Balanced metrics on locally conformally Kahler manifolds

Misha Verbitsky

Estruturas geométricas em variedades May 9, 2023, IMPA

joint work with Liviu Ornea

Complex structures

DEFINITION: Let *M* be a smooth manifold. An **almost complex structure** is an operator *I* : $TM \rightarrow TM$ which satisfies $I^2 = -\operatorname{Id}_{TM}$.

The eigenvalues of this operator are $\pm \sqrt{-1}$. The corresponding eigenvalue decomposition is denoted $TM \otimes \mathbb{C} = T^{0,1}M \oplus T^{1,0}(M)$.

DEFINITION: An almost complex structure is **integrable** if $\forall X, Y \in T^{1,0}M$, one has $[X,Y] \in T^{1,0}M$. In this case *I* is called **a complex structure operator**. A manifold with an integrable almost complex structure is called **a complex manifold**.

THEOREM: (Newlander-Nirenberg) This definition is equivalent to the usual one.

The Hodge decomposition in linear algebra

DEFINITION: The Hodge decomposition $V \otimes_{\mathbb{R}} \mathbb{C} := V^{1,0} \oplus V^{0,1}$ is defined in such a way that $V^{1,0}$ is a $\sqrt{-1}$ -eigenspace of I, and $V^{0,1}$ a $-\sqrt{-1}$ -eigenspace.

REMARK: Let $V_{\mathbb{C}} := V \otimes_{\mathbb{R}} \mathbb{C}$. The Grassmann algebra of skew-symmetric forms $\Lambda^n V_{\mathbb{C}} := \Lambda^n_{\mathbb{R}} V \otimes_{\mathbb{R}} C$ admits a decomposition

$$\Lambda^n V_{\mathbb{C}} = \bigoplus_{p+q=n} \Lambda^p V^{1,0} \otimes \Lambda^q V^{0,1}$$

We denote $\Lambda^{p}V^{1,0} \otimes \Lambda^{q}V^{0,1}$ by $\Lambda^{p,q}V$. The resulting decomposition $\Lambda^{n}V_{\mathbb{C}} = \bigoplus_{p+q=n} \Lambda^{p,q}V$ is called **the Hodge decomposition of the Grassmann algebra**.

REMARK: The operator I induces U(1)-action on V by the formula $\rho(t)(v) = \cos t \cdot v + \sin t \cdot I(v)$. We extend this action on the tensor spaces by muptiplicativity.

REMARK: The same construction **defines the Hodge decomposition on the de Rham algebra** of any almost complex manifold.

U(1)-representations and the weight decomposition

REMARK: Any complex representation W of U(1) is written as a sum of 1-dimensional representations $W_i(p)$, with U(1) acting on each $W_i(p)$ as $\rho(t)(v) = e^{\sqrt{-1}pt}(v)$. The 1-dimensional representations are called weight p representations of U(1).

DEFINITION: A weight decomposition of a U(1)-representation W is a decomposition $W = \bigoplus W^p$, where each $W^p = \bigoplus_i W_i(p)$ is a sum of 1-dimensional representations of weight p.

REMARK: The Hodge decomposition $\Lambda^n V_{\mathbb{C}} = \bigoplus_{p+q=n} \Lambda^{p,q} V$ is a weight decomposition, with $\Lambda^{p,q} V$ being a weight p - q-component of $\Lambda^n V_{\mathbb{C}}$.

REMARK: $V^{p,p}$ is the space of U(1)-invariant vectors in $\Lambda^{2p}V$.

Further on, TM is the tangent bundle on a manifold, and $\Lambda^i M$ the space of differential *i*-forms. It is a Grassman algebra on TM

The twisted differential d^c

DEFINITION: The **twisted differential** is defined as $d^c := IdI^{-1}$.

CLAIM: Let (M, I) be a complex manifold. Then $\partial := \frac{d + \sqrt{-1} d^c}{2}$, $\overline{\partial} := \frac{d - \sqrt{-1} d^c}{2}$ are the Hodge components of d, $\partial = d^{1,0}$, $\overline{\partial} = d^{0,1}$.

Proof: Let *V* be a space generated by *d*, *IdI*. The natural action of *U*(1) generated by $e^{\mathcal{W}}$ preserves *V*. Since *d* has only two Hodge components. *U*(1) acts with weights $\sqrt{-1}$ and $-\sqrt{-1}$, and its Hodge components are expressed as above.

THEOREM: The following statements are equivalent.

