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Complex structures

DEFINITION: Let M be a smooth manifold. An almost complex structure

is an operator I : TM→TM which satisfies I2 = − IdTM .

The eigenvalues of this operator are ±
√
−1 . The corresponding eigenvalue

decomposition is denoted TM ⊗ C = T0,1M ⊕ T1,0(M).

DEFINITION: An almost complex structure is integrable if ∀X,Y ∈ T1,0M ,

one has [X,Y ] ∈ T1,0M . In this case I is called a complex structure op-

erator. A manifold with an integrable almost complex structure is called a

complex manifold.

THEOREM: (Newlander-Nirenberg)

This definition is equivalent to the usual one.
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The Hodge decomposition in linear algebra

DEFINITION: The Hodge decomposition V ⊗R C := V 1,0 ⊕ V 0,1 is de-

fined in such a way that V 1,0 is a
√
−1 -eigenspace of I, and V 0,1 a −

√
−1 -

eigenspace.

REMARK: Let VC := V ⊗R C. The Grassmann algebra of skew-symmetric

forms ΛnVC := ΛnRV ⊗R C admits a decomposition

ΛnVC =
⊕

p+q=n

ΛpV 1,0 ⊗ ΛqV 0,1

We denote ΛpV 1,0 ⊗ ΛqV 0,1 by Λp,qV . The resulting decomposition ΛnVC =⊕
p+q=nΛp,qV is called the Hodge decomposition of the Grassmann al-

gebra.

REMARK: The operator I induces U(1)-action on V by the formula ρ(t)(v) =

cos t · v + sin t · I(v). We extend this action on the tensor spaces by mupti-

plicativity.

REMARK: The same construction defines the Hodge decompostion on

the de Rham algebra of any almost complex manifold.
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U(1)-representations and the weight decomposition

REMARK: Any complex representation W of U(1) is written as a sum

of 1-dimensional representations Wi(p), with U(1) acting on each Wi(p)

as ρ(t)(v) = e
√
−1 pt(v). The 1-dimensional representations are called weight

p representations of U(1).

DEFINITION: A weight decomposition of a U(1)-representation W is a de-

composition W = ⊕W p, where each W p = ⊕iWi(p) is a sum of 1-dimensional

representations of weight p.

REMARK: The Hodge decomposition ΛnVC =
⊕
p+q=nΛp,qV is a weight

decomposition, with Λp,qV being a weight p− q-component of ΛnVC.

REMARK: V p,p is the space of U(1)-invariant vectors in Λ2pV .

Further on, TM is the tangent bundle on a manifold, and ΛiM the space

of differential i-forms. It is a Grassman algebra on TM
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The twisted differential dc

DEFINITION: The twisted differential is defined as dc := IdI−1.

CLAIM: Let (M, I) be a complex manifold. Then ∂ := d+
√
−1 dc

2 , ∂ :=
d−
√
−1 dc

2 are the Hodge components of d, ∂ = d1,0, ∂ = d0,1.

Proof: Let V be a space generated by d, IdI. The natural action of U(1)

generated by eW preserves V . Since d has only two Hodge components.

U(1) acts with weights
√
−1 and −

√
−1 , and its Hodge components are

expressed as above.

THEOREM: The following statements are equivalent.

1. I is integrable. 2. ∂2 = 0. 3. ∂
2

= 0. 4. ddc = −dcd 5. ddc = 2
√
−1 ∂∂.

DEFINITION: The operator ddc is called the pluri-Laplacian.
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Kähler manifolds

DEFINITION: An Riemannian metric g on an almost complex manifiold M

is called Hermitian if g(Ix, Iy) = g(x, y). In this case, g(x, Iy) = g(Ix, I2y) =

−g(y, Ix), hence ω(x, y) := g(x, Iy) is skew-symmetric.

DEFINITION: The differential form ω ∈ Λ1,1(M) is called the Hermitian

form of (M, I, g).

REMARK: It is U(1)-invariant, hence of Hodge type (1,1).

DEFINITION: A complex Hermitian manifold (M, I, ω) is called Kähler if

dω = 0. The cohomology class [ω] ∈ H2(M) of a form ω is called the Kähler

class of M , and ω the Kähler form.

