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LCK manifolds

DEFINITION: A complex Hermitian manifold (M,I,qg,w) is called locally
conformally Kahler (LCK) if there exists a closed 1-form 6 such that dw =
O ANw. The 1-form 0 is called the Lee form.

REMARK: This definition is equivalent to the existence of a Kahler cover
(M,©5)—M such that the deck group I acts on (M,&) by holomorphic
homotheties. Indeed, suppose that 6 is exact, df = 6. Then e~ fw is a
Kahler form. Let M be a covering such that the pullback 0 of 6 is exact,
df = 6 . Then the pullback of & is conformal to a Kihler form eI
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Vaisman theorem

REMARK: Let (M, w,0) be an LCK manifold, and 8’ another 1-form, homol-
ogous to 0. Write 8/ — 0 =df. Then

dedw) =el (do+df Aw) =el (OAw+df Aw) =60 A (el w).

In other words, conformally equivalent LCK metric give rise to homolo-
gous Lee forms, and any closed 1-form cohomologous to the Lee form
IS a Lee form of a conformally equivalent LCK metric.

THEOREM: (Vaisman)
A compact LCK manifold (M, I,0) with non-exact Lee form does not admit
a Kahler structure.

Proof: On a compact manifold of Kahler type, any [0] € H1(M,R) can be
represented by «, obtained as a real part of a holomorphic form. This gives
d°a@ = 0. After a conformal change of the metric, we can assume that
dv=aAw, and dd‘w = a A I(a) Aw. On a Kahler manifold, a positive exact
form must vanish, which implies aAI(e) Aw=0and a=0. =

REMARK: Such manifolds are called strict LCK. Further on, we shall

consider only strict LCK manifolds.
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Vaisman manifolds

DEFINITION: The LCK manifold (M, I,g,w) is a Vaisman manifold if the
Lee form is parallel with respect to the Levi-Civita connection.

THEOREM: A compact (strictly) LCK manifold M is Vaisman if and only
If it admits a non-trivial action of a complex Lie group of positive
dimension, acting by holomorphic isometries.

C™\0

DEFINITION: A linear Hopf manifold is a quotient M = A where A is

a linear contraction. When A is diagonalizable, M is called diagonal Hopf.

CLAIM: All diagonal Hopf manifolds are Vaisman, and all non-diagonal
Hopf manifolds are LCK and not Vaisman.

EXAMPLE: Almost all non-Kahler compact complex surfaces are LCK.
Among those, only elliptic surfaces and some Hopf surfaces are VVaisman.

THEOREM: A compact complex manifold admits a Vaisman structure if
and only if it admits a holomorphic embedding to a diagonal Hopf

manifold.
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x-automorphic functions
CLAIM: Conformally equivalent Kahler forms are proportional.

Proof: Let efw and w be Kihler forms. Then 0 = d(efw) = efw Adf. A
multiplication with w defines an injective map AL(M) 2% A3(M), hence efw A
df =0 implies df =0. m

COROLLARY: Let (M,w,0) be an LCK manifold, (M,&) its Kahler cover.
Then the deck transform group I acts on M,& by homotheties. =

DEFINITION: Denote by y : T—=R>0 the corresponding character, ~ o =
x(7)@. A function ¢ on M is called y-automorphic if v*¢o = x (7).
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LCK manifolds with potential

DEFINITION: An LCK manifold is called an LCK manifold with LCK
potential if the Kihler form & on M has a y-automorphic potential, & = dd e,
where ¢ is a y-automorphic function.

REMARK: A small deformation of an LCK manifold might be non-LCK. A
small deformation of Vaisman might be non-Vaisman. A small deformation
of LCK with potential is LCK with potential.

EXAMPLE: A linear Hopf manifold admits an LCK structure with LCK
potential (Ornea-V.).

THEOREM: (Ornea-V.) A compact manifold M, dim¢c M > 2 admits an
LCK potential if and only if M admits a holomorphic embedding to a
Hopf manifold.

