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Complex structures

DEFINITION: Let M be a smooth manifold. An almost complex structure
is an operator I : TM—TM which satisfies 12 = —Idp,,.

The eigenvalues of this operator are +=v/—1 . The corresponding eigenvalue
decomposition is denoted TM @ C = 7% M @ T1.O(M).

DEFINITION: An almost complex structure is integrable if VX,Y & TlvOM,
one has [X,Y] € T1OM. In this case I is called a complex structure op-
erator. A manifold with an integrable almost complex structure is called a
complex manifold.

THEOREM: (Newlander-Nirenberg)
This definition is equivalent to the usual one.
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The Hodge decomposition in linear algebra

DEFINITION: The Hodge decomposition V @z C := V1.0 g V01l js de-
fined in such a way that V1.0 is a /=1 -eigenspace of I, and V01 a3 — /=1 -
eigenspace.

REMARK: Let Vg := V @r C. The Grassmann algebra of skew-symmetric
forms A"V 1= /\ﬁv ®pr C admits a decomposition

NVe= @ NV Ay0!
ptq=n
We denote APV1.0 @ A9Vl by APV . The resulting decomposition A"Vp =
Dp1q=n NP4V is called the Hodge decomposition of the Grassmann al-
gebra.

REMARK: The operator I induces U(1)-action on V by the formula p(t)(v) =
cost-v+sint-I(v). We extend this action on the tensor spaces by mupti-
plicativity.

REMARK: The same construction defines the Hodge decompostion on

the de Rham algebra of any almost complex manifold.
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U(1)-representations and the weight decomposition

REMARK: Any complex representation W of U(1) is written as a sum
of 1-dimensional representations W;(p), with U(1) acting on each W;(p)
as p(t)(v) = e\/——lpt(v). The 1-dimensional representations are called weight
p representations of U(1).

DEFINITION: A weight decomposition of a U(1)-representation W is a de-
composition W = WP, where each WP = ¢,W;(p) is a sum of 1-dimensional
representations of weight p.

REMARK: The Hodge decomposition A"Vg = @, 4 =, APV is a weight
decomposition, with A9V being a weight p — g-component of A"*V.

REMARK: VPP is the space of U(1)-invariant vectors in A2PV.

Further on, TM is the tangent bundle on a manifold, and A*M the space
of differential :-forms. It is a Grassman algebra on T'M
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The twisted differential d¢

DEFINITION: The twisted differential is defined as d¢ := Idl 1.

CLAIM: Let (M,I) be a complex manifold. Then 9 := d""VQ_ldc, 0 =
d_Vz_ldC are the Hodge components of d, 9 = d!:0, § = q0:1.

Proof: Let V be a space generated by d,IdI. The natural action of U(1)
generated by eV preserves V. Since d has only two Hodge components.
U(1) acts with weights /-1 and —/—1, and its Hodge components are
expressed as above. m

THEOREM: The following statements are equivalent.

72

1. I is integrable. 2. 82 =0. 3. 8 =0. 4. dd° = —d°d 5. dd¢ = 2+/—1 9.

DEFINITION: The operator dd°€ is called the pluri-Laplacian.
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Kahler manifolds

DEFINITION: An Riemannian metric g on an almost complex manifiold M
is called Hermitian if g(Iz,Iy) = g(z,y). In this case, g(z, Iy) = g(Iz, I?%y) =
—qg(y,Ix), hence w(z,y) ;= g(x, Iy) is skew-symmetric.

DEFINITION: The differential form w € AL1(M) is called the Hermitian
form of (M, 1,gq).

REMARK: It is U(1)-invariant, hence of Hodge type (1,1).

DEFINITION: A complex Hermitian manifold (M, I,w) is called Kahler if
dw = 0. The cohomology class [w] € H2(M) of a form w is called the Kahler
class of M, and w the Kahler form.

REMARK: A closed complex submanifold of a Kahler manifold is
Kahler.

