham cohomology

DEFINITION: The space Hi(M) :=
ker d

∣∣
ΛiM

d(Λi−1M)
is called the de Rham coho-

mology of M .

DEFINITION: A form α is called harmonic if ∆(α) = 0.

REMARK: Let α be a harmonic form. Then (∆x, x) = (dx, dx) + (d∗x, d∗x),

hence α ∈ ker d ∩ ker d∗

REMARK: The projection Hi(M)−→Hi(M) from harmonic forms to

cohomology is injective. Indeed, a form α lies in the kernel of such projection

if α = dβ, but then (α, α) = (α, dβ) = (d∗α, β) = 0.

THEOREM: The natural map Hi(M)−→Hi(M) is an isomorphism

(see the next page).

REMARK: Poincare duality immediately follows from this theorem.
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Hodge theory and the cohomology

THEOREM: The natural map Hi(M)−→Hi(M) is an isomorphism.

Proof. Step 1: Since d2 = 0 and (d∗)2 = 0, one has {d,∆} = 0. This means
that ∆ commutes with the de Rham differential.

Step 2: Consider the eigenspace decomposition Λ∗(M)=̃
⊕
αH∗α(M), where α

runs through all eigenvalues of ∆, and H∗α(M) is the corresponding eigenspace.
For each α, de Rham differential defines a complex

H0
α(M)

d−→ H1
α(M)

d−→ H2
α(M)

d−→ ...

Step 3: On H∗α(M), one has dd∗+ d∗d = α. When α 6= 0, and η closed, this
implies dd∗(η) + d∗d(η) = dd∗η = αη, hence η = dξ, with ξ := α−1d∗η. This
implies that the complexes (H∗α(M), d) don’t contribute to cohomology.

Step 4: We have proven that

H∗(Λ∗M,d) =
⊕
α
H∗(H∗α(M), d) = H∗(H∗0(M), d) = H∗(M).
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Supersymmetry in Kähler geometry

Let (M, I, g) be a Kaehler manifold, ω its Kaehler form. On Λ∗(M), the

following operators are defined.

0. d, d∗, ∆, because it is Riemannian.

1. L(α) := ω ∧ α

2. Λ(α) := ∗L ∗ α. It is easily seen that Λ = L∗.

3. The Weil operator W
∣∣∣Λp,q(M) =

√
−1 (p− q)

THEOREM: These operators generate a Lie superalgebra a of dimen-

sion (5|4), acting on Λ∗(M). Moreover, the Laplacian ∆ is central in a, hence

a also acts on the cohomology of M.

REMARK: This is a convenient way to summarize the Kähler relations and

the Lefschetz’ sl(2)-action.
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The coordinate operators

Let V be an even-dimensional real vector space equipped with a scalar prod-

uct, and v1, ..., v2n an orthonormal basis. Denote by evi : ΛkV −→ Λk+1V an

operator of multiplication, evi(η) = ei ∧ η. Let ivi : ΛkV −→ Λk−1V be an

adjoint operator, ivi = ∗evi∗.

CLAIM: The operators evi, ivi, Id are a basis of an odd Heisenberg Lie

superalgebra H, with the only non-trivial supercommutator given by the

formula {evi, ivj} = δi,j Id.

Now, consider the tensor ω =
∑n
i=1 v2i−1 ∧ v2i, and let L(α) = ω ∧ α, and

Λ := L∗ be the corresponding Hodge operators.

CLAIM: From the commutator relations in H, one obtains immediately that

H := [L,Λ] =
[∑

ev2i−1ev2i,
∑

iv2i−1iv2i

]
=

2n∑
i=1

eviivi −
2n∑
i=1

ivievi,

is a scalar operator acting as k − n on k-forms.
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Integrability of the complex structure

CLAIM: (“Cartan’s formula”) The de Rham differential of can be expressed
through the commutator of vector fields:

dη(X1, ...Xd+1) =
∑

(−1)i+1DXi(η(X1, ..., X̌i, ..., Xd+1)

−
∑
i<j

(−1)i+j+1η([Xi, Xj], X1, ..., X̌i, ..., X̌j, ..., Xd+1).

For a 1-form η, this gives dη(X1, X2) = DX1
η(X2)−DX2

η(X1)−η([X1, X2]).

COROLLARY: Let (M, I) be an almost complex manifold. Then the fol-
lowing assertions are equivalent.

(i) dη ⊂ Λ0,2(M)⊕ Λ1,1(M) for any η ∈ Λ0,1(M).

(ii) I is integrable.

REMARK: This is equivalent to d
∣∣∣Λ1M having only two Hodge components:

d = d1,0 + d0,1 (for a non-integrable complex structure, there are 4: d =
d2,−1 + d1,0 + d0,1 + d−1,2).