REMARK: This property can be used instead of the definition.

REMARK: In dimension 2 this is also true, if we assume the GSS conjecture

(generally assumed to be true).
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Minimal models

DEFINITION: Let X,Y be compact complex varieties. A meromorphic
map from X to Y is a closed complex subvariety Z C X x Y which projects
to X and to Y surjectively, and bijectively to X in a dense, open subset. A
bimeromorphic map is a closed complex subvariety Z C X XY which projects
to X and to Y surjectively, and bijectively in a dense, open subset.

DEFINITION: Let M— M4 be a proper, holomorphic, bimeromorphic map if
irreducible complex varieties. In this case we say that M is a resolution of
M.

DEFINITION: Let M be a compact complex variety. We say that M is
minimal if any resolution map M—M; is biholomorphic. A minimal model
for M is a variety My which is bimeromorphic to M and minimal. A bimero-
morphic model of M is a compact complex variety which is bimeromorphic
to M.

REMARK: Defining the minimal models, usually one asks for some restric-
tions on the singularities of M7 (such as “terminal singularities”). Our def-
inition is stronger, and as such cannot be applied to (say) projective
manifolds, or even complex surfaces.
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LCK manifolds with potential are minimal

THEOREM: (Ornea-V.) An LCK manifold with potential is minimal.
Proof: Slide 10, but first we establish some preliminary results.

THEOREM: A bimeromorphic map of complex manifolds induces an
iIsomorphism of the fundamental groups.

Proof:. J. Kollar, Shafarevich maps and plurigenera of algebraic varieties,
Invent. Math. 113, (1993) 177-215, §7.8.1. =

LEMMA: Let (M,w) be a compact LCK manifold, (M,&) its Kahler cover,
and Z C M a subvariety of positive dimension. Assume that the Kahler form
@ is exact. Then the image of 71(Z) Iin 71 (M) contains an infinite cyclic
subgroup.

Proof. Step 1: Denote by Z C M the cover of Z obtained by the homotopy
lifting lemma. If the image of 71(Z) in =1 (M) is finite, the variety Z is
compact. This is impossible, because Z admits a Kahler form & which is
exact, bringing 0 = [;&9™McZ = Vol(Z) > 0; a contradiction.

Step 2: By the same argument, the Kahler form & restricted to Z is not
the pullback of a Kahler form on Z. This implies that the deck trans-
form group acts on (Z,&})Z) by non-trivial homotheties, implying that

y(71(2)) € R>O is non-trivial. =
8
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Normal varieties

DEFINITION: A complex variety X is called normal if any locally bounded
meromorphic function on an open subset U C X is holomorphic.

PROPOSITION 1: Let Z be a normal variety, and ¢ : Z1—Z a holomorphic,
closed map such that ¢—1(2) is finite for all z and bijective in a general point.
Then ¢ is bijective and ¢! is holomorphic.

Proof: Theorem 1.102, G.-M. Greuel, C. Lossen, E. I. Shustin, Introduc-
tion to singularities and deformations, Springer Monographs in Mathematics,
Springer, 2007. =
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Minimal models (2)

THEOREM: (Ornea-V.)
Let M, My be compact complex manifolds and ¢ : My --» M a bimeromor-
phism. Assume that M is an LCK manifold, and let (M,&) its Kidhler cover.

~

Assume that the Kahler form & on M is exact. Then ¢ is holomorphic.

Proof. Step 1: Let X C M x My be the graph of . By definition, X is a
complex subvariety of M x My which projects to M and My bijectively in a
general point. We denotebyo: X—M, o1 : X—M; the projection maps. To
prove the theorem, we need to show that al_l(z) Is finite for all z € M.
Then the theorem follows from Proposition 1, because My is smooth, hence
normal.

Step 2: Assume, on the contrary, that for some z € M7, its preimage 21 .=
al_l(z) is positive-dimensional. Since the projection of M x M7 to M is bijective
on the set M x {z}, the set Z1 projects to M holomorphically and bijectively.
Let Z C M be the image of Z; in M.

