Minimal models for LCK manifolds

Misha Verbitsky

Estruturas geométricas em variedades April 6, 2023, IMPA

LCK manifolds

DEFINITION: A complex Hermitian manifold (M, I, g, ω) is called **locally conformally Kähler** (LCK) if there exists a closed 1-form θ such that $d\omega = \theta \wedge \omega$. The 1-form θ is called the **Lee form**.

REMARK: This definition is equivalent to the existence of a Kähler cover $(\tilde{M},\tilde{\omega}){\to}M$ such that the deck group Γ acts on $(M,\tilde{\omega})$ by holomorphic homotheties. Indeed, suppose that θ is exact, $df=\theta$. Then $e^{-f}\omega$ is a Kähler form. Let \tilde{M} be a covering such that the pullback $\tilde{\theta}$ of θ is exact, $df=\tilde{\theta}$. Then the pullback of $\tilde{\omega}$ is conformal to a Kähler form $e^{-f}\tilde{\omega}$.

Vaisman theorem

REMARK: Let (M, ω, θ) be an LCK manifold, and θ' another 1-form, homologous to θ . Write $\theta' - \theta = df$. Then

$$d(e^f\omega) = e^f(d\omega + df \wedge \omega) = e^f(\theta \wedge \omega + df \wedge \omega) = \theta' \wedge (e^f\omega).$$

In other words, conformally equivalent LCK metric give rise to homologous Lee forms, and any closed 1-form cohomologous to the Lee form is a Lee form of a conformally equivalent LCK metric.

THEOREM: (Vaisman)

A compact LCK manifold (M, I, θ) with non-exact Lee form does not admit a Kähler structure.

Proof: On a compact manifold of Kähler type, any $[\theta] \in H^1(M,\mathbb{R})$ can be represented by α , obtained as a real part of a holomorphic form. This gives $d^c\alpha=0$. After a conformal change of the metric, we can assume that $d\omega=\alpha\wedge\omega$, and $dd^c\omega=\alpha\wedge I(\alpha)\wedge\omega$. On a Kähler manifold, a positive exact form must vanish, which implies $\alpha\wedge I(\alpha)\wedge\omega=0$ and $\alpha=0$.

REMARK: Such manifolds are called **strict LCK**. Further on, **we shall consider only strict LCK manifolds.**

Vaisman manifolds

DEFINITION: The LCK manifold (M, I, g, ω) is a **Vaisman manifold** if the Lee form is parallel with respect to the Levi-Civita connection.

THEOREM: A compact (strictly) LCK manifold M is Vaisman if and only if it admits a non-trivial action of a complex Lie group of positive dimension, acting by holomorphic isometries.

DEFINITION: A linear Hopf manifold is a quotient $M := \frac{\mathbb{C}^n \setminus 0}{\langle A \rangle}$ where A is a linear contraction. When A is diagonalizable, M is called **diagonal Hopf.**

CLAIM: All diagonal Hopf manifolds are Vaisman, and all non-diagonal Hopf manifolds are LCK and not Vaisman.

EXAMPLE: Almost all non-Kähler compact complex surfaces are LCK. Among those, only elliptic surfaces and some Hopf surfaces are Vaisman.

THEOREM: A compact complex manifold admits a Vaisman structure if and only if it admits a holomorphic embedding to a diagonal Hopf manifold.

χ -automorphic functions

CLAIM: Conformally equivalent Kähler forms are proportional.

Proof: Let $e^f \omega$ and ω be Kähler forms. Then $0 = d(e^f \omega) = e^f \omega \wedge df$. A multiplication with ω defines an injective map $\Lambda^1(M) \xrightarrow{\wedge \omega} \Lambda^3(M)$, hence $e^f \omega \wedge df = 0$ implies df = 0.

COROLLARY: Let (M, ω, θ) be an LCK manifold, $(\tilde{M}, \tilde{\omega})$ its Kähler cover. Then the deck transform group Γ acts on $\tilde{M}, \tilde{\omega}$ by homotheties.

DEFINITION: Denote by $\chi: \Gamma \to \mathbb{R}^{>0}$ the corresponding character, $\gamma^* \tilde{\omega} = \chi(\gamma) \tilde{\omega}$. A function φ on \tilde{M} is called χ -automorphic if $\gamma^* \varphi = \chi(\gamma) \varphi$.

LCK manifolds with potential

DEFINITION: An LCK manifold is called **an LCK manifold with LCK potential** if the Kähler form $\tilde{\omega}$ on \tilde{M} has a χ -automorphic potential, $\tilde{\omega} = dd^c \varphi$, where φ is a χ -automorphic function.

REMARK: A small deformation of an LCK manifold might be non-LCK. A small deformation of Vaisman might be non-Vaisman. **A small deformation** of LCK with potential is LCK with potential.

