Kuga-Satake map for arbitrary dimension

Misha Verbitsky

Orcay, December 4, 2018

Séminaire Arithmétique et Géométrie Algébrique

Joint work with Nikon Kurnosov and Andrei Soldatenkov

Plan:

1. Hodge structures. Kuga-Satake construction for Hodge structures of K3 type.

2. Hyperkähler manifolds. Multi-dimensional Kuga-Satake construction: the main result.

3. Motivation: generalized BBF pairing.

4. Supersymmetry in hyperkähler geometry. Lefschetz triples in Frobenius algebras. Explicit computation of the algebra \mathfrak{g} generated by Lefschetz triples for a hyperkahler manifold.

Hodge structures

DEFINITION: Let $V_{\mathbb{R}}$ be a real vector space. **A (real) Hodge structure** of weight w on a vector space $V_{\mathbb{C}} = V_{\mathbb{R}} \otimes_{\mathbb{R}} \mathbb{C}$ is a decomposition $V_{\mathbb{C}} = \bigoplus_{p+q=w} V^{p,q}$, satisfying $\overline{V^{p,q}} = V^{q,p}$. It is called integer Hodge structure if one fixes an integer lattice $V_{\mathbb{Q}}$ or $V_{\mathbb{Z}}$ such that $V_{\mathbb{R}} = V_{\mathbb{Q}} \otimes_{\mathbb{Q}} \mathbb{R}$ or $V_{\mathbb{R}} = V_{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{R}$. A Hodge structure is equipped with U(1)-action, with $u \in U(1)$ acting as u^{p-q} on $V^{p,q}$. Morphism of integer Hodge structures is a map which is U(1)-invariant and preserves the lattice.

DEFINITION: Polarization on a Hodge structrure of weight w is a U(1)invariant non-degenerate 2-form $h \in V^*_{\mathbb{Q}} \otimes V^*_{\mathbb{Q}}$ (symmetric or antisymmetric
depending on parity of w) satisfying $-(\sqrt{-1})^{p-q}h(x,\overline{x}) > 0$ for each non-zero $x \in V^{p,q}$.

DEFINITION: Period space of (polarized or not) Hodge structures with the space of all decompositions $V_{\mathbb{C}} = \bigoplus_{p+q=w} V^{p,q}$ such that the above conditions are sattisfied.

REMARK: The period space for (polarized) Hodge structures is again a complex manifold.

Hodge structures and homogeneous spaces

EXAMPLE: The Hodge structure of K3 type is a Hodge structure $V_{\mathbb{C}} = \bigoplus_{\substack{p,q \ge 0}} V^{p,q}$ of weight 2 with dim $V^{2,0} = 1$.

REMARK: The period space of polarized Hodge structures of K3 type is identified with the quadric of lines $Q := \{l \in \mathbb{P}V_{\mathbb{C}} \mid h(l,l) = 0, h(l,\bar{l}) \ge 0\}.$

THEOREM: (Kuga-Satake)

Let Q be the space of polarized Hodge structures of K3 type on (W,h). Then there exists a vector space V equipped with SO(W)-action and an SO(W)-equivariant embedding from Q to the space of polarized Hodge structures of weight 1 on V.

Kuga-Satake embedding and Clifford modules

THEOREM: (Kuga-Satake) Let Q be the space of polarized Hodge structures of K3 type on (W,h). Then there exists a vector space V equipped with SO(W)-action and an SO(W)-equivariant embedding from Q to the space of polarized Hodge structures of weight 1 on V.

Proof. Step 1: For any Hodge structure of K3 type, the corresponding action of $\mathfrak{u}(1)$ is generated by a skew-symmetric matrix μ of rank 2, acting trivially on the orthogonal complement to a 2-dimensional plane $l = \langle \operatorname{Re}\Theta, \operatorname{im}\Theta \rangle$,

where Θ is a generator of $V^{2,0}$, and acting as $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ on l.

Step 2: Let $\mathcal{Cl}(W)$ be the Clifford algebra of W, and V a space with $\mathcal{Cl}(W)$ -action (such a space is called **a Clifford module**). Using the standard embedding $\mathfrak{so}(W) \subset \mathcal{Cl}(W)$, we can consider μ as an element of $\mathcal{Cl}(W)$. Then $\mu^2 = -1$ in the Clifford algebra, and this gives a complex structure on V.

REMARK: Kuga and Satake were interested in **constructing an embedding of the symmetric spaces** associated with polarized Hodge structures of weight 1 and of K3 type.

