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Plan:

1. Hodge structures. Kuga-Satake construction for Hodge structures of K3
type.

2. Hyperkahler manifolds. Multi-dimensional Kuga-Satake construction: the
main result.

3. Motivation: generalized BBF pairing.
4. Supersymmetry in hyperkahler geometry. Lefschetz triples in Frobenius

algebras. Explicit computation of the algebra g generated by Lefschetz triples
for a hyperkahler manifold.
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Hodge structures

DEFINITION: Let Vp be a real vector space. A (real) Hodge structure
of weight w on a vector space Vp = Vr Qr C is a decomposition Vp =
Dp+g=w VP4 satisfying VP4 = V&P, It is called integer Hodge structure if
one fixes an integer lattice Vy or V such that Vg = Vg®QgR or Vg = Vz®zR. A
Hodge structure is equipped with U(1)-action, with v € U(1) acting as «P~9 on
VP4 Morphism of integer Hodge structures is a map which is U(1)-invariant
and preserves the lattice.

DEFINITION: Polarization on a Hodge structrure of weight w is a U(1)-
invariant non-degenerate 2-form h & V@ X VQ*; (symmetric or antisymmetric
depending on parity of w) satisfying —(v/—1 )P~ 9h(x,z) > 0 for each non-zero
x € VP4,

DEFINITION: Period space of (polarized or not) Hodge structures with the
space of all decompositions Vg = @p+q:w VP9 such that the above conditions
are sattisfied.

REMARK: The period space for (polarized) Hodge structures is again
a complex manifold.
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Hodge structures and homogeneous spaces

EXAMPLE: The Hodge structure of K3 type is a Hodge structure Vg =
Dp1g—2 VP4 of weight 2 with dimV20 = 1.

p,q=0

REMARK: The period space of polarized Hodge structures of K3 type
is identified with the quadric of lines Q := {l € PV | h(l,1) = 0,h(l,1) > O}.

THEOREM: (Kuga-Satake)
Let Q be the space of polarized Hodge structures of K3 type on (W, h).
Then there exists a vector space V equipped with SO(WW)-action and an
SO(W)-equivariant embedding from (@ to the space of polarized Hodge
structures of weight 1 on V.
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Kuga-Satake embedding and Clifford modules

THEOREM: (Kuga-Satake) Let Q be the space of polarized Hodge struc-
tures of K3 type on (W, h). Then there exists a vector space VV equipped
with SO(W)-action and an SO(W)-equivariant embedding from @ to the
space of polarized Hodge structures of weight 1 on V.

Proof. Step 1: For any Hodge structure of K3 type, the corresponding ac-
tion of u(1) is generated by a skew-symmetric matrix p of rank 2, acting triv-
ially on the orthogonal complement to a 2-dimensional plane [l = (Re©,im ©),

where © is a generator of V29 and acting as (_01 é) on .

Step 2: Let (W) be the Clifford algebra of W, and V a space with C[(W)-
action (such a space is called a Clifford module). Using the standard em-
bedding so(W) C (W), we can consider u as an element of ¢/(W). Then
MQ — —1 in the Clifford algebra, and this gives a complex structure on V. =

REMARK: Kuga and Satake were interested in constructing an embedding
of the symmetric spaces associated with polarized Hodge structures of
weight 1 and of K3 type.
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Hyperkahler manifolds

DEFINITION: (E. Calabi, 1978)
Let (M, g) be a Riemannian manifold equipped with three complex structure
operators I,J, K . T'M — T M, satisfying the quaternionic relation

P=J°=K’=1JK=-1d.
Suppose that I, J, K are Kahler. Then (M,I,J, K, g) is called hyperkahler.

REMARK: A hyperkahler manifold M is equipped with 3 symplectic forms
wyr, wj, wrg. The form Q = w;+ +v/—1wg IS a holomorphic symplectic
2-formon (M,[). =

THEOREM: (Calabi-Yau) Let M be a compact, holomorphically symplectic
Kahler manifold. Then M admits a hyperkahler metric, which is uniquely
determined by the cohomology class of its Kahler form wy.

Hyperkahler geometry is essentially the same as holomorphic symplectic ge-
ometry
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Kuga-Satake construction in arbitrary dimension

REMARK: Let M be a hyperkahler manifold Kuga-Satake construction gives
an embedding from HQ(M) to the second cohomology of a torus, com-
patible with the Hodge structure. Indeed, W is embedded to A2(V), where
Vis a ¢[(W)-module.