REMARK: The Kahler condition is a way too strong, and “majority” of
compact complex manifolds are non-Kahler.
6
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Gauduchon metrics

DEFINITION: A Hermitian metric w on a complex n-manifold is called
Gauduchon if dd¢(w"~ 1) = 0.

THEOREM: (P. Gauduchon, 1978) Let M be a compact, complex man-
ifold, and h a Hermitian form. Then there exists a Gauduchon metric
conformally equivalent to A, and it is unique in any given conformal class,
up to a constant multiplier.

REMARK: This is one of very few statements which is valid (and can be
applied) to all compact complex manifolds.

REMARK: This is very useful, because allows to define a degree of a
holomorphic bundle, define stability, and prove a non-Kahler version of
Donaldson-Uhlenbeck-Yau therem.
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Balanced and SKT metrics on complex manifolds

DEFINITION: For each 1 < kK < n — 1, the condition d(wk) = 0 implies
dw = 0. Hermitian metric is called balanced if d(w™~1) = 0. All twistor spaces
are balanced (Hitchin). All Moishezon manifolds are balanced (Alessandrini-
Bassaneli). The notion was introduced by Michelson in “On the existence of
special metrics in complex geometry,” Acta Math. 149 (1982).

DEFINITION: A metric g on a manifold M with dimg M > 2is called SKT
( “strong Kahler torsion” ) or pluriclosed if dd‘w = 0.

REMARK: SKT condition is essential in the literature about gener-
alized complex and generalized Kahler structures (Hitchin, Gualtieri,
Cavalcanti).

REMARK: In dimension 2 the condition dd‘w = 0 is the Gauduchon condi-
tion, and we always assume dim¢ M > 0.

DEFINITION: A form w is called taming or symplectic-Hermitian if it is
a (1,1)-part of a symplectic form.
REMARK: Clearly, a symplectic-Hermitian form is pluriclosed. The con-
verse is false. Indeed, there are no examples of symplectic-Hermitian
form on non-Kahler compact complex manifolds; Streets-Tian conjec-
tured they don't exist.

8
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LCK manifolds

DEFINITION: A complex Hermitian manifold of dimension dim¢ > 1 (M, 1, g,w)
is called locally conformally Kahler (LCK) if there exists a closed 1-form

6 such that dw = 6 Aw. The 1-form 60 is called the Lee formm and its
cohomology class the Lee class.

REMARK: This definition is equivalent to the existence of a Kahler cover
(M,©5)—M such that the deck group I acts on (M,&) by holomorphic
homotheties. Indeed, suppose that 6 is exact, df = . Then ¢ /w is a
Kahler form. Let M be a covering such that the pullback 8 of 6 is exact,
df =8 . Then the pullback of & is conformal to a Kahler form e /&.

REMARK: All known compact LCK manifolds belong to one of three
classes: blow-ups of LCK with potential, blow-ups of Oeljeklaus-Toma
and Kato. I will define these three classes later in this talk.

The main result today:

THEOREM: Let (M,I) be a compact complex non-Kahler LCK-manifold
which is birational to either LCK with potential, Oeljeklaus-Toma or Kato

manifold. Then (M,I) does not admit a balanced metric.
9
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SKT, balanced, LCK properties are exclusive

CONJECTURE: Let M be a compact complex manifold which admits Her-
mitian forms wy and wp which belong to two classes in the set {SKT, balanced, LCK}.
Then M admits a Kahler structure.

A weaker form of this statement is not hard to prove.

THEOREM: Let (M,I,w) be a compact complex Hermitian n-manifold. As-
sume that w is either

(a). SKT and LCK,

(b). balanced and LCK,

(c). SKT and balanced.
Then w is Kahler.

10
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SKT, balanced, LCK properties are exclusive

THEOREM: Let (M, I,w) be a compact complex Hermitian n-manifold. As-
sume that w is either

(a). SKT and LCK,

(b). balanced and LCK,

(c). SKT and balanced.
Then w is Kahler.