Hyperkähler manifolds

DEFINITION: (E. Calabi, 1978)

Let (M,g) be a Riemannian manifold equipped with three complex structure operators $I, J, K : TM \longrightarrow TM$, satisfying the quaternionic relation

$$I^2 = J^2 = K^2 = IJK = - \mathrm{Id}$$
.

Suppose that I, J, K are Kähler. Then (M, I, J, K, g) is called hyperkähler.

REMARK: A hyperkähler manifold M is equipped with 3 symplectic forms ω_I , ω_J , ω_K . The form $\Omega := \omega_J + \sqrt{-1} \omega_K$ is a holomorphic symplectic **2-form on** (M, I).

THEOREM: (Calabi-Yau) Let M be a compact, holomorphically symplectic Kähler manifold. Then M admits a hyperkähler metric, which is uniquely determined by the cohomology class of its Kähler form ω_I .

Hyperkähler geometry is essentially the same as holomorphic symplectic geometry

Kuga-Satake construction in arbitrary dimension

REMARK: Let *M* be a hyperkahler manifold Kuga-Satake construction **gives** an embedding from $H^2(M)$ to the second cohomology of a torus, compatible with the Hodge structure. Indeed, *W* is embedded to $\Lambda^2(V)$, where *V* is a $\mathcal{Cl}(W)$ -module.

THEOREM: For any hyperkahler manifold M of complex dimension n, there exists a compact, complex torus T of dimension n+l and an embedding of cohomology space $H^*(M) \mapsto H^{*+l}(T)$ which is compatible with the Hodge structures and the Poincare pairing. Moreover, this embedding is compatible with an action of the Lie algebra generated by all Lefschetz sl(2)-triples on M.

REMARK: The corresponding map from the period space of M to the period space of T coincides with the Kuga-Satake map.

Holomorphically symplectic manifolds

DEFINITION: A holomorphically symplectic manifold is a complex manifold equipped with non-degenerate, holomorphic (2,0)-form.

REMARK: Hyperkähler manifolds are holomorphically symplectic. Indeed, $\Omega := \omega_J + \sqrt{-1} \omega_K$ is a holomorphic symplectic form on (M, I).

THEOREM: (Calabi-Yau) A compact, Kähler, holomorphically symplectic manifold admits a unique hyperkähler metric in any Kähler class.

DEFINITION: For the rest of this talk, a hyperkähler manifold is a compact, Kähler, holomorphically symplectic manifold.

DEFINITION: A hyperkähler manifold M is called **of maximal holonomy**, or **simple**, or **IHS**, if $\pi_1(M) = 0$, $H^{2,0}(M) = \mathbb{C}$.

Bogomolov's decomposition: Any hyperkähler manifold admits a finite covering which is a product of a torus and several maximal holonomy hyperkähler manifolds.

Further on, all hyperkähler manifolds are assumed to be of maximal holonomy.

The Bogomolov-Beauville-Fujiki form

THEOREM: (Fujiki). Let $\eta \in H^2(M)$, and dim M = 2n, where M is hyperkähler. Then $\int_M \eta^{2n} = cq(\eta, \eta)^n$, for some primitive integer quadratic form q on $H^2(M, \mathbb{Z})$, and c > 0 an integer number.

Definition: This form is called **Bogomolov-Beauville-Fujiki form**. **It is defined by the Fujiki's relation uniquely, up to a sign**. The sign is determined from the following formula (Bogomolov, Beauville)

$$\lambda q(\eta, \eta) = \int_X \eta \wedge \eta \wedge \Omega^{n-1} \wedge \overline{\Omega}^{n-1} - \frac{n-1}{n} \left(\int_X \eta \wedge \Omega^{n-1} \wedge \overline{\Omega}^n \right) \left(\int_X \eta \wedge \Omega^n \wedge \overline{\Omega}^{n-1} \right)$$

where Ω is the holomorphic symplectic form, and $\lambda > 0$.

Remark: *q* has signature $(b_2 - 3, 3)$. It is negative definite on primitive forms, and positive definite on $\langle \Omega, \overline{\Omega}, \omega \rangle$, where ω is a Kähler form.

Multi-dimensional BBF form

This is the original motivation for the present work.

DEFINITION: Let $a, b \in H^{2k}(M)$, M Kähler of complex dimension 2n, and $q \in \text{Sym}^2(H^2(M)) \subset H^4(M)$ be the element corresponding to the BBF form. Then **the multi-dimensional BBF form** is $a, b \longrightarrow \int_M a \wedge b \wedge q^{n-k}$.

CONJECTURE: It is non-degenerate.