1. *I* is integrable. 2. $\partial^2 = 0$. 3. $\overline{\partial}^2 = 0$. 4. $dd^c = -d^c d$ 5. $dd^c = 2\sqrt{-1} \partial \overline{\partial}$.

DEFINITION: The operator dd^c is called **the pluri-Laplacian**.

Kähler manifolds

DEFINITION: An Riemannian metric g on an almost complex manifold M is called **Hermitian** if g(Ix, Iy) = g(x, y). In this case, $g(x, Iy) = g(Ix, I^2y) = -g(y, Ix)$, hence $\omega(x, y) := g(x, Iy)$ is skew-symmetric.

DEFINITION: The differential form $\omega \in \Lambda^{1,1}(M)$ is called the Hermitian form of (M, I, g).

REMARK: It is U(1)-invariant, hence of Hodge type (1,1).

DEFINITION: A complex Hermitian manifold (M, I, ω) is called Kähler if $d\omega = 0$. The cohomology class $[\omega] \in H^2(M)$ of a form ω is called **the Kähler** class of M, and ω the Kähler form.

REMARK: A closed complex submanifold of a Kähler manifold is Kähler.

REMARK: The Kähler condition is a way too strong, and "majority" of compact complex manifolds are non-Kähler.

6

Gauduchon metrics

DEFINITION: A Hermitian metric ω on a complex *n*-manifold is called **Gauduchon** if $dd^c(\omega^{n-1}) = 0$.

THEOREM: (P. Gauduchon, 1978) Let M be a compact, complex manifold, and h a Hermitian form. Then there exists a Gauduchon metric conformally equivalent to h, and it is unique in any given conformal class, up to a constant multiplier.

REMARK: This is one of **very few statements** which is valid (and can be applied) to all compact complex manifolds.

REMARK: This is very useful, because allows to define a degree of a holomorphic bundle, define stability, and prove a **non-Kähler version of Donaldson-Uhlenbeck-Yau therem.**

Balanced and SKT metrics on complex manifolds

DEFINITION: For each $1 \le k \le n-1$, the condition $d(\omega^k) = 0$ implies $d\omega = 0$. Hermitian metric is called **balanced** if $d(\omega^{n-1}) = 0$. All twistor spaces are balanced (Hitchin). All Moishezon manifolds are balanced (Alessandrini-Bassaneli). The notion was introduced by Michelson in "On the existence of special metrics in complex geometry," Acta Math. 149 (1982).

DEFINITION: A metric g on a manifold M with dim_{$\mathbb{C}} <math>M > 2$ is called **SKT** ("strong Kähler torsion") or pluriclosed if $dd^c\omega = 0$.</sub>

REMARK: SKT condition is essential in the literature about generalized complex and generalized Kähler structures (Hitchin, Gualtieri, Cavalcanti).

REMARK: In dimension 2 the condition $dd^c\omega = 0$ is the Gauduchon condition, and we always assume $\dim_{\mathbb{C}} M > 0$.

DEFINITION: A form ω is called **taming** or **symplectic-Hermitian** if it is a (1,1)-part of a symplectic form.

REMARK: Clearly, a symplectic-Hermitian form is pluriclosed. The converse is false. Indeed, there are no examples of symplectic-Hermitian form on non-Kähler compact complex manifolds; Streets-Tian conjectured they don't exist.

LCK manifolds

DEFINITION: A complex Hermitian manifold of dimension $\dim_{\mathbb{C}} > 1$ (M, I, g, ω) is called **locally conformally Kähler** (LCK) if there exists a closed 1-form θ such that $d\omega = \theta \wedge \omega$. The 1-form θ is called the **Lee form** and its cohomology class **the Lee class**.

REMARK: This definition is equivalent to the existence of a Kähler cover $(\tilde{M}, \tilde{\omega}) \rightarrow M$ such that the deck group Γ acts on $(M, \tilde{\omega})$ by holomorphic homotheties. Indeed, suppose that θ is exact, $df = \theta$. Then $e^{-f}\omega$ is a Kähler form. Let \tilde{M} be a covering such that the pullback $\tilde{\theta}$ of θ is exact, $df = \tilde{\theta}$. Then the pullback of $\tilde{\omega}$ is conformal to a Kähler form $e^{-f}\tilde{\omega}$.

REMARK: All known compact LCK manifolds belong to one of three classes: blow-ups of LCK with potential, blow-ups of Oeljeklaus-Toma and Kato. I will define these three classes later in this talk.