REMARK: A closed complex submanifold of a Kähler manifold is

Kähler.

REMARK: The Kähler condition is a way too strong, and “majority” of

compact complex manifolds are non-Kähler.
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Gauduchon metrics

DEFINITION: A Hermitian metric ω on a complex n-manifold is called

Gauduchon if ddc(ωn−1) = 0.

THEOREM: (P. Gauduchon, 1978) Let M be a compact, complex man-

ifold, and h a Hermitian form. Then there exists a Gauduchon metric

conformally equivalent to h, and it is unique in any given conformal class,

up to a constant multiplier.

REMARK: This is one of very few statements which is valid (and can be

applied) to all compact complex manifolds.

REMARK: This is very useful, because allows to define a degree of a

holomorphic bundle, define stability, and prove a non-Kähler version of

Donaldson-Uhlenbeck-Yau therem.
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Balanced and SKT metrics on complex manifolds

DEFINITION: For each 1 6 k 6 n − 1, the condition d(ωk) = 0 implies
dω = 0. Hermitian metric is called balanced if d(ωn−1) = 0. All twistor spaces
are balanced (Hitchin). All Moishezon manifolds are balanced (Alessandrini-
Bassaneli). The notion was introduced by Michelson in “On the existence of
special metrics in complex geometry,” Acta Math. 149 (1982).

DEFINITION: A metric g on a manifold M with dimCM > 2is called SKT
(“strong Kähler torsion”) or pluriclosed if ddcω = 0.

REMARK: SKT condition is essential in the literature about gener-
alized complex and generalized Kähler structures (Hitchin, Gualtieri,
Cavalcanti).

REMARK: In dimension 2 the condition ddcω = 0 is the Gauduchon condi-
tion, and we always assume dimCM > 0.

DEFINITION: A form ω is called taming or symplectic-Hermitian if it is
a (1,1)-part of a symplectic form.
REMARK: Clearly, a symplectic-Hermitian form is pluriclosed. The con-
verse is false. Indeed, there are no examples of symplectic-Hermitian
form on non-Kähler compact complex manifolds; Streets-Tian conjec-
tured they don’t exist.
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LCK manifolds

DEFINITION: A complex Hermitian manifold of dimension dimC > 1 (M, I, g, ω)
is called locally conformally Kähler (LCK) if there exists a closed 1-form
θ such that dω = θ ∧ ω. The 1-form θ is called the Lee formm and its
cohomology class the Lee class.

REMARK: This definition is equivalent to the existence of a Kähler cover
(M̃, ω̃)→M such that the deck group Γ acts on (M, ω̃) by holomorphic
homotheties. Indeed, suppose that θ is exact, df = θ. Then e−fω is a
Kähler form. Let M̃ be a covering such that the pullback θ̃ of θ is exact,
df = θ̃ . Then the pullback of ω̃ is conformal to a Kähler form e−f ω̃.

REMARK: All known compact LCK manifolds belong to one of three
classes: blow-ups of LCK with potential, blow-ups of Oeljeklaus-Toma
and Kato. I will define these three classes later in this talk.

The main result today:

THEOREM: Let (M, I) be a compact complex non-Kähler LCK-manifold
which is birational to either LCK with potential, Oeljeklaus-Toma or Kato
manifold. Then (M, I) does not admit a balanced metric.
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SKT, balanced, LCK properties are exclusive

CONJECTURE: Let M be a compact complex manifold which admits Her-

mitian forms ω1 and ω2 which belong to two classes in the set {SKT, balanced, LCK}.
Then M admits a Kähler structure.

A weaker form of this statement is not hard to prove.

THEOREM: Let (M, I, ω) be a compact complex Hermitian n-manifold. As-

sume that ω is either

(a). SKT and LCK,

(b). balanced and LCK,

(c). SKT and balanced.

Then ω is Kähler.
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SKT, balanced, LCK properties are exclusive

THEOREM: Let (M, I, ω) be a compact complex Hermitian n-manifold. As-
sume that ω is either

(a). SKT and LCK,
(b). balanced and LCK,
(c). SKT and balanced.

Then ω is Kähler.