PROPOSITION: This form is non-degenerate on the subalgebra in cohomology generated by $H^2(M)$.

Supersymmetry in hyperkähler geometry

Let (M, I, J, K, g) be a hyperkaehler manifold, ω_I , ω_J , ω_K its Kaehler forms. On $\Lambda^*(M)$, the following operators are defined.

0. d, d^* , Δ , because it is Riemannian.

1. $L_I(\alpha) := \omega_I \wedge \alpha$

2. $\Lambda_I(\alpha) := *L_I * \alpha$. It is easily seen that $\Lambda_I = L_J^*$.

3. Three Weil operators $W_I|_{\Lambda^{p,q}(M,I)} = \sqrt{-1}(p-q), W_J|_{\Lambda^{p,q}(M,J)} = \sqrt{-1}(p-q), W_K|_{\Lambda^{p,q}(M,K)} = \sqrt{-1}(p-q)$

THEOREM: These operators generate a Lie superalgebra \mathfrak{a} of dimension (11|8), acting on $\Lambda^*(M)$. Moreover, the Laplacian Δ is central in \mathfrak{a} , hence \mathfrak{a} also acts on the cohomology of M.

REMARK: The Weil operators form the Lie algebra $\mathfrak{su}(2)$ of unitary quaternions. This means that **the quaternionic action belongs to** \mathfrak{a} . In particular, L_J, L_K, Λ_J and Λ_K .

REMARK: The twisted de Rham differentials d_I, d_J, d_K , associated to I, J, K also belong to \mathfrak{a} : $d_I = [W_I, d]$, $d_J = [W_J, d]$, $d_K = [W_K, d]$

 $\mathfrak{so}(4,1)$ -action and the Hodge decomposition

REMARK: 1. $[L_I, \Lambda_J] = W_K$, $[L_J, \Lambda_K] = W_I$, $[L_I, \Lambda_K] = -W_J$.

2. The even part of a is isomorphic to $\mathfrak{sp}(1,1,\mathbb{H}) \oplus \mathbb{R} \cdot \Delta$.

3. The odd part $\langle d, d_I, d_J, d_K, d, * d_I^*, d_J^*, d_K^* \rangle$ generates the 9-dimensional odd Heisenberg algebra, with the only non-trivial supercommutators being $\{d, d^*\} = \{d_I, d_I^*\} = \{d_J, d_J^*\} = \{d_K, d_K^*\} = \Delta$

4. The action of \mathfrak{a}_{even} on \mathfrak{a}_{odd} is the fundamental representation of $\mathfrak{sp}(1,1,\mathbb{H})$ in \mathbb{H}^2 , with the quaternionic Hermitian metric on \mathfrak{a}_{odd} provided by the anticommutator.

COROLLARY: The weight decomposition of the $\mathfrak{sp}(1,1,\mathbb{H}) = \mathfrak{so}(4,1)$ -action on $H^*(M)$ coincides with the Hodge decomposition.

Lefschetz-Frobenius algebras

DEFINITION: A Frobenius algebra is a graded commutative algebra $A = \bigoplus_{i=0}^{d} A^{i}$ equipped with the Poincare-type non-degenerate product.

DEFINITION: A Lefschetz triple in a Frobenius algebra $A = \bigoplus_{i=0}^{2n} A^i$ is a triple of operators $L_{\eta}, H, \Lambda_{\eta}$ where $\eta \in A^2$ is a fixed element, $L_{\eta}(x) :=$ $\eta \wedge x, H|_{A^i} = i - n$ and Λ_{η} is an element such that $L_{\eta}, H, \Lambda_{\eta}$ is an $\mathfrak{sl}(2)$ triple. A Frobenius algebra admitting a Lefschetz triple is called a Lefschetz-Frobenius algebra (Looijenga, Lunts).

REMARK: Such Λ_{η} is uniquely determined by *H* and η (this statement is sometimes called "Morozov's lemma", and sometimes included in the statement of Jacobson-Morozov theorem).

REMARK: Existence of Λ_{η} for given $\eta \in A^2$ is an open property in A^2 , hence a Lefschetz-Frobenius algebra admits many $\mathfrak{sl}(2)$ -triples.

Lia algebra \mathfrak{g} generated by $\mathfrak{sl}(2)$ -triples

THEOREM: Let M be a hyperkähler manifold of maximal holonomy, A^* its cohomology algebram and $\mathfrak{g} := \mathfrak{g}(A)$ the Lie algebra generated by all Lefschetz $\mathfrak{sl}(2)$ -triples. Then \mathfrak{g} is isomorphic to $\mathfrak{so}(b_2 - 2, 4)$.

