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LCK manifolds

DEFINITION: A complex Hermitian manifold (M, I, g, ω) is called locally

conformally Kähler (LCK) if there exists a closed 1-form θ such that dω =

θ ∧ ω. The 1-form θ is called the Lee form.

REMARK: This definition is equivalent to the existence of a Kähler cover

(M̃, ω̃)→M such that the deck group Γ acts on (M, ω̃) by holomorphic

homotheties. Indeed, suppose that θ is exact, df = θ. Then e−fω is a

Kähler form. Let M̃ be a covering such that the pullback θ̃ of θ is exact,

df = θ̃ . Then the pullback of ω̃ is conformal to a Kähler form e−f ω̃.
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Vaisman theorem

REMARK: Let (M,ω, θ) be an LCK manifold, and θ′ another 1-form, homol-
ogous to θ. Write θ′ − θ = df . Then

d(efω) = ef(dω + df ∧ ω) = ef(θ ∧ ω + df ∧ ω) = θ′ ∧ (efω).

In other words, conformally equivalent LCK metric give rise to homolo-

gous Lee forms, and any closed 1-form cohomologous to the Lee form

is a Lee form of a conformally equivalent LCK metric.

THEOREM: (Vaisman)
A compact LCK manifold (M, I, θ) with non-exact Lee form does not admit

a Kähler structure.

Proof: On a compact manifold of Kähler type, any [θ] ∈ H1(M,R) can be
represented by α, obtained as a real part of a holomorphic form. This gives
dcα = 0. After a conformal change of the metric, we can assume that
dω = α ∧ ω, and ddcω = α ∧ I(α) ∧ ω. On a Kähler manifold, a positive exact
form must vanish, which implies α ∧ I(α) ∧ ω = 0 and α = 0.

REMARK: Such manifolds are called strict LCK. Further on, we shall

consider only strict LCK manifolds.
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Vaisman manifolds

DEFINITION: The LCK manifold (M, I, g, ω) is a Vaisman manifold if the

Lee form is parallel with respect to the Levi-Civita connection.

THEOREM: A compact (strictly) LCK manifold M is Vaisman if and only

if it admits a non-trivial action of a complex Lie group of positive

dimension, acting by holomorphic isometries.

DEFINITION: A linear Hopf manifold is a quotient M := Cn\0
〈A〉 where A is

a linear contraction. When A is diagonalizable, M is called diagonal Hopf.

CLAIM: All diagonal Hopf manifolds are Vaisman, and all non-diagonal

Hopf manifolds are LCK and not Vaisman.

EXAMPLE: Almost all non-Kähler compact complex surfaces are LCK.

Among those, only elliptic surfaces and some Hopf surfaces are Vaisman.

THEOREM: A compact complex manifold admits a Vaisman structure if

and only if it admits a holomorphic embedding to a diagonal Hopf

manifold.
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χ-automorphic functions

CLAIM: Conformally equivalent Kähler forms are proportional.

Proof: Let efω and ω be Kähler forms. Then 0 = d(efω) = efω ∧ df . A

multiplication with ω defines an injective map Λ1(M)
∧ω−→ Λ3(M), hence efω∧

df = 0 implies df = 0.

COROLLARY: Let (M,ω, θ) be an LCK manifold, (M̃, ω̃) its Kähler cover.

Then the deck transform group Γ acts on M̃, ω̃ by homotheties.

DEFINITION: Denote by χ : Γ→R>0 the corresponding character, γ∗ω̃ =

χ(γ)ω̃. A function ϕ on M̃ is called χ-automorphic if γ∗ϕ = χ(γ)ϕ.
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LCK manifolds with potential

DEFINITION: An LCK manifold is called an LCK manifold with LCK

potential if the Kähler form ω̃ on M̃ has a χ-automorphic potential, ω̃ = ddcϕ,

where ϕ is a χ-automorphic function.

REMARK: A small deformation of an LCK manifold might be non-LCK. A

small deformation of Vaisman might be non-Vaisman. A small deformation

of LCK with potential is LCK with potential.

EXAMPLE: A linear Hopf manifold admits an LCK structure with LCK

potential (Ornea-V.).