Proof of (a): Assume (M, I, ω) is SKT and LCK. Let θ ∈ Λ1(M) be the Lee
form, dω = ω∧θ. Let θc := I(θ). Then dcω = I−1dI(ω) = I−1(θ∧ω) = −θc∧ω.
This gives

0 = dcdω = dc(θω) = d(dcθ) ∧ ω − θ ∧ dcω = ddc(θ) ∧ ω + θ ∧ θcω (∗)

Since dimCM > 2, the multiplication map η 7→ η ∧ ω is injective, hence (*)
implies that ddc(θ) = −θ ∧ θc. Then

ddcωn−1 = (n−1)ddc(θ)∧ωn−1−(n−1)2θ∧θc∧ωn−1 = −(n−1)(n−2)θ∧θc∧ωn−1.

However, θ ∧ θc ∧ ωn−1 = 2n|θ|2ωn. This brings a contradiction:

0 =
∫
M
ddcωn−1 =

∫
M
−(n−1)(n−2)θ∧θc∧ωn−1 = −

(n− 1)(n− 2)

2
n
∫
M
|θ|∧ωn

The last integral vanishes if and only if θ = 0, hence ω is closed.
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SKT, balanced, LCK properties are exclusive (2)

Proof of (b): Assume (M, I, ω) is balanced and LCK. Then 0 = dωn−1 =
(n− 1)θ ∧ ωn−1. However, the multiplication map η 7→ η ∧ ωn−1 is an isomor-
phism for all η and any Hermitian ω (do this as an exercise), hence again
θ = 0.

Proof of (c). Step 1: Assume (M, I, ω) is balanced and SKT. Then
d(ωn−1) = (dω) ∧ ωn−2 = 0, and ddcω = 0, hence dω and dcω are d and dc-
closed. The equation (dω) ∧ ωn−2 = 0 implies that dω is primitive, that is,
satisfies Λω(dω) = 0, where Λω = L∗ω, and Lω(η) := ω ∧ η. This form is of
Hodge type (1,2)+(2,1) because ω is of type (1,1), and de Rham differential
shifts the Hodge grading at most by 1.

Step 2: By Hodge-Riemann relations, any primitive (1,2)+(2,1) real form α

satisfies α ∧ I(α) ∧ ωn−3 = −C|α|2ωn, where C is a positive rational constant.

Step 3: Let α := dω. Since ω is SKT, we have

0 = ddc(ωn−1) = (n− 1)(n− 2)dω ∧ dcω ∧ωn−3 = −(n− 1)(n− 2)C|α|2ωn (∗∗)

(by step 1, α is a primitive (1,2) + (2,1)-form, then (**) follows from Step
2), hence dω = 0.
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Vaisman theorem

REMARK: Let (M,ω, θ) be an LCK manifold, and θ′ another 1-form, homol-
ogous to θ. Write θ′ − θ = df . Then

d(efω) = ef(dω + df ∧ ω) = ef(θ ∧ ω + df ∧ ω) = θ′ ∧ (efω).

In other words, conformally equivalent LCK metric give rise to homolo-

gous Lee forms, and any closed 1-form cohomologous to the Lee form

is a Lee form of a conformally equivalent LCK metric.

THEOREM: (Vaisman)
A compact LCK manifold (M, I, θ) with non-exact Lee form does not admit

a Kähler structure.

Proof: On a compact manifold of Kähler type, any [θ] ∈ H1(M,R) can be
represented by α, obtained as a real part of a holomorphic form. This gives
dcα = 0. After a conformal change of the metric, we can assume that
dω = α ∧ ω, and ddcω = α ∧ I(α) ∧ ω. On a Kähler manifold, a positive

exact form must vanish, which implies α ∧ I(α) ∧ ω = 0 and α = 0.

REMARK: Such manifolds are called strict LCK. Further on, we shall

consider only strict LCK manifolds.
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Izu Vaisman

Izu Vaisman, b. June 22, 1938 in Jassy, Romania

14



Can LCK manifolds admit balanced metrics? M. Verbitsky

Vaisman manifolds

DEFINITION: An LCK manifold is a Vaisman manifold if it admits a

continuous action of complex isometries.