THEOREM: For any hyperkahler manifold M of complex dimension n, there
exists a compact, complex torus 7' of dimension n+[! and an embedding
of cohomology space H*(M) — H*1TY{(T) which is compatible with the
Hodge structures and the Poincare pairing. Moreover, this embedding
is compatible with an action of the Lie algebra generated by all Lefschetz
sl(2)-triples on M.

REMARK: The corresponding map from the period space of M to the period
space of T coincides with the Kuga-Satake map.
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Holomorphically symplectic manifolds

DEFINITION: A holomorphically symplectic manifold is a complex man-
ifold equipped with non-degenerate, holomorphic (2,0)-form.

REMARK: Hyperkahler manifolds are holomorphically symplectic. Indeed,
QR =wj+ v—1wg is a holomorphic symplectic form on (M, I).

THEOREM: (Calabi-Yau) A compact, Kahler, holomorphically symplectic
manifold admits a unique hyperkahler metric in any Kahler class.

DEFINITION: For the rest of this talk, a hyperkahler manifold is a com-
pact, Kahler, holomorphically symplectic manifold.

DEFINITION: A hyperkahler manifold M is called of maximal holonomy,
or simple, or IHS, if m1(M) =0, H%9(M) = C.

Bogomolov’s decomposition: Any hyperkahler manifold admits a finite cov-
ering which is a product of a torus and several maximal holonomy hyperkahler
manifolds.

Further on, all hyperkahler manifolds are assumed to be of maximal
holonomy.
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The Bogomolov-Beauville-Fujiki form

THEOREM: (Fujiki). Let n € H2(M), and dimM = 2n, where M is hy-
perkidhler. Then [,;7°" = cq(n,n)™, for some primitive integer quadratic
form ¢ on H2(M,Z), and ¢ > 0 an integer number.

Definition: This form is called Bogomolov-Beauville-Fujiki form. It is
defined by the Fujiki’'s relation uniquely, up to a sign. The sign is
determined from the following formula (Bogomolov, Beauville)

Aa(n, 1) = /Xn AnAQTTIAT L

1 _ e
_n (/ n/\Q”_l/\Qn) (/ nAQPAQ" 1)
n X X

where €2 is the holomorphic symplectic form, and A\ > 0.

Remark: ¢ has signature (b, — 3,3). It is negative definite on primitive
forms, and positive definite on (Q2,Q,w), where w is a Kahler form.
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Multi-dimensional BBF form

This is the original motivation for the present work.

DEFINITION: Let a,b € H2F(M), M Kahler of complex dimension 2n, and
g € Sym2(H?(M)) c H*(M) be the element corresponding to the BBF form.
Then the multi-dimensional BBF form is a,b — [j;a AbA¢g" ¥,

CONJECTURE: It is non-degenerate.

PROPOSITION: This form is non-degenerate on the subalgebra in
cohomology generated by H2(M).
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Supersymmetry in hyperkahler geometry

Let (M,I,J,K,g) be a hyperkaehler manifold, w;, wj, wg its Kaehler forms.
On A*(M), the following operators are defined.

0. d, d*, A, because it is Riemannian.
1. LI(OA) = wr N\«
2. Ni(a) ;= *Ly*xa. It is easily seen that A = L7.

3. Three Weil operators WI‘Ap,q(M,I) =+—-1(p—q), WJ|/\p,q(M’J) =V—-1(p—q),
WK‘AP,Q(M,K) =v-1( -9

THEOREM: These operators generate a Lie superalgebra a of dimen-
sion (11|8), acting on A*(M). Moreover, the Laplacian A is central in a,
hence a also acts on the cohomology of M.

REMARK: The Weil operators form the Lie algebra su(2) of unitary quater-
nions. This means that the quaternionic action belongs to a. In particular,
LJ,LK,/\J and /\K'

REMARK: The twisted de Rham differentials dy,d s, dy, associated to I, J, K
also belong to a: dj = [W],d], dJ = [Wj,d], di = [WK,d]
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so(4,1)-action and the Hodge decomposition
REMARK: 1. [L;,N\;] =Wk, [Lj,Ng] =Wy, [Li,Ag] = -W}.
2. The even part of a is isomorphic to sp(1,1,H) ®R - A.

3. The odd part (d,d;,dy,dg,d,*d},d%,dy) generates the 9-dimensional
odd Heisenberg algebra, with the only non-trivial supercommutators being

{d,d*} = {d;, dj} = {dy, d}} = {dg, dj} = A

4. The action of aecpven On a,yq IS the fundamental representation of
sp(1,1,H) in H?, with the quaternionic Hermitian metric on a,y; provided
by the anticommutator.