Sketch of the proof. Step 1: Consider the action of \mathfrak{g} on the Mukai extension $\hat{H}^2(M) := \mathbb{R} \cdot x \oplus H^2(M) \oplus \mathbb{R} \cdot y$, where x has grading 0, y has grading 4, $H^2(M)$ has grading 2. We equip $\hat{H}^2(M)$ with the Mukai form which is equal to BBF on $H^2(M)$, preserves grading, and satisfies $q_M(x,y) =$ $1 \ x^2 = y^2 = 0$, $x, y \perp h^2(M)$ and (x, y) = 1. The action of \mathfrak{g} on $\hat{H}^2(M)$ is determined by the following properties: **1.** It is compatible with the grading. 2. For all $\alpha, \beta \in H^2(M)$, one has $L_{\alpha}x = \alpha$, $L_{\alpha}\beta = q(\alpha, \beta)y$, where q is the BBF form. 3. $\Lambda_{\alpha}y = \alpha$, $\Lambda_{\alpha}\beta = q(\alpha, \beta)x$.

To see that this action is well-defined, we need to check that commutator relations hold. This follows from commutator relations in $\mathfrak{so}(1,4)$ and Zariski density of pairs $\alpha, \beta \in \langle \omega_I, \omega_J, \omega_K \rangle$ in the set of all pairs $\alpha, \beta \in H^2(M)$.

Step 2: The map $\mathfrak{g} \to \mathfrak{so}(\hat{H}^2(M))$ is surjective, which follows from the dimension argument (dimensions are computed using the local Torelli theorem). Injectivity of $\mathfrak{g} \to \mathfrak{so}(\hat{H}^2(M))$ is clear, because $\mathfrak{so}(\hat{H}^2(M))$ is given by generators and relations which hold true in \mathfrak{g} .

Hodge structures and \mathfrak{g} -action

REMARK: The Lie algebra $\mathfrak{g} = \mathfrak{so}(b_1 - 2, 4)$ is equipped with a grading $\mathfrak{g} = \mathfrak{g}_{-2} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_2$, induced by the grading on the Mukai space: $\widehat{H}^2(M) := H_0 \oplus H^2(M) \oplus H_4$, with H_0 and H_4 1-dimensional. Then $\mathfrak{g}_0 = \mathfrak{g}'_0 \oplus H$, where $H = [L_\omega, \Lambda_\omega]$ is the operator inducing the grading and commuting with the rest of \mathfrak{g}_0 , denoted by $\check{\mathfrak{g}}_0$.

REMARK: The Lie algebra $\mathfrak{g}'_0 := \mathfrak{so}(b_1 - 1, 3)$ is generated by the Weil maps W_I for all complex structures I of hyperkähler type obtained by deformations. The corresponding Lie group G_0 acts as $\text{Spin}(b_1 - 1, 3)$ in odd-dimensional cohomology and $SO(b_1 - 1, 3)$ on even-dimensional ones. It is generated by the complex structure action on $H^2(M)$ for all deformations of I.

COROLLARY: Let M be a hyperkähler manifold, and $H^*(M) \mapsto H^{*+l}(T)$ an embedding to the cohomology of a torus. Suppose that this embedding is compatible with an action of the Lie algebra generated by all Lefschetz sl(2)-triples on M. Then it is compatible with the Hodge structures, in the same sense as the usual Kuga-Satake map.

Proof of the main result

THEOREM: For any hyperkahler manifold M of complex dimension n, there exists a torus T of dimension n + k and an embedding of cohomology space $H^*(M) \mapsto H^{*+l}(T)$ which is compatible with the Hodge structures and the Poincare pairing. Moreover, this embedding is compatible with an action of the Lie algebra generated by all Lefschetz sl(2)-triples on M.

Proof: Let \mathfrak{g} be the Lie algebra generated by all $\mathfrak{sl}(2)$ -triples, and $W := H^2(M)$. For any Clifford module V over $\mathcal{Cl}(W)$, V admits a b_2 -symplectic structure which gives \mathfrak{g} -action in $\Lambda^*(V)$. If we manage to produce an embedding of \mathfrak{g} -modules $H^*(M) \hookrightarrow \Lambda^*(V)$, we are done.

However, $\Lambda^*(V)$ is an exact representation of $\text{Spin}(\hat{W})$, hence its tensor powers contain any representation of $\text{Spin}(\hat{W})$. These tensor powers correspond to $\Lambda^*(V^n)$, which is also a Grassmann algebra for a Clifford module over $\mathcal{Cl}(W)$.