REMARK: Since Λ∗M is multiplicatively generated by Λ1(M), the decom-
position d = d2,−1 + d1,0 + d0,1 + d−1,2 holds for any almost complex
manifold.
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Integrability and the Hodge decomposition

CLAIM: A manifold (M, I) is integrable if and only if (d0,1)2|C∞M = 0.

Proof. Step 1: The bundle Λ1,0(M) is generated over C∞M by

d1,0(C∞M). Indeed, it is n-dimensional, n = dimCM and to prove this one

needs to find n functions f1, ..., fn with d1,0fi linearly independent at a point.

This is done by taking 2n functions f1, ..., f2n with dfi linearly independent,

and finding an appropriate subset.

Step 2: Then, the integrability condition d(Λ1,0(M)) ⊂ Λ2,0(M)⊕Λ1,1(M) is

equivalent to dd1,0(C∞M) ⊂ Λ2,0(M)⊕ Λ1,1(M) ⇔ d−1,2(d1,0(C∞M)) = 0.

Step 3: The (0,2) component of d2 = 0 gives {d−1,2, d1,0} = {d0,1, d0,1} =

2(d0,1)2 = 0. From Step 2, we obtain that (d0,1)2|C∞M = 0 is equivalent to

integrability.

REMARK: The above claim provides an equivalence d2,−1 = 0 ⇔
{d−1,2, d1,0} = 0 ⇔ (d0,1)2 = 0.
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The twisted differential dc

DEFINITION: The twisted differential is defined as dc := IdI−1.

CLAIM: Let (M, I) be a complex manifold. Then ∂ := d+
√
−1 dc

2 , ∂ :=
d−
√
−1 dc

2 are the Hodge components of d, ∂ = d1,0, ∂ = d0,1.

Proof: Let V be a space generated by d, IdI. The natural action of U(1)

generated by eW preserves V . Since d has only two Hodge components.

U(1) acts with weights
√
−1 and −

√
−1 , and its Hodge components are

expressed as above.

CLAIM: On a complex manifold, one has dc = [W, d].

Proof: Clearly, [W, d1,0] =
√
−1d1,0 and [W, d0,1] = −

√
−1d0,1. Adding these

equations, obtain dc = [W, d].

COROLLARY: {d, dc} = {d, {d,W}} = 0 (Lemma 1).
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De Rham differential on Kaehler manifolds

THEOREM: The following statements are equivalent.

1. I is integrable. 2. ∂2 = 0. 3. ∂
2

= 0. 4. ddc = −dcd 5. ddc = 2
√
−1 ∂∂.

DEFINITION: The operator ddc is called the pluri-Laplacian.

THEOREM: Let M be a Kaehler manifold. One has the following identities

(“Kähler idenitities”).

[Λ, ∂] =
√
−1 ∂

∗
, [L, ∂] = −

√
−1 ∂∗, [Λ, ∂

∗
] = −

√
−1 ∂, [L, ∂∗] =

√
−1 ∂.

Equivalently,

[Λ, d] = (dc)∗, [L, d∗] = −dc, [Λ, dc] = −d∗, [L, (dc)∗] = d.
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Laplacians and supercommutators

THEOREM: Let

∆d := {d, d∗}, ∆dc := {dc, dc∗}, ∆∂ := {∂, ∂∗},∆∂ := {∂, ∂∗}.

Then ∆d = ∆dc = 2∆∂ = 2∆∂. In particular, ∆d preserves the Hodge

decomposition.

Proof: By Kodaira relations, {d, dc} = 0. Graded Jacobi identity gives

{d, d∗} = −{d, {Λ, dc}} = {{Λ, d}, dc} = {dc, dc∗}.

Same calculation with ∂, ∂ gives ∆∂ = ∆∂.. Also, {∂, ∂∗} =
√
−1 {∂, {Λ, ∂}} =

0, (Lemma 1), and the same argument implies that all anticommutators

∂, ∂
∗
, etc. all vanish except {∂, ∂∗} and {∂, ∂∗}. This gives ∆d = ∆∂ + ∆∂.

DEFINITION: The operator ∆ := ∆d is called the Laplacian.

REMARK: We have proved that operators L,Λ, d,W generate a Lie su-

peralgebra of dimension (5|4) (5 even, 4 odd), with a 1-dimensional

center R∆.
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The Lefschetz sl(2)-action

COROLLARY: The operators L,Λ, H form a basis of a Lie algebra isomor-
phic to sl(2), with relations

[L,Λ] = H, [H,L] = 2L, [H,Λ] = −2Λ.

DEFINITION: L,Λ, H is called the Lefschetz sl(2)-triple.

REMARK: Finite-dimensional representations of sl(2) are semisimple.

REMARK: A simple finite-dimensional representation V of sl(2) is generated
by v ∈ V which satisfies Λ(v) = 0, H(v) = pv (“lowest weight vector”),
where p ∈ Z>0. Then v, L(v), L2(v), ..., Lp(v) form a basis of Vp := V . This
representation is determined uniquely by p.