THEOREM: (Ornea-V.) A compact manifold M , dimCM > 2 admits an

LCK potential if and only if M admits a holomorphic embedding to a

Hopf manifold.

REMARK: This property can be used instead of the definition.

REMARK: In dimension 2 this is also true, if we assume the GSS conjecture

(generally assumed to be true).
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Minimal models

DEFINITION: Let X,Y be compact complex varieties. A meromorphic
map from X to Y is a closed complex subvariety Z ⊂ X × Y which projects
to X and to Y surjectively, and bijectively to X in a dense, open subset. A
bimeromorphic map is a closed complex subvariety Z ⊂ X×Y which projects
to X and to Y surjectively, and bijectively in a dense, open subset.

DEFINITION: Let M→M1 be a proper, holomorphic, bimeromorphic map if
irreducible complex varieties. In this case we say that M is a resolution of
M1.

DEFINITION: Let M be a compact complex variety. We say that M is
minimal if any resolution map M→M1 is biholomorphic. A minimal model
for M is a variety M1 which is bimeromorphic to M and minimal. A bimero-
morphic model of M is a compact complex variety which is bimeromorphic
to M .

REMARK: Defining the minimal models, usually one asks for some restric-
tions on the singularities of M1 (such as “terminal singularities”). Our def-
inition is stronger, and as such cannot be applied to (say) projective
manifolds, or even complex surfaces.
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LCK manifolds with potential are minimal

THEOREM: (Ornea-V.) An LCK manifold with potential is minimal.
Proof: Slide 10, but first we establish some preliminary results.

THEOREM: A bimeromorphic map of complex manifolds induces an
isomorphism of the fundamental groups.
Proof: J. Kollár, Shafarevich maps and plurigenera of algebraic varieties,
Invent. Math. 113, (1993) 177-215, §7.8.1.

LEMMA: Let (M,ω) be a compact LCK manifold, (M̃, ω̃) its Kähler cover,
and Z ⊂M a subvariety of positive dimension. Assume that the Kähler form
ω̃ is exact. Then the image of π1(Z) in π1(M) contains an infinite cyclic
subgroup.

Proof. Step 1: Denote by Z̃ ⊂ M̃ the cover of Z obtained by the homotopy
lifting lemma. If the image of π1(Z) in π1(M) is finite, the variety Z̃ is
compact. This is impossible, because Z̃ admits a Kähler form ω̃ which is
exact, bringing 0 =

∫
Z̃ ω̃

dimCZ = Vol(Z̃) > 0; a contradiction.

Step 2: By the same argument, the Kähler form ω̃ restricted to Z̃ is not
the pullback of a Kähler form on Z. This implies that the deck trans-
form group acts on (Z̃, ω̃

∣∣∣Z̃) by non-trivial homotheties, implying that

χ(π1(Z)) ⊂ R>0 is non-trivial.
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Normal varieties

DEFINITION: A complex variety X is called normal if any locally bounded

meromorphic function on an open subset U ⊂ X is holomorphic.

PROPOSITION 1: Let Z be a normal variety, and ϕ : Z1→Z a holomorphic,

closed map such that ϕ−1(z) is finite for all z and bijective in a general point.

Then ϕ is bijective and ϕ−1 is holomorphic.

Proof: Theorem 1.102, G.-M. Greuel, C. Lossen, E. I. Shustin, Introduc-

tion to singularities and deformations, Springer Monographs in Mathematics,

Springer, 2007.
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Minimal models (2)

THEOREM: (Ornea-V.)
Let M , M1 be compact complex manifolds and ϕ : M1 99K M a bimeromor-
phism. Assume that M is an LCK manifold, and let (M̃, ω̃) its Kähler cover.
Assume that the Kähler form ω̃ on M̃ is exact. Then ϕ is holomorphic.

Proof. Step 1: Let X ⊂ M ×M1 be the graph of ϕ. By definition, X is a
complex subvariety of M ×M1 which projects to M and M1 bijectively in a
general point. We denote by σ : X→M , σ1 : X→M1 the projection maps. To
prove the theorem, we need to show that σ−1

1 (z) is finite for all z ∈M1.
Then the theorem follows from Proposition 1, because M1 is smooth, hence
normal.