Proof of (a): Assume (M, I,w) is SKT and LCK. Let 8 € AL(M) be the Lee
form, dw = wA0. Let ¢ :=I(0). Then d°w = I 1dI(w) = I"1(OAW) = —O0°Aw.
This gives

0 =ddw =d(0w) =d(dO) Nw -0 Ndw=dd(0) Nw+ O NOwW (%)

Since dimgc M > 2, the multiplication map n — n A w is injective, hence (*)
implies that dd¢(0) = —60 A 6°. Then

ddw™ 1 = (n—1)dd®(0) Aw™ 1 —(n—1)20N0°AW™ 1 = —(n—1)(n—2)0A0°AL™ L.
However, 6 A 6 A w™ ™1 = 2n|6|°w™. This brings a contradiction:
—1 — 2
0=/ ddw"t = [ —(n-1)(n-2)8n6°nw" L = _n=Dn )n/ 0] Aw™
M M 2 M

The last integral vanishes if and only if 8 = 0, hence w is closed.
11
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SKT, balanced, LCK properties are exclusive (2)

Proof of (b): Assume (M, I,w) is balanced and LCK. Then 0 = dw™ 1 =
(n—1)0 Aw™ 1. However, the multiplication map n+— nAw” 1 is an isomor-
phism for all n and any Hermitian w (do this as an exercise), hence again
60 = 0.

Proof of (c). Step 1: Assume (M,I,w) is balanced and SKT. Then
d(w™ 1) = (dw) Aw™ 2 = 0, and dd‘w = 0, hence dw and d°w are d and d¢-
closed. The equation (dw) A w"™ 2 = 0 implies that dw is primitive, that is,
satisfies Au(dw) = 0, where A, = L}, and Ly(n) := w An. This form is of
Hodge type (1,2)+4(2,1) because w is of type (1,1), and de Rham differential
shifts the Hodge grading at most by 1.

Step 2: By Hodge-Riemann relations, any primitive (1,2)4(2,1) real form «
satisfies a A I(a) Aw™ 3 = —C|a|?w™, where C is a positive rational constant.

Step 3: Let a :=dw. Since w is SKT, we have
0=ddW" DN =mnm-1Dn-2DdwAdwAw" 3 =—(n—=1)(n—-2)Cla|?w™ ()

(by step 1, « is a primitive (1,2) 4+ (2,1)-form, then (**) follows from Step

2), hence dw =0. =
12
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Vaisman theorem

REMARK: Let (M, w,0) be an LCK manifold, and 8’ another 1-form, homol-
ogous to 0. Write 8/ — 0 =df. Then

dedw) =el (do+df Aw) =el (OAw+df Aw) =60 A (el w).

In other words, conformally equivalent LCK metric give rise to homolo-
gous Lee forms, and any closed 1-form cohomologous to the Lee form
IS a Lee form of a conformally equivalent LCK metric.

THEOREM: (Vaisman)
A compact LCK manifold (M, I,0) with non-exact Lee form does not admit
a Kahler structure.

Proof: On a compact manifold of Kahler type, any [0] € H1(M,R) can be
represented by «, obtained as a real part of a holomorphic form. This gives
d°a@ = 0. After a conformal change of the metric, we can assume that
dv = aAw, and dd°w = a A I(a) Aw. On a Kahler manifold, a positive
exact form must vanish, which implies aAI(a) Aw=0and ¢« =0. =

REMARK: Such manifolds are called strict LCK. Further on, we shall

consider only strict LCK manifolds.
13
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Izu VVaisman

Izu Vaisman, b. June 22, 1938 in Jassy, Romania

14
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Vaisman manifolds

DEFINITION: An LCK manifold is a Vaisman manifold if it admits a
continuous action of complex isometries.

REMARK: Thisis actually a theorem, due to many autors, primarily Kamishima,

Ornea, Istrati, V.; the original definition is that “(M, I, g,w) is Vaisman if the
Lee form 6 is parallel with respect to the Levi-Civita connection.”