The main result today:

THEOREM: Let (M, I) be a compact complex non-Kähler LCK-manifold which is birational to either LCK with potential, Oeljeklaus-Toma or Kato manifold. Then (M, I) does not admit a balanced metric.

9

SKT, balanced, LCK properties are exclusive

CONJECTURE: Let *M* be a compact complex manifold which admits Hermitian forms ω_1 and ω_2 which belong to two classes in the set {SKT, balanced, LCK}. **Then** *M* **admits a Kähler structure.**

A weaker form of this statement is not hard to prove.

THEOREM: Let (M, I, ω) be a compact complex Hermitian *n*-manifold. Assume that ω is either

- (a). SKT and LCK,
- (b). balanced and LCK,
- (c). SKT and balanced.

Then ω is Kähler.

SKT, balanced, LCK properties are exclusive

THEOREM: Let (M, I, ω) be a compact complex Hermitian *n*-manifold. Assume that ω is either

- (a). SKT and LCK,
- (b). balanced and LCK,
- (c). SKT and balanced.

Then ω is Kähler.

Proof of (a): Assume (M, I, ω) is **SKT and LCK.** Let $\theta \in \Lambda^1(M)$ be the Lee form, $d\omega = \omega \wedge \theta$. Let $\theta^c := I(\theta)$. Then $d^c \omega = I^{-1} dI(\omega) = I^{-1}(\theta \wedge \omega) = -\theta^c \wedge \omega$. This gives

$$0 = d^{c}d\omega = d^{c}(\theta\omega) = d(d^{c}\theta) \wedge \omega - \theta \wedge d^{c}\omega = dd^{c}(\theta) \wedge \omega + \theta \wedge \theta^{c}\omega \quad (*)$$

Since dim_C M > 2, the multiplication map $\eta \mapsto \eta \wedge \omega$ is injective, hence (*) implies that $dd^c(\theta) = -\theta \wedge \theta^c$. Then

 $dd^{c}\omega^{n-1} = (n-1)dd^{c}(\theta) \wedge \omega^{n-1} - (n-1)^{2}\theta \wedge \theta^{c} \wedge \omega^{n-1} = -(n-1)(n-2)\theta \wedge \theta^{c} \wedge \omega^{n-1}.$ However, $\theta \wedge \theta^{c} \wedge \omega^{n-1} = 2n|\theta|^{2}\omega^{n}$. This brings a contradiction:

$$0 = \int_{M} dd^{c} \omega^{n-1} = \int_{M} -(n-1)(n-2)\theta \wedge \theta^{c} \wedge \omega^{n-1} = -\frac{(n-1)(n-2)}{2}n \int_{M} |\theta| \wedge \omega^{n}$$

The last integral vanishes if and only if $\theta = 0$, hence ω is closed.

SKT, balanced, LCK properties are exclusive (2)

Proof of (b): Assume (M, I, ω) is balanced and LCK. Then $0 = d\omega^{n-1} = (n-1)\theta \wedge \omega^{n-1}$. However, the multiplication map $\eta \mapsto \eta \wedge \omega^{n-1}$ is an isomorphism for all η and any Hermitian ω (do this as an exercise), hence again $\theta = 0$.

Proof of (c). Step 1: Assume (M, I, ω) **is balanced and SKT.** Then $d(\omega^{n-1}) = (d\omega) \wedge \omega^{n-2} = 0$, and $dd^c \omega = 0$, hence $d\omega$ and $d^c \omega$ are d and d^c -closed. The equation $(d\omega) \wedge \omega^{n-2} = 0$ implies that $d\omega$ is **primitive**, that is, satisfies $\Lambda_{\omega}(d\omega) = 0$, where $\Lambda_{\omega} = L^*_{\omega}$, and $L_{\omega}(\eta) := \omega \wedge \eta$. This form is of Hodge type (1,2)+(2,1) because ω is of type (1,1), and de Rham differential shifts the Hodge grading at most by 1.

Step 2: By Hodge-Riemann relations, any primitive (1,2)+(2,1) real form α satisfies $\alpha \wedge I(\alpha) \wedge \omega^{n-3} = -C|\alpha|^2 \omega^n$, where C is a positive rational constant.