EXAMPLE: A linear Hopf manifold admits an LCK structure with LCK potential (Ornea-V.).

THEOREM: (Ornea-V.) A compact manifold M, $\dim_{\mathbb{C}} M > 2$ admits an LCK potential **if and only if** M **admits a holomorphic embedding to a Hopf manifold.**

REMARK: This property can be used instead of the definition.

REMARK: In dimension 2 this is also true, if we assume the **GSS** conjecture (generally assumed to be true).

Minimal models

DEFINITION: Let X,Y be compact complex varieties. A **meromorphic map** from X to Y is a closed complex subvariety $Z \subset X \times Y$ which projects to X and to Y surjectively, and bijectively to X in a dense, open subset. A **bimeromorphic map** is a closed complex subvariety $Z \subset X \times Y$ which projects to X and to Y surjectively, and bijectively in a dense, open subset.

DEFINITION: Let $M \rightarrow M_1$ be a proper, holomorphic, bimeromorphic map if irreducible complex varieties. In this case we say that M is a resolution of M_1 .

DEFINITION: Let M be a compact complex variety. We say that M is minimal if any resolution map $M \rightarrow M_1$ is biholomorphic. A minimal model for M is a variety M_1 which is bimeromorphic to M and minimal. A bimeromorphic model of M is a compact complex variety which is bimeromorphic to M.

REMARK: Defining the minimal models, usually one asks for some restrictions on the singularities of M_1 (such as "terminal singularities"). Our definition is stronger, and as such cannot be applied to (say) projective manifolds, or even complex surfaces.

LCK manifolds with potential are minimal

THEOREM: (Ornea-V.) An LCK manifold with potential is minimal.

Proof: Slide 10, but first we establish some preliminary results.

THEOREM: A bimeromorphic map of complex manifolds induces an isomorphism of the fundamental groups.

Proof: J. Kollár, *Shafarevich maps and plurigenera of algebraic varieties,* Invent. Math. 113, (1993) 177-215, §7.8.1. ■

LEMMA: Let (M,ω) be a compact LCK manifold, $(\tilde{M},\tilde{\omega})$ its Kähler cover, and $Z \subset M$ a subvariety of positive dimension. Assume that the Kähler form $\tilde{\omega}$ is exact. Then the image of $\pi_1(Z)$ in $\pi_1(M)$ contains an infinite cyclic subgroup.

Proof. Step 1: Denote by $\tilde{Z} \subset \tilde{M}$ the cover of Z obtained by the homotopy lifting lemma. If the image of $\pi_1(Z)$ in $\pi_1(M)$ is finite, the variety \tilde{Z} is compact. This is impossible, because \tilde{Z} admits a Kähler form $\tilde{\omega}$ which is exact, bringing $0 = \int_{\tilde{Z}} \tilde{\omega}^{\dim_{\mathbb{C}} Z} = \operatorname{Vol}(\tilde{Z}) > 0$; a contradiction.

Step 2: By the same argument, the Kähler form $\tilde{\omega}$ restricted to \tilde{Z} is not the pullback of a Kähler form on Z. This implies that the deck transform group acts on $(\tilde{Z},\tilde{\omega}\big|_{\tilde{Z}})$ by non-trivial homotheties, implying that $\chi(\pi_1(Z))\subset\mathbb{R}^{>0}$ is non-trivial. \blacksquare

Normal varieties

DEFINITION: A complex variety X is called **normal** if any locally bounded meromorphic function on an open subset $U \subset X$ is holomorphic.

PROPOSITION 1: Let Z be a normal variety, and $\varphi: Z_1 \rightarrow Z$ a holomorphic, closed map such that $\varphi^{-1}(z)$ is finite for all z and bijective in a general point. Then φ is bijective and φ^{-1} is holomorphic.

Proof: Theorem 1.102, G.-M. Greuel, C. Lossen, E. I. Shustin, *Introduction to singularities and deformations*, Springer Monographs in Mathematics, Springer, 2007. ■

Minimal models (2)

THEOREM: (Ornea-V.)

Let M, M_1 be compact complex manifolds and $\varphi: M_1 \dashrightarrow M$ a bimeromorphism. Assume that M is an LCK manifold, and let $(\tilde{M}, \tilde{\omega})$ its Kähler cover. Assume that the Kähler form $\tilde{\omega}$ on \tilde{M} is exact. Then φ is holomorphic.

Proof. Step 1: Let $X \subset M \times M_1$ be the graph of φ . By definition, X is a complex subvariety of $M \times M_1$ which projects to M and M_1 bijectively in a general point. We denote by $\sigma: X \to M$, $\sigma_1: X \to M_1$ the projection maps. To prove the theorem, we need to show that $\sigma_1^{-1}(z)$ is finite for all $z \in M_1$. Then the theorem follows from Proposition 1, because M_1 is smooth, hence normal.