EXAMPLE: All non-Kahler elliptic surfaces are Vaisman.
DEFINITION: A linear Hopf manifold is a quotient M = % where A is
a linear contraction. When A is diagonalizable, M is called diagonal Hopf.

EXAMPLE: All diagonal Hopf manifolds are Vaisman, and when A can-
not be diagonalized, M is LCK and not Vaisman.

THEOREM: (Ornea-V.)
All complex submanifolds of Vaisman manifolds are Vaisman. All Vais-
man manifolds admit a holomorphic embedding to a diagonal Hopf

manifold (which is Vaisman, too).
15
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LCK manifolds with potential

DEFINITION: An LCK manifold is called an LCK manifold with LCK
potential if the Kihler form & on M has a y-automorphic potential, & = dd e,
where ¢ is a y-automorphic function.

REMARK: A small deformation of an LCK manifold might be non-LCK. A
small deformation of Vaisman might be non-Vaisman. A small deformation
of LCK with potential is LCK with potential.

EXAMPLE: All Hopf manifolds admit an LCK structure with LCK po-
tential (Ornea-V.).

THEOREM: (Ornea-V.) A compact manifold M, dim¢c M > 2 admits an
LCK potential if and only if M admits a holomorphic embedding to a
Hopf manifold.

REMARK: This property can be used instead of the definition.

REMARK: In dimension 2 this is also true if we assume the GSS con-

jecture.
16
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Normed fields

DEFINITION: An absolute value on a field k is a function |-|: k—R>9,
satisfying the following

1. Zero: |z| =0 < =z =0.

2. Multiplicativity: |zy| = |z||y|.

3. There exists ¢ > 0 such that |- | satisfies the triangle inequality.
EXAMPLE: The usual absolute value on Q, R, C.

EXAMPLE: Let p — be a prime number, and m,n € Z coprime with p. Define
p-adic absolute value on Q via |Zp*| ;= p~*.

REMARK: p-adic absolute value satisfies an additional “non-archimedean ax-
iom”: |z+y| < max(|z|, |y|). Such absolute values are called non-archimedean.

REMARK: Any power of non-archimedean absolute value is again non-

archimedean, and satisfies the triangle inequality.
17
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Normed fields and topology

DEFINITION: Let |-| be an absolute value on a field F. Consider topology
on F with open sets generated by

Be(z) :={y ek | |[x—yl<e}

Absolute values are called equivalent if they induce the same topology.

THEOREM: Absolute values |- |1,| - |» are equivalent if and only if
|-]1 = |-|5 for some c > 0.

THEOREM: (Ostrowski) Every absolute value on Q is equivalent to the
usual (" archimedean”) one or to p-adic one.

DEFINITION: A completion of a field £ under an absolute value |- | is a
completion of k in a metric |- |% where ¢ > 0 is a constant such that |- [¢
satisfies the triangle inequality.

REMARK: A completion of a field is again a field.
EXAMPLE: A completion of Q under the p-adic absolute value is called a

field of p-adic numbers, denoted Q.
18
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Local fields

DEFINITION: A finite extension K :k of fields is a field K D k which
is finite-dimensional as a vector space over k. A number field is a finite
extension of Q. Functional field is a finite extension of Fp(¢). Global field
IS @ number or functional field. Local field is a completion of a global field
under a non-trivial absolute value.

THEOREM: Let k£ be a field which is complete and locally compact under
some absolute value. Then k is a local field.

DEFINITION: Let K:k be a finite extension, and xz € K. Consider the mul-
tiplication by x as a k-linear endomorphism of K. Define the norm NK/k(ac)
as a determinant of this operator.

REMARK: Norm defines a homomorphism of multiplicative groups K*—k*.

REMARK: For Galois extensions, the norm NK/k(fE> iIs a product of all
elements conjugate to =z.