Step 2: Assume, on the contrary, that for some z ∈ M1, its preimage Z1 :=
σ−1

1 (z) is positive-dimensional. Since the projection of M×M1 to M is bijective
on the set M × {z}, the set Z1 projects to M holomorphically and bijectively.
Let Z ⊂M be the image of Z1 in M .

Step 3: As shown above, the image of π1(Z) in π1(M) contains an infinite
order cyclic subgroup. Therefore, its image in π1(X) = π1(M) also contains
an infinite order cyclic subgroup. This is impossible, because π1(X) =
π1(M) = π1(M1), and the projection of Z to M1 is a point.
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Algebraic dimension

DEFINITION: Let M be a compact complex manifold, and Mer(M) the field
of meromorphic functions, globally defined on M . Transcendental dimension
of Mer(M) is called the algebraic dimension of M , denoted a(M).

THEOREM: (Moishezon)
For any compact complex manifold M, one has a(M) 6 dimCM. More-
over, the equality a(M) = dimCM implies that M is bimeromorphic to a
projective manifold.

DEFINITION: A compact complex manifold M is called Moishezon if a(M) =
dimCM .

DEFINITION: Let M be a compact complex manifold. An algebraic re-
duction map is a dominant meromorphic map M 99K X with connected fibers
such that X is Moishezon, and Mer(M) = Mer(X).

THEOREM: The algebraic reduction map always exists. Moreover, it
is holomorphic over a general point of X.

Proof: K. Ueno, LNM 439.
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Isotrivial elliptic fibrations

DEFINITION: A dominant holomorphic map is called an elliptic fibration

if its general fiber is an elliptic curve, and isotrivial if its general fibers are

isomorphic elliptic curves.

THEOREM: (Ornea-Vuletescu-V.) Let M be an LCK complex manifold

which satisfies a(M) = dimCM − 1, and M 99K X its algebraic reduction.

Consider a resolution M1 of M such that the algebraic reduction π : M1→B
is holomorphic. Then M is an isotrivial elliptic fibration. Moreover, the

Lee form θ is non-exact on all fibers of π.

Proof. Step 1: Let E1 ⊂M1 be the exceptional locus of the natural bimero-

morphic map to M . By definition Π is almost holomorphic, hence Π : E→B is

not dominant. Let EB ⊂ B be the closure of its image. For any curve C ⊂ B
which does not belong to EB, consider the elliptic surface SC ⊂ M obtained

as the closure of Π−1(C\EB). The locally conformally Kähler form on M

restricted to SC can be globally conformally Kähler only if χ
∣∣∣π1(SC) is

trivial.
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Isotrivial elliptic fibrations (2)

Step 2: By Hironaka flattening theorem, we can always bimeromorphically

replace M 99K X by a map M ′ 99K X which is flat, in particular, all its fibers

have the same dimension. Therefore, we may assume that π : M1→B is

flat, hence equidimensional.

Step 3: An LCK manifold cannot be covered by a family of globally con-

formally Kähler manifolds (L. Ornea, V. Vuletescu, V., Blow-ups of locally

conformally Kähler manifolds, IMRN 2013, no. 12, 2809-2821, Lemma 3.1)

hence the Lee form is non-exact on SC. Vaisman theorem implies that SC
is non-Kähler. A non-Kähler surface of algebraic dimension 1 is elliptic

and isotrivial. This implies that π is an isotrivial elliptic fibration.
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Elliptic Vaisman manifolds

THEOREM: (Ornea-V.)

Let L be an ample bundle on a projective orbifold, such that the total space

Tot◦(L) of non-zero vectors in L is smooth. Consider an automorphism

Rα : Tot◦(L)→Tot◦(L) multiplying each vector v ∈ Tot◦(L) by a complex

number α, with |α| > 1. Then Tot◦(L)
〈Rα〉 is an elliptic Vaisman manifold,

and, moreover, all elliptic Vaisman manifolds can be obtained this way.

THEOREM: (Ornea-Vuletescu-V.) Let M be an LCK complex manifold

which satisfies a(M) = dimCM − 1. Then M is a resolution of an elliptic

Vaisman manifold.

Proof: No time for this now.
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