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Plan:

1. Hodge structures. Kuga-Satake construction for Hodge structures of K3

type.

2. Hyperkähler manifolds. Multi-dimensional Kuga-Satake construction: the

main result.

3. Motivation: generalized BBF pairing.

4. Supersymmetry in hyperkähler geometry. Lefschetz triples in Frobenius

algebras. Explicit computation of the algebra g generated by Lefschetz triples

for a hyperkahler manifold.
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Hodge structures

DEFINITION: Let VR be a real vector space. A (real) Hodge structure

of weight w on a vector space VC = VR ⊗R C is a decomposition VC =⊕
p+q=w V

p,q, satisfying V p,q = V q,p. It is called integer Hodge structure if

one fixes an integer lattice VQ or VZ such that VR = VQ⊗QR or VR = VZ⊗ZR. A

Hodge structure is equipped with U(1)-action, with u ∈ U(1) acting as up−q on

V p,q. Morphism of integer Hodge structures is a map which is U(1)-invariant

and preserves the lattice.

DEFINITION: Polarization on a Hodge structrure of weight w is a U(1)-

invariant non-degenerate 2-form h ∈ V ∗Q ⊗ V ∗Q (symmetric or antisymmetric

depending on parity of w) satisfying −(
√
−1 )p−qh(x, x) > 0 for each non-zero

x ∈ V p,q.

DEFINITION: Period space of (polarized or not) Hodge structures with the

space of all decompositions VC =
⊕
p+q=w V

p,q such that the above conditions

are sattisfied.

REMARK: The period space for (polarized) Hodge structures is again

a complex manifold.
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Hodge structures and homogeneous spaces

EXAMPLE: The Hodge structure of K3 type is a Hodge structure VC =⊕
p+q=2
p,q>0

V p,q of weight 2 with dimV 2,0 = 1.

REMARK: The period space of polarized Hodge structures of K3 type

is identified with the quadric of lines Q := {l ∈ PVC | h(l, l) = 0, h(l, l) > 0}.

THEOREM: (Kuga-Satake)

Let Q be the space of polarized Hodge structures of K3 type on (W,h).

Then there exists a vector space V equipped with SO(W )-action and an

SO(W )-equivariant embedding from Q to the space of polarized Hodge

structures of weight 1 on V .
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Kuga-Satake embedding and Clifford modules

THEOREM: (Kuga-Satake) Let Q be the space of polarized Hodge struc-

tures of K3 type on (W,h). Then there exists a vector space V equipped

with SO(W )-action and an SO(W )-equivariant embedding from Q to the

space of polarized Hodge structures of weight 1 on V .

Proof. Step 1: For any Hodge structure of K3 type, the corresponding ac-

tion of u(1) is generated by a skew-symmetric matrix µ of rank 2, acting triv-

ially on the orthogonal complement to a 2-dimensional plane l = 〈Re Θ, im Θ〉,

where Θ is a generator of V 2,0, and acting as

(
0 1
−1 0

)
on l.

Step 2: Let Cl (W ) be the Clifford algebra of W , and V a space with Cl (W )-

action (such a space is called a Clifford module). Using the standard em-

bedding so(W ) ⊂ Cl (W ), we can consider µ as an element of Cl (W ). Then

µ2 = −1 in the Clifford algebra, and this gives a complex structure on V .

REMARK: Kuga and Satake were interested in constructing an embedding

of the symmetric spaces associated with polarized Hodge structures of

weight 1 and of K3 type.
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Hyperkähler manifolds

DEFINITION: (E. Calabi, 1978)

Let (M, g) be a Riemannian manifold equipped with three complex structure

operators I, J,K : TM −→ TM , satisfying the quaternionic relation

I2 = J2 = K2 = IJK = − Id .

Suppose that I, J, K are Kähler. Then (M, I, J,K, g) is called hyperkähler.

REMARK: A hyperkähler manifold M is equipped with 3 symplectic forms

ωI, ωJ, ωK. The form Ω := ωJ +
√
−1 ωK is a holomorphic symplectic

2-form on (M, I).

THEOREM: (Calabi-Yau) Let M be a compact, holomorphically symplectic

Kähler manifold. Then M admits a hyperkähler metric, which is uniquely

determined by the cohomology class of its Kähler form ωI.

Hyperkähler geometry is essentially the same as holomorphic symplectic ge-

ometry
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Kuga-Satake construction in arbitrary dimension

REMARK: Let M be a hyperkahler manifold Kuga-Satake construction gives

an embedding from H2(M) to the second cohomology of a torus, com-

patible with the Hodge structure. Indeed, W is embedded to Λ2(V ), where

V is a Cl (W )-module.

THEOREM: For any hyperkahler manifold M of complex dimension n, there

exists a compact, complex torus T of dimension n+l and an embedding

of cohomology space H∗(M) 7→ H∗+l(T ) which is compatible with the

Hodge structures and the Poincare pairing. Moreover, this embedding

is compatible with an action of the Lie algebra generated by all Lefschetz

sl(2)-triples on M .