COROLLARY: The weight decomposition of the sp(1,1,H) = so(4,1)-
action on H*(M) coincides with the Hodge decomposition.
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Lefschetz-Frobenius algebras

DEFINITION: A Frobenius algebra is a graded commutative algebra A =
69,?:0 A’ equipped with the Poincare-type non-degenerate product.

DEFINITION: A Lefschetz triple in a Frobenius algebra A = EBZ-QQO At is
a triple of operators L,, H,A, where n € A2 is a fixed element, Lp(x) :=
nANx, H|, = 1—mn and Ay is an element such that L,, H,Ay is an sl(2)-
triple. A Frobenius algebra admitting a Lefschetz triple is called a Lefschetz-
Frobenius algebra (Looijenga, Lunts).

REMARK: Such A, is uniquely determined by H and n (this statement is
sometimes called “Morozov’s lemma’, and sometimes included in the state-

ment of Jacobson-Morozov theorem).

REMARK: Existence of A, for given n € A2 is an open property in A2, hence
a Lefschetz-Frobenius algebra admits many sl((2)-triples.
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Lia algebra g generated by s((2)-triples

THEOREM: Let M be a hyperkahler manifold of maximal holonomy, A* its
cohomology algebram and g := g(A) the Lie algebra generated by all Lefschetz
s[(2)-triples. Then g is isomorphic to so(b> — 2,4).

Sketch of the proof. Step 1: Consider the action of g on the Mukai
extension A2(M) :=R-z® H?(M) ® R -y, where z has grading 0, y has
grading 4, H2(M) has grading 2. We equip H2(M) with the Mukai form
which is equal to BBF on H2(M), preserves grading, and satisfies gy (z,y) =
1 22 = y2 = 0, z,yLh?(M) and (z,y) = 1. The action of g on H?2(M)
is determined by the following properties: 1. It is compatible with the
grading. 2. For all o, 3 € H2(M), one has Loz = «a, LofS = q(a, 8)y, where
g is the BBF form. 3. Nqy = o, Nof3 = q(a, B)x.

To see that this action is well-defined, we need to check that commutator
relations hold. This follows from commutator relations in so(1,4) and Zariski
density of pairs «, 8 € (wr,wj,wg) in the set of all pairs «, 3 € H2(M).

Step 2: The map g — so(H2(M)) is surjective, which follows from the di-
mension argument (dimensions are computed using the local Torelli theorem).
Injectivity of g — so(H2(M)) is clear, because so(H2(M)) is given by gener-
ators and relations which hold true in g. m
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Hodge structures and g-action

REMARK: The Lie algebra g = so(by — 2,4) is equipped with a grading
g=g_o®Dgo® go, induced by the grading on the Mukai space: H2(M) :=
Ho & H?(M) & Hg, with Hg and Hy 1-dimensional. Then gg = g, ® H, where
H = [Ly,,N\y] is the operator inducing the grading and commuting with the
rest of gg, denoted by ggp.

REMARK: The Lie algebra g, := so(b; — 1,3) is generated by the Weil
maps W; for all complex structures I of hyperkahler type obtained by
deformations. The corresponding Lie group G acts as Spin(by — 1,3) in
odd-dimensional cohomology and SO(b; — 1,3) on even-dimensional ones. It
is generated by the complex structure action on H2(M) for all deformations
of I.

COROLLARY: Let M be a hyperkdhler manifold, and H*(M) — H*T{T)
an embedding to the cohomology of a torus. Suppose that this embedding
IS compatible with an action of the Lie algebra generated by all Lefschetz
sl(2)-triples on M. Then it is compatible with the Hodge structures, in
the same sense as the usual Kuga-Satake map.
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Proof of the main result

THEOREM: For any hyperkahler manifold M of complex dimension n, there
exists a torus 7' of dimension n + £ and an embedding of cohomology
space H*(M) — H*T{(T) which is compatible with the Hodge structures
and the Poincare pairing. Moreover, this embedding is compatible with
an action of the Lie algebra generated by all Lefschetz sl(2)-triples on M.

Proof: Let g be the Lie algebra generated by all sl(2)-triples, and W =
H?2(M). For any Clifford module V over ¢f(W), V admits a by-symplectic
structure which gives g-action in A*(V). If we manage to produce an
embedding of g-modules H*(M) — A*(V), we are done.

However, A*(V) is an exact representation of Spin(W), hence its tensor powers
contain any representation of Spin(VT/). These tensor powers correspond to
A*(V™), which is also a Grassmann algebra for a Clifford module over C[(W).
u
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