Step 3: Let $\alpha := d\omega$. Since ω is SKT, we have

 $0 = dd^{c}(\omega^{n-1}) = (n-1)(n-2)d\omega \wedge d^{c}\omega \wedge \omega^{n-3} = -(n-1)(n-2)C|\alpha|^{2}\omega^{n} \quad (**)$ (by step 1, α is a primitive (1,2) + (2,1)-form, then (**) follows from Step 2), hence $d\omega = 0$.

Vaisman theorem

REMARK: Let (M, ω, θ) be an LCK manifold, and θ' another 1-form, homologous to θ . Write $\theta' - \theta = df$. Then

$$d(e^{f}\omega) = e^{f}(d\omega + df \wedge \omega) = e^{f}(\theta \wedge \omega + df \wedge \omega) = \theta' \wedge (e^{f}\omega).$$

In other words, conformally equivalent LCK metric give rise to homologous Lee forms, and any closed 1-form cohomologous to the Lee form is a Lee form of a conformally equivalent LCK metric.

THEOREM: (Vaisman) A compact LCK manifold (M, I, θ) with non-exact Lee form **does not admit a Kähler structure.**

Proof: On a compact manifold of Kähler type, any $[\theta] \in H^1(M, \mathbb{R})$ can be represented by α , obtained as a real part of a holomorphic form. This gives $d^c \alpha = 0$. After a conformal change of the metric, we can assume that $d\omega = \alpha \wedge \omega$, and $dd^c \omega = \alpha \wedge I(\alpha) \wedge \omega$. On a Kähler manifold, a positive exact form must vanish, which implies $\alpha \wedge I(\alpha) \wedge \omega = 0$ and $\alpha = 0$.

REMARK: Such manifolds are called **strict LCK**. Further on, **we shall consider only strict LCK manifolds.**

Izu Vaisman

Izu Vaisman, b. June 22, 1938 in Jassy, Romania

Vaisman manifolds

DEFINITION: An LCK manifold is a **Vaisman manifold** if it admits a continuous action of complex isometries.

REMARK: This is actually a theorem, due to many autors, primarily Kamishima, Ornea, Istrati, V.; the original definition is that " (M, I, g, ω) is Vaisman if the Lee form θ is parallel with respect to the Levi-Civita connection."

EXAMPLE: All non-Kähler elliptic surfaces are Vaisman.

DEFINITION: A linear Hopf manifold is a quotient $M := \frac{\mathbb{C}^n \setminus 0}{\langle A \rangle}$ where A is a linear contraction. When A is diagonalizable, M is called **diagonal Hopf**.

EXAMPLE: All diagonal Hopf manifolds are Vaisman, and when A cannot be diagonalized, M is LCK and not Vaisman.

THEOREM: (Ornea-V.)

All complex submanifolds of Vaisman manifolds are Vaisman. All Vaisman manifolds admit a holomorphic embedding to a diagonal Hopf manifold (which is Vaisman, too).

LCK manifolds with potential

DEFINITION: An LCK manifold is called **an LCK manifold with LCK potential** if the Kähler form $\tilde{\omega}$ on \tilde{M} has a χ -automorphic potential, $\tilde{\omega} = dd^c \varphi$, where φ is a χ -automorphic function.

REMARK: A small deformation of an LCK manifold might be non-LCK. A small deformation of Vaisman might be non-Vaisman. **A small deformation of LCK with potential is LCK with potential.**

EXAMPLE: All Hopf manifolds admit an LCK structure with LCK potential (Ornea-V.).

THEOREM: (Ornea-V.) A compact manifold M, dim_{$\mathbb{C}} <math>M > 2$ admits an LCK potential **if and only if** M **admits a holomorphic embedding to a Hopf manifold.**</sub>

REMARK: This property can be used instead of the definition.

REMARK: In dimension 2 this is also true if we assume the GSS conjecture.

Normed fields

DEFINITION: An absolute value on a field k is a function $|\cdot|$: $k \to \mathbb{R}^{\geq 0}$, satisfying the following

- **1. Zero:** $|x| = 0 \Leftrightarrow x = 0$.
- **2.** Multiplicativity: |xy| = |x||y|.
- 3. There exists c > 0 such that $|\cdot|^c$ satisfies the triangle inequality.

EXAMPLE: The usual absolute value on \mathbb{Q} , \mathbb{R} , \mathbb{C} .

EXAMPLE: Let p – be a prime number, and $m, n \in \mathbb{Z}$ coprime with p. Define p-adic absolute value on \mathbb{Q} via $|\frac{m}{n}p^k| := p^{-k}$.