REMARK: The corresponding map from the period space of M to the period

space of T coincides with the Kuga-Satake map.
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Holomorphically symplectic manifolds

DEFINITION: A holomorphically symplectic manifold is a complex man-
ifold equipped with non-degenerate, holomorphic (2,0)-form.

REMARK: Hyperkähler manifolds are holomorphically symplectic. Indeed,
Ω := ωJ +

√
−1 ωK is a holomorphic symplectic form on (M, I).

THEOREM: (Calabi-Yau) A compact, Kähler, holomorphically symplectic
manifold admits a unique hyperkähler metric in any Kähler class.

DEFINITION: For the rest of this talk, a hyperkähler manifold is a com-
pact, Kähler, holomorphically symplectic manifold.

DEFINITION: A hyperkähler manifold M is called of maximal holonomy,
or simple, or IHS, if π1(M) = 0, H2,0(M) = C.

Bogomolov’s decomposition: Any hyperkähler manifold admits a finite cov-
ering which is a product of a torus and several maximal holonomy hyperkähler
manifolds.

Further on, all hyperkähler manifolds are assumed to be of maximal
holonomy.
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The Bogomolov-Beauville-Fujiki form

THEOREM: (Fujiki). Let η ∈ H2(M), and dimM = 2n, where M is hy-

perkähler. Then
∫
M η2n = cq(η, η)n, for some primitive integer quadratic

form q on H2(M,Z), and c > 0 an integer number.

Definition: This form is called Bogomolov-Beauville-Fujiki form. It is

defined by the Fujiki’s relation uniquely, up to a sign. The sign is

determined from the following formula (Bogomolov, Beauville)

λq(η, η) =
∫
X
η ∧ η ∧Ωn−1 ∧Ωn−1−

−
n− 1

n

(∫
X
η ∧Ωn−1 ∧Ωn

)(∫
X
η ∧Ωn ∧Ωn−1

)
where Ω is the holomorphic symplectic form, and λ > 0.

Remark: q has signature (b2 − 3,3). It is negative definite on primitive

forms, and positive definite on 〈Ω,Ω, ω〉, where ω is a Kähler form.
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Multi-dimensional BBF form

This is the original motivation for the present work.

DEFINITION: Let a, b ∈ H2k(M), M Kähler of complex dimension 2n, and

q ∈ Sym2(H2(M)) ⊂ H4(M) be the element corresponding to the BBF form.

Then the multi-dimensional BBF form is a, b−→
∫
M a ∧ b ∧ qn−k.

CONJECTURE: It is non-degenerate.

PROPOSITION: This form is non-degenerate on the subalgebra in

cohomology generated by H2(M).
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Supersymmetry in hyperkähler geometry

Let (M, I, J,K, g) be a hyperkaehler manifold, ωI, ωJ, ωK its Kaehler forms.
On Λ∗(M), the following operators are defined.

0. d, d∗, ∆, because it is Riemannian.

1. LI(α) := ωI ∧ α

2. ΛI(α) := ∗LI ∗ α. It is easily seen that ΛI = L∗J.

3. Three Weil operators WI

∣∣∣Λp,q(M,I) =
√
−1(p−q), WJ

∣∣∣Λp,q(M,J) =
√
−1(p−q),

WK

∣∣∣Λp,q(M,K) =
√
−1 (p− q)

THEOREM: These operators generate a Lie superalgebra a of dimen-
sion (11|8), acting on Λ∗(M). Moreover, the Laplacian ∆ is central in a,
hence a also acts on the cohomology of M.

REMARK: The Weil operators form the Lie algebra su(2) of unitary quater-
nions. This means that the quaternionic action belongs to a. In particular,
LJ , LK,ΛJ and ΛK.

REMARK: The twisted de Rham differentials dI , dJ , dK, associated to I, J,K
also belong to a: dI = [WI , d], dJ = [WJ , d], dK = [WK, d]
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so(4,1)-action and the Hodge decomposition

REMARK: 1. [LI ,ΛJ] = WK, [LJ ,ΛK] = WI, [LI ,ΛK] = −WJ.

2. The even part of a is isomorphic to sp(1,1,H)⊕ R ·∆.

3. The odd part 〈d, dI , dJ , dK, d,∗ d∗I , d
∗
J , d
∗
K〉 generates the 9-dimensional

odd Heisenberg algebra, with the only non-trivial supercommutators being

{d, d∗} = {dI , d∗I} = {dJ , d∗J} = {dK, d∗K} = ∆

4. The action of aeven on aodd is the fundamental representation of

sp(1,1,H) in H2, with the quaternionic Hermitian metric on aodd provided

by the anticommutator.