REMARK: This is actually a theorem, due to many autors, primarily Kamishima,

Ornea, Istrati, V.; the original definition is that “(M, I, g, ω) is Vaisman if the

Lee form θ is parallel with respect to the Levi-Civita connection.”

EXAMPLE: All non-Kähler elliptic surfaces are Vaisman.

DEFINITION: A linear Hopf manifold is a quotient M := Cn\0
〈A〉 where A is

a linear contraction. When A is diagonalizable, M is called diagonal Hopf.

EXAMPLE: All diagonal Hopf manifolds are Vaisman, and when A can-

not be diagonalized, M is LCK and not Vaisman.

THEOREM: (Ornea-V.)

All complex submanifolds of Vaisman manifolds are Vaisman. All Vais-

man manifolds admit a holomorphic embedding to a diagonal Hopf

manifold (which is Vaisman, too).
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LCK manifolds with potential

DEFINITION: An LCK manifold is called an LCK manifold with LCK

potential if the Kähler form ω̃ on M̃ has a χ-automorphic potential, ω̃ = ddcϕ,

where ϕ is a χ-automorphic function.

REMARK: A small deformation of an LCK manifold might be non-LCK. A

small deformation of Vaisman might be non-Vaisman. A small deformation

of LCK with potential is LCK with potential.

EXAMPLE: All Hopf manifolds admit an LCK structure with LCK po-

tential (Ornea-V.).

THEOREM: (Ornea-V.) A compact manifold M , dimCM > 2 admits an

LCK potential if and only if M admits a holomorphic embedding to a

Hopf manifold.

REMARK: This property can be used instead of the definition.

REMARK: In dimension 2 this is also true if we assume the GSS con-

jecture.
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Normed fields

DEFINITION: An absolute value on a field k is a function | · | : k→R>0,

satisfying the following

1. Zero: |x| = 0 ⇔ x = 0.

2. Multiplicativity: |xy| = |x||y|.

3. There exists c > 0 such that | · |c satisfies the triangle inequality.

EXAMPLE: The usual absolute value on Q, R, C.

EXAMPLE: Let p – be a prime number, and m,n ∈ Z coprime with p. Define

p-adic absolute value on Q via |mn p
k| := p−k.

REMARK: p-adic absolute value satisfies an additional “non-archimedean ax-

iom”: |x+y| 6 max(|x|, |y|). Such absolute values are called non-archimedean.

REMARK: Any power of non-archimedean absolute value is again non-

archimedean, and satisfies the triangle inequality.
17
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Normed fields and topology

DEFINITION: Let | · | be an absolute value on a field F . Consider topology
on F with open sets generated by

Bε(x) := {y ∈ k | |x− y| < ε}.

Absolute values are called equivalent if they induce the same topology.

THEOREM: Absolute values | · |1, | · |2 are equivalent if and only if

| · |1 = | · |c2 for some c > 0.

THEOREM: (Ostrowski) Every absolute value on Q is equivalent to the

usual (”archimedean”) one or to p-adic one.

DEFINITION: A completion of a field k under an absolute value | · | is a
completion of k in a metric | · |c, where c > 0 is a constant such that | · |c
satisfies the triangle inequality.

REMARK: A completion of a field is again a field.

EXAMPLE: A completion of Q under the p-adic absolute value is called a

field of p-adic numbers, denoted Qp.
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Local fields

DEFINITION: A finite extension K : k of fields is a field K ⊃ k which
is finite-dimensional as a vector space over k. A number field is a finite
extension of Q. Functional field is a finite extension of Fp(t). Global field
is a number or functional field. Local field is a completion of a global field
under a non-trivial absolute value.

THEOREM: Let k be a field which is complete and locally compact under
some absolute value. Then k is a local field.

DEFINITION: Let K:k be a finite extension, and x ∈ K. Consider the mul-
tiplication by x as a k-linear endomorphism of K. Define the norm NK/k(x)
as a determinant of this operator.

REMARK: Norm defines a homomorphism of multiplicative groups K∗→k∗.

REMARK: For Galois extensions, the norm NK/k(x) is a product of all
elements conjugate to x.