THEOREM: Let K : k be a finite extension of local fields, degree n. Then an
absolute value on k is uniquely extended to K. Moreover, this extension

1
IS expressed as |x| (= ‘NK/k(aﬁ)‘”.
19
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Absolute values and extensions of global fields

CLAIM: Let A, B be extensions of a field k, of characteristic O where A:k is
finite. Consider A ®; B as an k-algebra. Then A ®; B is a direct sum of
fields, containing A and B.

THEOREM: Let k£ be a number field, |- | an absolute value, K:k a finite
extension, and k — its completion. Consider a decomposition K®kE into a
direct sum of fields K @ k := @; K;. Then each extension of an absolute
value |-| from k to K is induced from some K;, and all such extensions
are non-equivalent.

REMARK: When k= Q, and |- | is the usual (archimedean) absolute value,
we obtain that all K; are extensions of R, that is, isomorphic to R or C. This
gives

COROLLARY: For each number field K of degree n over Q, there
exists only a finite number of different homomorphisms K — C, all of
them injective. Denote by s the number of embeddings whose image lies in
R C C (such an embedding is called real), and 2¢ the number of embedding,

whose image does not lie in R (“complex embeddings”). Then s 4 2t = n.
20
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Dirichlet unit theorem

DEFINITION: Let K:Q be a number field of degree n. The ring of integers
O C K is an integral closure of Z in K, that is, the set of all roots in K
of monic polynomials P(t) = t" 4 a,,_1t" 1 4+ a,_-t" 2 4+ ... + ag with integer
coefficients a; € Z.

CLAIM: An additive group (9;(" IS a finitely generated abelian group of
rank n.

DEFINITION: A unit of a ring O is an element u € O, such that u~1!
also belongs to O.

REMARK: u € O is a unit if and only if the norm NK/@(CB) € 7 is invertible,
that is, N g(z) = +1.

Dirichlet’s unit theorem: Let K be a number field which has s real em-
beddings and 2t complex ones. Then the group of units (C)}"( IS iIsomorphic
to G x 7Ztts—1 where G is a finite group of roots of unity contained in K.
Moreover, if s > 0, one has G = +1.

REMARK: For a quadratic field, the group of units is a group of solutions
of Pell’'s equation.
21
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Oeljeklaus-Toma manifolds

Let K be a number field which has 2t complex embedding denoted 7;,7; and
s real ones denoted o;, s > 0, t > 0.

Let @}}+ = O% NN;o; L(R>9). Choose in @}'}"" a free abelian subgroup (C)}'}’U
of rank s such that the quotient RS/@}'}U IS compact, where @}‘(’U IS mapped

to R? as §—><Iog(al(§)), " Iog(at(g))>. Let M := (9}(" X (C)}‘{’U.

DEFINITION: An Oeljeklaus-Toma manifold is a quotient C! x HS/I,
where @;(" acts on C! x H? as

C(xla ey Lty Y1, °"7y8) — (LU]_ + Tl(C)? ooy Lt + Tt(C)7y1 + O-l(C)a -y Ys + JS(C)))

and @}}U as

g(CU]_, vy Lty Y1y -0y yS) — (CU]J ceey Lt O-l(g)yJ.? eey Ut(f)yt>

THEOREM: (Oeljeklaus-Toma) The OT-manifold M := C! x H5/I is a
compact complex manifold, without any non-constant meromorphic func-

tions. When t = 1, it is locally conformally Kahler.
22
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Kato manifolds

DEFINITION: Let B be an open ball in C*, n > 1, and B ]§ be a bimeromor-
phic, holomorphic map, which is an isomorphism outside of a compact subset.
Remove a small ball in B and glue it to the boundary of B, extending the
complex structure smoothly (and holomorphically) on the resulting manifold,
denoted by M. Then M us called a Kato manifold.

THEOREM: (Brunella) Suppose that M is a Kato manifold obtained from
B B with B Kahler. Then M is LCK.