COROLLARY: The weight decomposition of the sp(1,1,H) = so(4,1)-

action on H∗(M) coincides with the Hodge decomposition.
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Lefschetz-Frobenius algebras

DEFINITION: A Frobenius algebra is a graded commutative algebra A =⊕d
i=0A

i equipped with the Poincare-type non-degenerate product.

DEFINITION: A Lefschetz triple in a Frobenius algebra A =
⊕2n
i=0A

i is

a triple of operators Lη, H,Λη where η ∈ A2 is a fixed element, Lη(x) :=

η ∧ x, H
∣∣∣Ai = i − n and Λη is an element such that Lη, H,Λη is an sl(2)-

triple. A Frobenius algebra admitting a Lefschetz triple is called a Lefschetz-

Frobenius algebra (Looijenga, Lunts).

REMARK: Such Λη is uniquely determined by H and η (this statement is

sometimes called “Morozov’s lemma”, and sometimes included in the state-

ment of Jacobson-Morozov theorem).

REMARK: Existence of Λη for given η ∈ A2 is an open property in A2, hence

a Lefschetz-Frobenius algebra admits many sl(2)-triples.
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Lia algebra g generated by sl(2)-triples

THEOREM: Let M be a hyperkähler manifold of maximal holonomy, A∗ its
cohomology algebram and g := g(A) the Lie algebra generated by all Lefschetz
sl(2)-triples. Then g is isomorphic to so(b2 − 2,4).

Sketch of the proof. Step 1: Consider the action of g on the Mukai
extension Ĥ2(M) := R · x ⊕ H2(M) ⊕ R · y, where x has grading 0, y has
grading 4, H2(M) has grading 2. We equip Ĥ2(M) with the Mukai form
which is equal to BBF on H2(M), preserves grading, and satisfies qM(x, y) =
1 x2 = y2 = 0, x, y⊥h2(M) and (x, y) = 1. The action of g on Ĥ2(M)
is determined by the following properties: 1. It is compatible with the
grading. 2. For all α, β ∈ H2(M), one has Lαx = α, Lαβ = q(α, β)y, where
q is the BBF form. 3. Λαy = α, Λαβ = q(α, β)x.

To see that this action is well-defined, we need to check that commutator
relations hold. This follows from commutator relations in so(1,4) and Zariski
density of pairs α, β ∈ 〈ωI , ωJ , ωK〉 in the set of all pairs α, β ∈ H2(M).

Step 2: The map g−→ so(Ĥ2(M)) is surjective, which follows from the di-
mension argument (dimensions are computed using the local Torelli theorem).
Injectivity of g−→ so(Ĥ2(M)) is clear, because so(Ĥ2(M)) is given by gener-
ators and relations which hold true in g.
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Hodge structures and g-action

REMARK: The Lie algebra g = so(b1 − 2,4) is equipped with a grading

g = g−2 ⊕ g0 ⊕ g2, induced by the grading on the Mukai space: Ĥ2(M) :=

H0 ⊕H2(M)⊕H4, with H0 and H4 1-dimensional. Then g0 = g′0 ⊕H, where

H = [Lω,Λω] is the operator inducing the grading and commuting with the

rest of g0, denoted by ǧ0.

REMARK: The Lie algebra g′0 := so(b1 − 1,3) is generated by the Weil

maps WI for all complex structures I of hyperkähler type obtained by

deformations. The corresponding Lie group G0 acts as Spin(b1 − 1,3) in

odd-dimensional cohomology and SO(b1 − 1,3) on even-dimensional ones. It

is generated by the complex structure action on H2(M) for all deformations

of I.

COROLLARY: Let M be a hyperkähler manifold, and H∗(M) 7→ H∗+l(T )

an embedding to the cohomology of a torus. Suppose that this embedding

is compatible with an action of the Lie algebra generated by all Lefschetz

sl(2)-triples on M . Then it is compatible with the Hodge structures, in

the same sense as the usual Kuga-Satake map.

15



Multi-dimensional Kuga-Satake construction M. Verbitsky

Proof of the main result

THEOREM: For any hyperkahler manifold M of complex dimension n, there

exists a torus T of dimension n + k and an embedding of cohomology

space H∗(M) 7→ H∗+l(T ) which is compatible with the Hodge structures

and the Poincare pairing. Moreover, this embedding is compatible with

an action of the Lie algebra generated by all Lefschetz sl(2)-triples on M .

Proof: Let g be the Lie algebra generated by all sl(2)-triples, and W :=

H2(M). For any Clifford module V over Cl (W ), V admits a b2-symplectic

structure which gives g-action in Λ∗(V ). If we manage to produce an

embedding of g-modules H∗(M) ↪→ Λ∗(V ), we are done.

However, Λ∗(V ) is an exact representation of Spin(Ŵ ), hence its tensor powers

contain any representation of Spin(Ŵ ). These tensor powers correspond to

Λ∗(V n), which is also a Grassmann algebra for a Clifford module over Cl (W ).
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