THEOREM: Let K :k be a finite extension of local fields, degree n. Then an
absolute value on k is uniquely extended to K. Moreover, this extension

is expressed as |x| :=
∣∣∣NK/k(x)

∣∣∣1n.
19
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Absolute values and extensions of global fields

CLAIM: Let A,B be extensions of a field k, of characteristic 0 where A:k is

finite. Consider A ⊗k B as an k-algebra. Then A ⊗k B is a direct sum of

fields, containing A and B.

THEOREM: Let k be a number field, | · | an absolute value, K :k a finite

extension, and k – its completion. Consider a decomposition K ⊗k k into a

direct sum of fields K ⊗k k :=
⊕
iKi. Then each extension of an absolute

value | · | from k to K is induced from some Ki, and all such extensions

are non-equivalent.

REMARK: When k = Q, and | · | is the usual (archimedean) absolute value,

we obtain that all Ki are extensions of R, that is, isomorphic to R or C. This

gives

COROLLARY: For each number field K of degree n over Q, there

exists only a finite number of different homomorphisms K ↪→ C, all of

them injective. Denote by s the number of embeddings whose image lies in

R ⊂ C (such an embedding is called real), and 2t the number of embedding,

whose image does not lie in R (“complex embeddings”). Then s+ 2t = n.
20
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Dirichlet unit theorem

DEFINITION: Let K :Q be a number field of degree n. The ring of integers
OK ⊂ K is an integral closure of Z in K, that is, the set of all roots in K

of monic polynomials P (t) = tn + an−1t
n−1 + an−2t

n−2 + ...+ a0 with integer
coefficients ai ∈ Z.

CLAIM: An additive group O
+
K is a finitely generated abelian group of

rank n.

DEFINITION: A unit of a ring OK is an element u ∈ OK, such that u−1

also belongs to OK.

REMARK: u ∈ OK is a unit if and only if the norm NK/Q(x) ∈ Z is invertible,
that is, NK/Q(x) = ±1.

Dirichlet’s unit theorem: Let K be a number field which has s real em-
beddings and 2t complex ones. Then the group of units O∗K is isomorphic
to G × Zt+s−1, where G is a finite group of roots of unity contained in K.
Moreover, if s > 0, one has G = ±1.

REMARK: For a quadratic field, the group of units is a group of solutions
of Pell’s equation.
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Oeljeklaus-Toma manifolds

Let K be a number field which has 2t complex embedding denoted τi, τ i and
s real ones denoted σi, s > 0, t > 0.

Let O
∗,+
K := O∗K ∩

⋂
i σ
−1
i (R>0). Choose in O

∗,+
K a free abelian subgroup O

∗,U
K

of rank s such that the quotient Rs/O∗,UK is compact, where O
∗,U
K is mapped

to Rt as ξ→
(

log(σ1(ξ)), ..., log(σt(ξ))
)
. Let Γ := O

+
K oO

∗,U
K .

DEFINITION: An Oeljeklaus-Toma manifold is a quotient Ct × Hs/Γ,
where O

+
K acts on Ct ×Ht as

ζ(x1, ..., xt, y1, ..., ys) =

(
x1 + τ1(ζ), ..., xt + τt(ζ), y1 + σ1(ζ), ..., ys + σs(ζ)

)
,

and O
∗,U
K as

ξ(x1, ..., xt, y1, ..., ys) =

(
x1, ..., xt, σ1(ξ)y1, ..., σt(ξ)yt

)

THEOREM: (Oeljeklaus-Toma) The OT-manifold M := Ct × Hs/Γ is a
compact complex manifold, without any non-constant meromorphic func-
tions. When t = 1, it is locally conformally Kähler.
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Kato manifolds

DEFINITION: Let B be an open ball in Cn, n > 1, and B̃
π
B be a bimeromor-

phic, holomorphic map, which is an isomorphism outside of a compact subset.
Remove a small ball in B̃ and glue it to the boundary of B̃, extending the
complex structure smoothly (and holomorphically) on the resulting manifold,
denoted by M . Then M us called a Kato manifold.

THEOREM: (Brunella) Suppose that M is a Kato manifold obtained from

B̃
π
B with B̃ Kähler. Then M is LCK.