REMARK: *p*-adic absolute value satisfies an additional "non-archimedean axiom": $|x+y| \leq \max(|x|, |y|)$. Such absolute values are called **non-archimedean**.

REMARK: Any power of non-archimedean absolute value is again nonarchimedean, and satisfies the triangle inequality.

Normed fields and topology

DEFINITION: Let $|\cdot|$ be an absolute value on a field *F*. Consider topology on *F* with open sets generated by

$$B_{\varepsilon}(x) := \{ y \in k \mid |x - y| < \varepsilon \}.$$

Absolute values are called **equivalent** if they induce the same topology.

THEOREM: Absolute values $|\cdot|_1, |\cdot|_2$ are equivalent if and only if $|\cdot|_1 = |\cdot|_2^c$ for some c > 0.

THEOREM: (Ostrowski) **Every** absolute value on \mathbb{Q} is equivalent to the usual ("archimedean") one or to *p*-adic one.

DEFINITION: A completion of a field k under an absolute value $|\cdot|$ is a completion of k in a metric $|\cdot|^c$, where c > 0 is a constant such that $|\cdot|^c$ satisfies the triangle inequality.

REMARK: A completion of a field is again a field.

EXAMPLE: A completion of \mathbb{Q} under the *p*-adic absolute value is called **a** field of *p*-adic numbers, denoted \mathbb{Q}_p .

M. Verbitsky

Local fields

DEFINITION: A finite extension K:k of fields is a field $K \supset k$ which is finite-dimensional as a vector space over k. A number field is a finite extension of \mathbb{Q} . Functional field is a finite extension of $\mathbb{F}_p(t)$. Global field is a number or functional field. Local field is a completion of a global field under a non-trivial absolute value.

THEOREM: Let \overline{k} be a field which is complete and locally compact under some absolute value. Then \overline{k} is a local field.

DEFINITION: Let K:k be a finite extension, and $x \in K$. Consider the multiplication by x as a k-linear endomorphism of K. Define the norm $N_{K/k}(x)$ as a determinant of this operator.

REMARK: Norm defines a homomorphism of multiplicative groups $K^* \rightarrow k^*$.

REMARK: For Galois extensions, the norm $N_{K/k}(x)$ is a product of all elements conjugate to x.

THEOREM: Let \overline{K} : \overline{k} be a finite extension of local fields, degree n. Then an absolute value on \overline{k} is uniquely extended to \overline{K} . Moreover, this extension is expressed as $|x| := |N_{K/k}(x)|^{\frac{1}{n}}$.

Absolute values and extensions of global fields

CLAIM: Let A, B be extensions of a field k, of characteristic 0 where A:k is finite. Consider $A \otimes_k B$ as an k-algebra. Then $A \otimes_k B$ is a direct sum of fields, containing A and B.

THEOREM: Let k be a number field, $|\cdot|$ an absolute value, K:k a finite extension, and \overline{k} – its completion. Consider a decomposition $K \otimes_k \overline{k}$ into a direct sum of fields $K \otimes_k \overline{k} := \bigoplus_i \overline{K}_i$. Then each extension of an absolute value $|\cdot|$ from k to K is induced from some \overline{K}_i , and all such extensions are non-equivalent.

REMARK: When $k = \mathbb{Q}$, and $|\cdot|$ is the usual (archimedean) absolute value, we obtain that all K_i are extensions of \mathbb{R} , that is, isomorphic to \mathbb{R} or \mathbb{C} . This gives

COROLLARY: For each number field K of degree n over \mathbb{Q} , there exists only a finite number of different homomorphisms $K \hookrightarrow \mathbb{C}$, all of them injective. Denote by s the number of embeddings whose image lies in $\mathbb{R} \subset \mathbb{C}$ (such an embedding is called real), and 2t the number of embedding, whose image does not lie in \mathbb{R} ("complex embeddings"). Then s + 2t = n.

Dirichlet unit theorem

DEFINITION: Let $K:\mathbb{Q}$ be a number field of degree n. The ring of integers $\mathcal{O}_K \subset K$ is an integral closure of \mathbb{Z} in K, that is, the set of all roots in K of monic polynomials $P(t) = t^n + a_{n-1}t^{n-1} + a_{n-2}t^{n-2} + ... + a_0$ with integer coefficients $a_i \in \mathbb{Z}$.

CLAIM: An additive group \mathcal{O}_{K}^{+} is a finitely generated abelian group of rank n.