Step 3: As shown above, the image of m1(Z) in m1(M) contains an infinite
order cyclic subgroup. Therefore, its image in 71(X) = w1 (M) also contains
an infinite order cyclic subgroup. This is impossible, because 71(X) =
w1 (M) = m1(M71), and the projection of Z to M7 is a point. =
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Algebraic dimension

DEFINITION: Let M be a compact complex manifold, and Mle:(M) the field
of meromorphic functions, globally defined on M. Transcendental dimension
of Mex(M) is called the algebraic dimension of M, denoted a(M).

THEOREM: (Moishezon)

For any compact complex manifold M, one has a(M) < dimgc M. More-
over, the equality a(M) = dimgc M implies that M is bimeromorphic to a
projective manifold.

DEFINITION: A compact complex manifold M is called Moishezon if a(M) =
dim(c M.

DEFINITION: Let M be a compact complex manifold. An algebraic re-
duction map is a dominant meromorphic map M --» X with connected fibers
such that X is Moishezon, and Me:(M) = Mer(X).

THEOREM: The algebraic reduction map always exists. Moreover, it
IS holomorphic over a general point of X.

Proof: K. Ueno, LNM 439. =
11



Minimal models for LCK manifolds M. Verbitsky
Isotrivial elliptic fibrations

DEFINITION: A dominant holomorphic map is called an elliptic fibration
if its general fiber is an elliptic curve, and isotrivial if its general fibers are
iIsomorphic elliptic curves.

THEOREM: (Ornea-Vuletescu-V.) Let M be an LCK complex manifold
which satisfies a(M) = dimgcM — 1, and M --» X its algebraic reduction.
Consider a resolution M4y of M such that the algebraic reduction = : M;—B
is holomorphic. Then M is an isotrivial elliptic fibration. Moreover, the
Lee form 6 is non-exact on all fibers of .

Proof. Step 1: Let 1 C My be the exceptional locus of the natural bimero-
morphic map to M. By definition I1 is almost holomorphic, hence Il : E—B is
not dominant. Let Eg C B be the closure of its image. For any curve C C B
which does not belong to Epg, consider the elliptic surface So C M obtained
as the closure of M~1(C\Eg). The locally conformally Kahler form on M
restricted to 5S¢ can be globally conformally Kahler only if x|, (s.) IS
trivial.
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Isotrivial elliptic fibrations (2)

Step 2: By Hironaka flattening theorem, we can always bimeromorphically
replace M --» X by a map M’ --» X which is flat, in particular, all its fibers
have the same dimension. Therefore, we may assume that = : M;{—B is
flat, hence equidimensional.

Step 3: An LCK manifold cannot be covered by a family of globally con-
formally Kahler manifolds (L. Ornea, V. Vuletescu, V., Blow-ups of locally
conformally Kahler manifolds, IMRN 2013, no. 12, 2809-2821, Lemma 3.1)
hence the Lee form is non-exact on So. Vaisman theorem implies that Sq
is non-Kahler. A non-Kahler surface of algebraic dimension 1 is elliptic
and isotrivial. This implies that « is an isotrivial elliptic fibration. =
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Elliptic Vaisman manifolds

THEOREM: (Ornea-V.)

Let L be an ample bundle on a projective orbifold, such that the total space
Tot°(L) of non-zero vectors in L is smooth. Consider an automorphism
Rqo : Tot°(L)— Tot°(L) multiplying each vector v € Tot°(L) by a complex
number «, with |a| > 1. Then T?goff) is an elliptic Vaisman manifold,

and, moreover, all elliptic Vaisman manifolds can be obtained this way.

THEOREM: (Ornea-Vuletescu-V.) Let M be an LCK complex manifold
which satisfies a(M) = dimg M — 1. Then M is a resolution of an elliptic
Vaisman manifold.

Proof: No time for this now. =
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