THEOREM: (Kato) Let M be a Kato manifold. Then there exists a family
Mt of complex manifolds over a punctured disk such that M = M0 and all
other Mt are bimeromorphic to a Hopf manifold.

DEFINITION: Let M be a complex manifold, and Γ ⊂M be an open subset
which is isomorphic as a complex manifold to a small neighbourhood of a
sphere S2n−1 ⊂ Cn. The set Γ is called a global spherical shell if the
complement M\Γ is connected.

THEOREM: (Kato) Let M be a compact complex manifold. Then M is a
Kato manifold if and only if it contains a global spherical shell.
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Bott-Chern cohomology

DEFINITION: Let M be a complex manifold, and H
p,q
BC(M) the space of

closed (p, q)-forms modulo ddc(Λp−1,q−1M). Then H
p,q
BC(M) is called the

Bott–Chern cohomology of M .
REMARK: A (p, q)-form η is closed if and only if ∂η = ∂η = 0. Using
2
√
−1 ∂∂ = ddc, we could define the Bott–Chern cohomology H∗BC(M)

as H∗BC(M) := ker ∂∩ker ∂
im ∂∂

.

REMARK: There are natural (and functorial) maps from the Bott–Chern
cohomology to the Dolbeault cohomology H∗(Λ∗,∗M,∂) and to the de Rham
cohomology, but no morphisms between the de Rham and the Dolbeault
cohomology.

THEOREM: Let M be a compact complex manifold. Then H
p,q
BC(M) is

finite-dimensional.

This result can be deduced from
THEOREM: There is an exact sequence,

H∗(Λp,q−1(M), ∂)⊕H∗(Λq,p−1(M), ∂)→ H
p,q
BC(M)→ Hp+q(M).

with the second arrow mapping a class represented by a closed form to a class
represented by the same form, and the first taking (x, y) ∈ H∗(Λp,q−1(M), ∂)⊕
H∗(Λq,p−1(M), ∂) to ∂x+ ∂y.
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Degree of an element in H
1,1
BC(M) and Gauduchon metrics

REMARK: If ω is Gauduchon, then (by Stokes’ theorem)
∫
M ωn−1ddcf = 0 for

any function f with compact support. Therefore,
∫
M ωn−1 ∧ α is a functional

on H
1,1
BC(M). This functional is called the degree.

EXAMPLE: Let ΘL be the curvature of Chern connection on a holomorphic

line bundle L. Since ΘL = −ddc|l|, where l is a holomorphic section of L, the

curvature is well defined up to to ddc log |h|, where h is a conformal factor

given by a ration of two Hermitian metrics. Therefore, for any line bundle

L, the quantity degω L :=
∫
M ωn−1 ∧ΘL is well defined.

REMARK: This is the starting point of the Kobayashi-Hitchin corre-

spondence on complex manifold.
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Degree of an element in H1(M,R) and Gauduchon metrics

DEFINITION: Let M be a compact complex manifold, and ω a Gauduchon

form. Consider the natural map H1(M,R)→H1,1
BC(M) which takes a closed

real 1-form α to the Bott-Chern class of dcα. Locally, α is df , hence dcα is a

(1,1)-form. Define degα as −
∫
M ωn−1∧dcα. This is a well defined functional

on first cohomology.

CLAIM: In these assumptions, the form dcα ∈ Λ2(M) is always exact.

Proof: Indeed, dcα = IdIα = d(Iα) because I(β) = β for any (1,1)-form β.

DEFINITION: Let M be a compact complex manifold admitting an LCK

structure. Define its Lee cone as the set of all classes [θ] ∈ H1(M,R) of all

the Lee forms for all LCK structures.

THEOREM: Let M be a compact LCK manifold with potential, and u a

Gauduchon form. Then its Lee cone is the set of all α ∈ H1(M) such

that deguα > 0, where degu is the degree map associated with u.
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Aeppli cohomology

DEFINITION: Let M be a complex manifold, and H
p,q
AE(M) the space of

ddc-closed (p, q)-forms modulo ∂(Λp−1,qM) + ∂(Λp,q−1M). Then H
p,q
AE(M) is

called the Aeppli cohomology of M .