DEFINITION: A unit of a ring \mathcal{O}_K is an element $u \in \mathcal{O}_K$, such that u^{-1} also belongs to \mathcal{O}_K .

REMARK: $u \in \mathcal{O}_K$ is a unit if and only if the norm $N_{K/\mathbb{Q}}(x) \in \mathbb{Z}$ is invertible, that is, $N_{K/\mathbb{Q}}(x) = \pm 1$.

Dirichlet's unit theorem: Let K be a number field which has s real embeddings and 2t complex ones. Then **the group of units** \mathcal{O}_K^* **is isomorphic to** $G \times \mathbb{Z}^{t+s-1}$, where G is a finite group of roots of unity contained in K. Moreover, if s > 0, one has $G = \pm 1$.

REMARK: For a quadratic field, the group of units is a group of solutions of Pell's equation.

Oeljeklaus-Toma manifolds

Let *K* be a number field which has 2t complex embedding denoted $\tau_i, \overline{\tau}_i$ and *s* real ones denoted σ_i , s > 0, t > 0.

Let $\mathcal{O}_{K}^{*,+} := \mathcal{O}_{K}^{*} \cap \bigcap_{i} \sigma_{i}^{-1}(\mathbb{R}^{>0})$. Choose in $\mathcal{O}_{K}^{*,+}$ a free abelian subgroup $\mathcal{O}_{K}^{*,U}$ of rank s such that the quotient $\mathbb{R}^{s}/\mathcal{O}_{K}^{*,U}$ is compact, where $\mathcal{O}_{K}^{*,U}$ is mapped to \mathbb{R}^{t} as $\xi \rightarrow \left(\log(\sigma_{1}(\xi)), ..., \log(\sigma_{t}(\xi))\right)$. Let $\Gamma := \mathcal{O}_{K}^{+} \rtimes \mathcal{O}_{K}^{*,U}$.

DEFINITION: An Oeljeklaus-Toma manifold is a quotient $\mathbb{C}^t \times H^s / \Gamma$, where \mathcal{O}_K^+ acts on $\mathbb{C}^t \times H^t$ as

$$\zeta(x_1, ..., x_t, y_1, ..., y_s) = \left(x_1 + \tau_1(\zeta), ..., x_t + \tau_t(\zeta), y_1 + \sigma_1(\zeta), ..., y_s + \sigma_s(\zeta)\right),$$

and $\mathcal{O}_{K}^{*,U}$ as

$$\xi(x_1, ..., x_t, y_1, ..., y_s) = \left(x_1, ..., x_t, \sigma_1(\xi)y_1, ..., \sigma_t(\xi)y_t\right)$$

THEOREM: (Oeljeklaus-Toma) The OT-manifold $M := \mathbb{C}^t \times H^s/\Gamma$ is a compact complex manifold, without any non-constant meromorphic functions. When t = 1, it is locally conformally Kähler.

Kato manifolds

DEFINITION: Let *B* be an open ball in \mathbb{C}^n , n > 1, and $\tilde{B} \overset{\pi}{B}$ be a bimeromorphic, holomorphic map, which is an isomorphism outside of a compact subset. Remove a small ball in \tilde{B} and glue it to the boundary of \tilde{B} , extending the complex structure smoothly (and holomorphically) on the resulting manifold, denoted by *M*. Then *M* us called a Kato manifold.

THEOREM: (Brunella) Suppose that M is a Kato manifold obtained from \tilde{B}_{B}^{π} with \tilde{B} Kähler. Then M is LCK.

THEOREM: (Kato) Let M be a Kato manifold. Then there exists a family M_t of complex manifolds over a punctured disk such that $M = M_0$ and all other M_t are bimeromorphic to a Hopf manifold.

DEFINITION: Let M be a complex manifold, and $\Gamma \subset M$ be an open subset which is isomorphic as a complex manifold to a small neighbourhood of a sphere $S^{2n-1} \subset \mathbb{C}^n$. The set Γ is called a global spherical shell if the complement $M \setminus \Gamma$ is connected.

THEOREM: (Kato) Let M be a compact complex manifold. Then M is a Kato manifold if and only if it contains a global spherical shell.