THEOREM: (Kato) Let M be a Kato manifold. Then there exists a family
M; of complex manifolds over a punctured disk such that M = My and all
other M; are bimeromorphic to a Hopf manifold.

DEFINITION: Let M be a complex manifold, and ' C M be an open subset
which is isomorphic as a complex manifold to a small neighbourhood of a
sphere S2n—1 < C". The set I is called a global spherical shell if the
complement M\l is connected.

THEOREM: (Kato) Let M be a compact complex manifold. Then M is a
Kato manifold if and only if it contains a global spherical shell.
23
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Bott-Chern cohomology

DEFINITION: Let M be a complex manifold, and HZL (M) the space of
closed (p,q)-forms modulo dd¢(AP~1.4=1p1).  Then H%%C(M) is called the
Bott—Chern cohomology of M.

REMARK: A (p,q)-form n is closed if and only if 9n = dn = 0. Using
2v/—1 00 = dd°, we could define the Bott—Chern cohomology HE5~(M)

¥ .__ ker onker 9
as Hp (M) 1= et
REMARK: There are natural (and functorial) maps from the Bott—Chern
cohomology to the Dolbeault cohomology H*(A**M,0) and to the de Rham
cohomology, but no morphisms between the de Rham and the Dolbeault

cohomology.

THEOREM: Let M be a compact complex manifold. Then HZL(M) is
finite-dimensional.

This result can be deduced from
THEOREM: There is an exact sequence,

H*(AP9=1 (M), ) @ H*(AGP—1(M),d) — HRL(M) — HPTI(M).

with the second arrow mapping a class represented by a closed form to a c_Iass
represented by the same form, and the first taking (z,y) € H*(AP4~1(M), ) &
H*(A2P—1(M),0) to Oz + Oy.

24
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Degree of an element in Hé’é(M) and Gauduchon metrics

REMARK: If w is Gauduchon, then (by Stokes’ theorem) [, w™ 1dd®f = 0 for
any function f with compact support. Therefore, [,;w™ 1 A« is a functional
on Hé’é(M). This functional is called the degree.

EXAMPLE: Let © be the curvature of Chern connection on a holomorphic
line bundle L. Since ©; = —dd°|l|, where [ is a holomorphic section of L, the
curvature is well defined up to to ddlog |h|, where h is a conformal factor
given by a ration of two Hermitian metrics. Therefore, for any line bundle
L, the quantity deg, L := [,;w" 1 A O is well defined.

REMARK: This is the starting point of the Kobayashi-Hitchin corre-
spondence on complex manifold.

25
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Degree of an element in H1(M,R) and Gauduchon metrics

DEFINITION: Let M be a compact complex manifold, and w a Gauduchon
form. Consider the natural map Hl(M,R)%Hé’é(M) which takes a closed
real 1-form o to the Bott-Chern class of da. Locally, « is df, hence d“«a is a
(1,1)-form. Define dega as — [,; w" 1 Ad°a. This is a well defined functional
on first cohomology.

CLAIM: In these assumptions, the form d°a € A2(M) is always exact.
Proof: Indeed, d°a = Idla = d(I«a) because I(8) = g8 for any (1,1)-form 3. =

DEFINITION: Let M be a compact complex manifold admitting an LCK
structure. Define its Lee cone as the set of all classes [0] € H1(M,R) of all
the Lee forms for all LCK structures.

THEOREM: Let M be a compact LCK manifold with potential, and « a
Gauduchon form. Then its Lee cone is the set of all « € H1(M) such
that deg, o > 0, where deg,, is the degree map associated with .

26
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Aeppli cohomology

DEFINITION: Let M be a complex manifold, and HYL(M) the space of
dd*-closed (p,q)-forms modulo O(AP~LAM) + 9(AP4=LN). Then HEL(M) is
called the Aeppli cohomology of M.