Step 2: Assume, on the contrary, that for some $z \in M_1$, its preimage $Z_1 := \sigma_1^{-1}(z)$ is positive-dimensional. Since the projection of $M \times M_1$ to M is bijective on the set $M \times \{z\}$, the set Z_1 projects to M holomorphically and bijectively. Let $Z \subset M$ be the image of Z_1 in M.

Step 3: As shown above, the image of $\pi_1(Z)$ in $\pi_1(M)$ contains an infinite order cyclic subgroup. Therefore, its image in $\pi_1(X) = \pi_1(M)$ also contains an infinite order cyclic subgroup. This is impossible, because $\pi_1(X) = \pi_1(M) = \pi_1(M_1)$, and the projection of Z to M_1 is a point.

Algebraic dimension

DEFINITION: Let M be a compact complex manifold, and Mer(M) the field of meromorphic functions, globally defined on M. Transcendental dimension of Mer(M) is called **the algebraic dimension of** M, denoted a(M).

THEOREM: (Moishezon)

For any compact complex manifold M, one has $a(M) \leq \dim_{\mathbb{C}} M$. Moreover, the equality $a(M) = \dim_{\mathbb{C}} M$ implies that M is bimeromorphic to a projective manifold.

DEFINITION: A compact complex manifold M is called **Moishezon** if $a(M) = \dim_{\mathbb{C}} M$.

DEFINITION: Let M be a compact complex manifold. An **algebraic reduction map** is a dominant meromorphic map $M \dashrightarrow X$ with connected fibers such that X is Moishezon, and Mer(M) = Mer(X).

THEOREM: The algebraic reduction map always exists. Moreover, it is holomorphic over a general point of X.

Proof: K. Ueno, LNM 439. ■

Isotrivial elliptic fibrations

DEFINITION: A dominant holomorphic map is called **an elliptic fibration** if its general fiber is an elliptic curve, and **isotrivial** if its general fibers are isomorphic elliptic curves.

THEOREM: (Ornea-Vuletescu-V.) Let M be an LCK complex manifold which satisfies $a(M) = \dim_{\mathbb{C}} M - 1$, and $M \dashrightarrow X$ its algebraic reduction. Consider a resolution M_1 of M such that the algebraic reduction $\pi: M_1 \to B$ is holomorphic. Then M is an isotrivial elliptic fibration. Moreover, the Lee form θ is non-exact on all fibers of π .

Proof. Step 1: Let $E_1 \subset M_1$ be the exceptional locus of the natural bimeromorphic map to M. By definition Π is almost holomorphic, hence $\Pi: E \to B$ is not dominant. Let $E_B \subset B$ be the closure of its image. For any curve $C \subset B$ which does not belong to E_B , consider the elliptic surface $S_C \subset M$ obtained as the closure of $\Pi^{-1}(C \setminus E_B)$. The locally conformally Kähler form on M restricted to S_C can be globally conformally Kähler only if $\chi|_{\pi_1(S_C)}$ is trivial.

Isotrivial elliptic fibrations (2)

Step 2: By Hironaka flattening theorem, we can always bimeromorphically replace $M \dashrightarrow X$ by a map $M' \dashrightarrow X$ which is flat, in particular, all its fibers have the same dimension. Therefore, we may assume that $\pi: M_1 \to B$ is flat, hence equidimensional.

Step 3: An LCK manifold cannot be covered by a family of globally conformally Kähler manifolds (L. Ornea, V. Vuletescu, V., *Blow-ups of locally conformally Kähler manifolds*, IMRN 2013, no. 12, 2809-2821, Lemma 3.1) hence the Lee form is non-exact on S_C . Vaisman theorem implies that S_C is non-Kähler. A non-Kähler surface of algebraic dimension 1 is elliptic and isotrivial. This implies that π is an isotrivial elliptic fibration.

Elliptic Vaisman manifolds

THEOREM: (Ornea-V.)

Let L be an ample bundle on a projective orbifold, such that the total space $\operatorname{Tot}^\circ(L)$ of non-zero vectors in L is smooth. Consider an automorphism R_α : $\operatorname{Tot}^\circ(L) \to \operatorname{Tot}^\circ(L)$ multiplying each vector $v \in \operatorname{Tot}^\circ(L)$ by a complex number α , with $|\alpha| > 1$. Then $\frac{\operatorname{Tot}^\circ(L)}{\langle R_\alpha \rangle}$ is an elliptic Vaisman manifold, and, moreover, all elliptic Vaisman manifolds can be obtained this way.

THEOREM: (Ornea-Vuletescu-V.) Let M be an LCK complex manifold which satisfies $a(M) = \dim_{\mathbb{C}} M - 1$. Then M is a resolution of an elliptic Vaisman manifold.

Proof: No time for this now.