M. Verbitsky

Bott-Chern cohomology

DEFINITION: Let M be a complex manifold, and $H_{BC}^{p,q}(M)$ the space of closed (p,q)-forms modulo $dd^c(\Lambda^{p-1,q-1}M)$. Then $H_{BC}^{p,q}(M)$ is called **the Bott–Chern cohomology** of M. **REMARK:** A (p,q)-form η is closed if and only if $\partial \eta = \overline{\partial} \eta = 0$. Using $2\sqrt{-1} \partial \overline{\partial} = dd^c$, we could define the Bott–Chern cohomology $H_{BC}^*(M)$ as $H_{BC}^*(M) := \frac{\ker \partial \cap \ker \overline{\partial}}{\operatorname{im} \partial \overline{\partial}}$.

REMARK: There are natural (and functorial) maps from the Bott–Chern cohomology to the Dolbeault cohomology $H^*(\Lambda^{*,*}M,\overline{\partial})$ and to the de Rham cohomology, **but no morphisms between the de Rham and the Dolbeault cohomology**.

THEOREM: Let *M* be a compact complex manifold. Then $H_{BC}^{p,q}(M)$ is finite-dimensional.

This result can be deduced from THEOREM: There is an exact sequence,

 $H^*(\Lambda^{p,q-1}(M),\overline{\partial}) \oplus \overline{H^*(\Lambda^{q,p-1}(M),\overline{\partial})} \to H^{p,q}_{BC}(M) \to H^{p+q}(M).$

with the second arrow mapping a class represented by a closed form to a class represented by the same form, and the first taking $(x, y) \in H^*(\Lambda^{p,q-1}(M),\overline{\partial}) \oplus H^*(\Lambda^{q,p-1}(M),\overline{\partial})$ to $\partial x + \overline{\partial} y$.

Degree of an element in $H^{1,1}_{BC}(M)$ and Gauduchon metrics

REMARK: If ω is Gauduchon, then (by Stokes' theorem) $\int_M \omega^{n-1} dd^c f = 0$ for any function f with compact support. Therefore, $\int_M \omega^{n-1} \wedge \alpha$ is a functional on $H^{1,1}_{BC}(M)$. This functional is called **the degree**.

EXAMPLE: Let Θ_L be the curvature of Chern connection on a holomorphic line bundle L. Since $\Theta_L = -dd^c |l|$, where l is a holomorphic section of L, the curvature is well defined up to to $dd^c \log |h|$, where h is a conformal factor given by a ration of two Hermitian metrics. Therefore, for any line bundle L, the quantity $\deg_{\omega} L := \int_M \omega^{n-1} \wedge \Theta_L$ is well defined.

REMARK: This is the starting point of the Kobayashi-Hitchin correspondence on complex manifold.

Degree of an element in $H^1(M,\mathbb{R})$ and Gauduchon metrics

DEFINITION: Let M be a compact complex manifold, and ω a Gauduchon form. Consider the natural map $H^1(M, \mathbb{R}) \rightarrow H^{1,1}_{BC}(M)$ which takes a closed real 1-form α to the Bott-Chern class of $d^c \alpha$. Locally, α is df, hence $d^c \alpha$ is a (1,1)-form. **Define** deg α as $-\int_M \omega^{n-1} \wedge d^c \alpha$. This is a well defined functional on first cohomology.

CLAIM: In these assumptions, the form $d^c \alpha \in \Lambda^2(M)$ is always exact.

Proof: Indeed, $d^c \alpha = I dI \alpha = d(I \alpha)$ because $I(\beta) = \beta$ for any (1,1)-form β .

DEFINITION: Let M be a compact complex manifold admitting an LCK structure. Define its Lee cone as the set of all classes $[\theta] \in H^1(M, \mathbb{R})$ of all the Lee forms for all LCK structures.

THEOREM: Let M be a compact LCK manifold with potential, and u a Gauduchon form. Then its Lee cone is the set of all $\alpha \in H^1(M)$ such that $\deg_u \alpha > 0$, where \deg_u is the degree map associated with u.

Aeppli cohomology

DEFINITION: Let M be a complex manifold, and $H_{AE}^{p,q}(M)$ the space of dd^c -closed (p,q)-forms modulo $\partial(\Lambda^{p-1,q}M) + \overline{\partial}(\Lambda^{p,q-1}M)$. Then $H_{AE}^{p,q}(M)$ is called **the Aeppli cohomology** of M.

THEOREM: Let M be a compact complex n-manifold. Then **the Aeppli** cohomology is finite-dimensional. Moreover the natural pairing $H^{p,q}_{BC}(M) \times H^{n-p,n-q}_{AE}(M) \to H^{2n}(M) = \mathbb{C}$, taking x, y to $\int_M x \wedge y$ is non-degenerate and identifies $H^{p,q}_{BC}(M)$ with the dual $H^{n-p,n-q}_{AE}(M)^*$.