THEOREM: Let M be a compact complex n-manifold. Then the Aeppli
cohomology is finite-dimensional. Moreover the natural pairing H5L(M) x
H), "4 M)—-H?"(M) = C, taking z,y to [;z Ay is non-degenerate and
identifies H;,(M) with the dual H "" 1(M)*.

27
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T he Gauduchon cone

DEFINITION: Let M be a complex manifold, and w a Gauduchon metric.
A Gauduchon form of M is w™ 1.

CLAIM: Fix a positive volume form Vol on M. A form n € AP~Ln=1(p1 R)
defines a Hermitian form on AL(M) taking z,y to Z8Z%. Then this Hermition
form is positive definite if and only if n = a1 where o is a Hermitian

form.

REMARK: This result implies that the set of all Gauduchon forms is a
convex cone in A"~Ln=1(j1 R).

DEFINITION: The Gauduchon cone of a compact complex n-manifold is

the set of all classes w" ™1 ¢ HZEl’”_l(M) of all Gauduchon forms.

DEFINITION: Recall that pseudoeffective cone P C Hy~(M) is the cone
of all Bott-Chern classes of all positive, closed (1,1)-currents.

THEOREM: (Lamari)

The Gauduchon cone is dual to the pseudoeffective cone.
28
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Lee cone and the Gauduchon cone

Conjecture 2: Let 6 be a Lee class on a compact LCK manifold, and « a
Gauduchon metric. Then deg, 0 > 0. In other words, d“0 is pseudo-effective.

THEOREM: Let (M,w,0) be a compact complex non-Kahler LCK-manifold
which is birational to either LCK with potential, Oeljeklaus-Toma or Kato
manifold, and v a Gauduchon metric. Then deg, 6 > 0.

Proof. Step 1: Theorem is true for free for OT and Vaisman manifolds,
because —d is a positive, exact (1,1)-form. It is also true for all manifolds
which are bimeromorphic to Vaisman and OT, because these manifold are
blow-ups of Vaisman and OT, (Ornea-V.), and the pullback of a positive
form is positive. This implies that deg, 6 > 0O in all these situations.

29
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Lee cone and the Gauduchon cone (2)

THEOREM: Let (M,w,0) be a compact complex non-Kahler LCK-manifold
which is birational to either LCK with potential, Oeljeklaus-Toma or Kato
manifold, and v a Gauduchon metric. Then deg,0 > 0. In other words, d°0
IS pseudo-effective.

Step 2: Suppose we have a smooth family (M, w, 0;) of LCK manifolds such
that the statement of the theorem is true for all t = 0. Fix a Gauduchon
metric ug on the central fiber Mgy. We can extend it ug to a smooth family
of Gauduchon metrics using the Gauduchon theorem. On all fibers except
the central, we have deg,, 6; > 0, hence the same is true on the central
fiber.

Step 3: An LCK manifold with potential has a deformation (My,w, 0;) with
all fibers except the central one Vaisman (Ornea-V.). The Kato manifold has
a deformation (M, w, 6:) with all the fibers except the central one a blown-
up Hopf (Kato). However, blown-up Hopf is bimeromorphic to LCK with
potential, hence it also satisfies the statement of the theorem. m
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Proof of main theorem

THEOREM: Let (M,w,0) be a compact complex non-Kahler LCK-manifold
which is birational to either LCK with potential, Oeljeklaus-Toma or Kato
manifold. Then (M,w,f) does not admit a balanced metric.

Proof: Let o« be a positive current which is Bott-Chern cohomologous to
—dg, and p the balanced metric. Then [;; —dOg A p" 1 = [1yanp? 1 =0,
because d“fg is exact. This implies that o = 0: the mass of a non-zero positive
current is always strictly positive. Therefore, d€0 is Bott-Chern exact, impying
that d°0 = dd°f, and 6 is cohomologous to a d, d°-closed form 6;. The same
argument as in the proof of Vaisman theorem immediately implies that 64 =0
and M is Kahler. m

31