THEOREM: Let M be a compact complex n-manifold. Then the Aeppli

cohomology is finite-dimensional. Moreover the natural pairing H
p,q
BC(M)×

H
n−p,n−q
AE (M)→H2n(M) = C, taking x, y to

∫
M x ∧ y is non-degenerate and

identifies H
p,q
BC(M) with the dual Hn−p,n−q

AE (M)∗.
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The Gauduchon cone

DEFINITION: Let M be a complex manifold, and ω a Gauduchon metric.

A Gauduchon form of M is ωn−1.

CLAIM: Fix a positive volume form Vol on M . A form η ∈ Λn−1,n−1(M,R)

defines a Hermitian form on Λ1(M) taking x, y to η∧x∧y
Vol . Then this Hermition

form is positive definite if and only if η = αn−1, where α is a Hermitian

form.

REMARK: This result implies that the set of all Gauduchon forms is a

convex cone in Λn−1,n−1(M,R).

DEFINITION: The Gauduchon cone of a compact complex n-manifold is

the set of all classes ωn−1 ∈ Hn−1,n−1
AE (M) of all Gauduchon forms.

DEFINITION: Recall that pseudoeffective cone P ⊂ H1,1
BC(M) is the cone

of all Bott-Chern classes of all positive, closed (1,1)-currents.

THEOREM: (Lamari)

The Gauduchon cone is dual to the pseudoeffective cone.
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Lee cone and the Gauduchon cone

Conjecture 2: Let θ be a Lee class on a compact LCK manifold, and u a

Gauduchon metric. Then degu θ > 0. In other words, dcθ is pseudo-effective.

THEOREM: Let (M,ω, θ) be a compact complex non-Kähler LCK-manifold

which is birational to either LCK with potential, Oeljeklaus-Toma or Kato

manifold, and u a Gauduchon metric. Then degu θ > 0.

Proof. Step 1: Theorem is true for free for OT and Vaisman manifolds,

because −dcθ is a positive, exact (1,1)-form. It is also true for all manifolds

which are bimeromorphic to Vaisman and OT, because these manifold are

blow-ups of Vaisman and OT, (Ornea-V.), and the pullback of a positive

form is positive. This implies that degu θ > 0 in all these situations.
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Lee cone and the Gauduchon cone (2)

THEOREM: Let (M,ω, θ) be a compact complex non-Kähler LCK-manifold

which is birational to either LCK with potential, Oeljeklaus-Toma or Kato

manifold, and u a Gauduchon metric. Then degu θ > 0. In other words, dcθ

is pseudo-effective.

Step 2: Suppose we have a smooth family (Mt, ωt, θt) of LCK manifolds such

that the statement of the theorem is true for all t 6= 0. Fix a Gauduchon

metric u0 on the central fiber M0. We can extend it u0 to a smooth family

of Gauduchon metrics using the Gauduchon theorem. On all fibers except

the central, we have degut θt > 0, hence the same is true on the central

fiber.

Step 3: An LCK manifold with potential has a deformation (Mt, ωt, θt) with

all fibers except the central one Vaisman (Ornea-V.). The Kato manifold has

a deformation (Mt, ωt, θt) with all the fibers except the central one a blown-

up Hopf (Kato). However, blown-up Hopf is bimeromorphic to LCK with

potential, hence it also satisfies the statement of the theorem.
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Proof of main theorem

THEOREM: Let (M,ω, θ) be a compact complex non-Kähler LCK-manifold

which is birational to either LCK with potential, Oeljeklaus-Toma or Kato

manifold. Then (M,ω, θ) does not admit a balanced metric.

Proof: Let α be a positive current which is Bott-Chern cohomologous to

−dcθ0, and ρ the balanced metric. Then
∫
M −dcθ0 ∧ ρn−1 =

∫
M α ∧ ρn−1 = 0,

because dcθ0 is exact. This implies that α = 0: the mass of a non-zero positive

current is always strictly positive. Therefore, dcθ is Bott-Chern exact, impying

that dcθ = ddcf , and θ is cohomologous to a d, dc-closed form θ1. The same

argument as in the proof of Vaisman theorem immediately implies that θ1 = 0

and M is Kähler.
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