The Gauduchon cone

DEFINITION: Let *M* be a complex manifold, and ω a Gauduchon metric. **A Gauduchon form** of *M* is ω^{n-1} .

CLAIM: Fix a positive volume form Vol on M. A form $\eta \in \Lambda^{n-1,n-1}(M,\mathbb{R})$ defines a Hermitian form on $\Lambda^1(M)$ taking x, y to $\frac{\eta \wedge x \wedge y}{\text{Vol}}$. Then this Hermitian form is positive definite if and only if $\eta = \alpha^{n-1}$, where α is a Hermitian form.

REMARK: This result implies that the set of all Gauduchon forms is a convex cone in $\Lambda^{n-1,n-1}(M,\mathbb{R})$.

DEFINITION: The Gauduchon cone of a compact complex *n*-manifold is the set of all classes $\omega^{n-1} \in H_{AE}^{n-1,n-1}(M)$ of all Gauduchon forms.

DEFINITION: Recall that **pseudoeffective cone** $P \subset H^{1,1}_{BC}(M)$ is the cone of all Bott-Chern classes of all positive, closed (1,1)-currents.

THEOREM: (Lamari) The Gauduchon cone is dual to the pseudoeffective cone.

Lee cone and the Gauduchon cone

Conjecture 2: Let θ be a Lee class on a compact LCK manifold, and u a Gauduchon metric. Then deg_u $\theta > 0$. In other words, $d^c\theta$ is pseudo-effective.

THEOREM: Let (M, ω, θ) be a compact complex non-Kähler LCK-manifold which is birational to either LCK with potential, Oeljeklaus-Toma or Kato manifold, and u a Gauduchon metric. Then deg_u $\theta \ge 0$.

Proof. Step 1: Theorem is true for free for OT and Vaisman manifolds, because $-d^c\theta$ is a positive, exact (1,1)-form. It is also true for all manifolds which are bimeromorphic to Vaisman and OT, because these manifold are blow-ups of Vaisman and OT, (Ornea-V.), and the pullback of a positive form is positive. **This implies that** deg_u $\theta > 0$ in all these situations.

Lee cone and the Gauduchon cone (2)

THEOREM: Let (M, ω, θ) be a compact complex non-Kähler LCK-manifold which is birational to either LCK with potential, Oeljeklaus-Toma or Kato manifold, and u a Gauduchon metric. Then deg_u $\theta \ge 0$. In other words, $d^c\theta$ is pseudo-effective.

Step 2: Suppose we have a smooth family $(M_t, \omega_t, \theta_t)$ of LCK manifolds such that the statement of the theorem is true for all $t \neq 0$. Fix a Gauduchon metric u_0 on the central fiber M_0 . We can extend it u_0 to a smooth family of Gauduchon metrics using the Gauduchon theorem. On all fibers except the central, we have $\deg_{u_t} \theta_t \ge 0$, hence the same is true on the central fiber.

Step 3: An LCK manifold with potential has a deformation $(M_t, \omega_t, \theta_t)$ with all fibers except the central one Vaisman (Ornea-V.). The Kato manifold has a deformation $(M_t, \omega_t, \theta_t)$ with all the fibers except the central one a blown-up Hopf (Kato). However, blown-up Hopf is bimeromorphic to LCK with potential, hence it also satisfies the statement of the theorem.

Proof of main theorem

THEOREM: Let (M, ω, θ) be a compact complex non-Kähler LCK-manifold which is birational to either LCK with potential, Oeljeklaus-Toma or Kato manifold. Then (M, ω, θ) does not admit a balanced metric.

Proof: Let α be a positive current which is Bott-Chern cohomologous to $-d^c\theta_0$, and ρ the balanced metric. Then $\int_M -d^c\theta_0 \wedge \rho^{n-1} = \int_M \alpha \wedge \rho^{n-1} = 0$, because $d^c\theta_0$ is exact. This implies that $\alpha = 0$: the mass of a non-zero positive current is always strictly positive. Therefore, $d^c\theta$ is Bott-Chern exact, impying that $d^c\theta = dd^cf$, and θ is cohomologous to a d, d^c -closed form θ_1 . The same argument as in the proof of Vaisman theorem immediately implies that $\theta_1 = 0$ and M is Kähler.