REMARK: In this basis, H acts diagonally: H(Li(v)) = (2i− p)Li(v).

REMARK: One has Vp = Symp V1, where V1 is a 2-dimensional tautological
representation. It is called a weight p representation of sl(2).

COROLLARY: For a finite-dimensional representation V of sl(2), denote by
V (i) the eigenspaces of H, with H

∣∣∣V (i) = i. Then Li induces an isomorphism

V (−i) Li−→ V (i) for any i > 0.
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Lefschetz action on cohomology.

From the supersymmetry theorem, the following result follows.

COROLLARY: The sl(2)-action 〈L,Λ, H〉 and the action of Weil operator

commute with Laplacian, hence preserve the harmonic forms on a Kähler

manifold.

COROLLARY: Any cohomology class can be represented as a sum of

closed (p, q)-forms, giving a decomposition Hi(M) =
⊕
p+q=iH

p,q(M), with

Hp,q(M) = Hq,p(M).

COROLLARY: odd cohomology of a compact Kähler manifold are

even-dimensional.

COROLLARY: Let M be a compact, Kähler manifold of complex dimension

n, and i+ p+ q = n. Then Li defines the Lefschetz isomorphism Hp,q Li−→
Hp+2i,q+2i(M)
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The Hodge diamond:

Hn,n

Hn,n−1 Hn−1,n

Hn,n−2 Hn−1,n−1 Hn−2,n

Hn,n−3(M) Hn−1,n−2(M) Hn−2,n−1(M) Hn−3,n(M)

... ... ... ...

H3,0(M) H2,1(M) H1,2(M) H0,3(M)

H2,0 H1,1 H0,2

H1,0 H0,1

H0,0
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Hyperkähler manifolds

DEFINITION: (E. Calabi, 1978)

Let (M, g) be a Riemannian manifold equipped with three complex structure

operators I, J,K : TM −→ TM , satisfying the quaternionic relation

I2 = J2 = K2 = IJK = − Id .

Suppose that I, J, K are Kähler. Then (M, I, J,K, g) is called hyperkähler.

REMARK: A hyperkähler manifold M is equipped with 3 symplectic forms

ωI, ωJ, ωK. The form Ω := ωJ +
√
−1 ωK is a holomorphic symplectic

2-form on (M, I).

THEOREM: (Calabi-Yau) Let M be a compact, holomorphically symplectic

Kähler manifold. Then M admits a hyperkähler metric, which is uniquely

determined by the cohomology class of its Kähler form ωI.

Hyperkähler geometry is essentially the same as holomorphic symplectic ge-

ometry
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Supersymmetry in hyperkähler geometry

Let (M, I, J,K, g) be a hyperkaehler manifold, ωI, ωJ, ωK its Kaehler forms.
On Λ∗(M), the following operators are defined.

0. d, d∗, ∆, because it is Riemannian.

1. LI(α) := ωI ∧ α

2. ΛI(α) := ∗LI ∗ α. It is easily seen that ΛI = L∗J.

3. Three Weil operators WI

∣∣∣Λp,q(M,I) =
√
−1(p−q), WJ

∣∣∣Λp,q(M,J) =
√
−1(p−q),

WK

∣∣∣Λp,q(M,K) =
√
−1 (p− q)

THEOREM: These operators generate a Lie superalgebra a of dimen-
sion (11|8), acting on Λ∗(M). Moreover, the Laplacian ∆ is central in a,
hence a also acts on the cohomology of M.

REMARK: The Weil operators form the Lie algebra su(2) of unitary quater-
nions. This means that the quaternionic action belongs to a. In particular,
LJ , LK,ΛJ and ΛK.

REMARK: The twisted de Rham differentials dI , dJ , dK, associated to I, J,K
also belong to a: dI = [WI , d], dJ = [WJ , d], dK = [WK, d]
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Supersymmetry and the Hodge decomposition

REMARK: 1. [LI ,ΛJ] = WK, [LJ ,ΛK] = WI, [LI ,ΛK] = −WJ.

2. The even part of a is isomorphic to sp(1,1,H)⊕ R ·∆.

3. The odd part 〈d, dI , dJ , dK, d,∗ d∗I , d
∗
J , d
∗
K〉 generates the 9-dimensional

odd Heisenberg algebra, with the only non-trivial supercommutators being

{d, d∗} = {dI , d∗I} = {dJ , d∗J} = {dK, d∗K} = ∆

4. The action of aeven on aodd is the fundamental representation of

sp(1,1,H) in H2, with the quaternionic Hermitian metric on aodd provided

by the anticommutator.

REMARK: The weight decomposition of the sp(1,1,H) = so(1,4)-action on

H∗(M) coincides with the Hodge decomposition.
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