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LCK manifolds

DEFINITION: A complex Hermitian manifold of dimension dimC > 1 (M, I, g, ω)

is called locally conformally Kähler (LCK) if there exists a closed 1-form θ

such that dω = θ ∧ ω. The 1-form θ is called the Lee form.

REMARK: This definition is equivalent to the existence of a Kähler cover

(M̃, ω̃)→M such that the deck group Γ acts on (M, ω̃) by holomorphic

homotheties. Indeed, suppose that θ is exact, df = θ. Then e−fω is a

Kähler form. Let M̃ be a covering such that the pullback θ̃ of θ is exact,

df = θ̃ . Then the pullback of ω̃ is conformal to a Kähler form e−f ω̃.
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Vaisman theorem

REMARK: Let (M,ω, θ) be an LCK manifold, and θ′ another 1-form, homol-
ogous to θ. Write θ′ − θ = df . Then

d(efω) = ef(dω + df ∧ ω) = ef(θ ∧ ω + df ∧ ω) = θ′ ∧ (efω).

In other words, conformally equivalent LCK metric give rise to homolo-

gous Lee forms, and any closed 1-form cohomologous to the Lee form

is a Lee form of a conformally equivalent LCK metric.

THEOREM: (Vaisman)
A compact LCK manifold (M, I, θ) with non-exact Lee form does not admit

a Kähler structure.

Proof: On a compact manifold of Kähler type, any [θ] ∈ H1(M,R) can be
represented by α, obtained as a real part of a holomorphic form. This gives
dcα = 0. After a conformal change of the metric, we can assume that
dω = α ∧ ω, and ddcω = α ∧ I(α) ∧ ω. On a Kähler manifold, a positive

exact form must vanish, which implies α ∧ I(α) ∧ ω = 0 and α = 0.

REMARK: Such manifolds are called strict LCK. Further on, we shall

consider only strict LCK manifolds.
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Izu Vaisman

Izu Vaisman, b. June 22, 1938 in Jassy, Romania
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LCK structures on a product

Further on, when I say “a manifold is a product of two manifolds”, I

always assume “of positive dimension”.

Clearly, any submanifold of an LCK manifold is LCK. This implies that

any LCK manifold which is a product of two complex manifolds is a product

of LCK manifolds (a priori non-strict).

THEOREM: (Ornea-V.-Vuletescu)

Let M be an LCK manifold which is biholomorphic to a product of two

complex manifolds, M = X × Y . Then both X and Y are strict LCK.

The main question we discuss today: Can a product of two complex

manifolds of positive dimension admit an LCK structure?
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LCK structures on a product (2)

Can a product of two complex manifolds of positive dimension admit

an LCK structure?

The answer is “most likely, not”, but it is still not proven. However, up to

a fundamental statement known as “GSS conjecture” (still not proven, but

generally assumed to be true), we can prove this statement when one of the

summands has dimension 6 2.

GSS conjecture (more about it later today) claims that all complex surfaces

with b1 = 1 fall into one of three known classes, constructed explicitly. When

b1 = 3 or more, it is automatically elliptic, and therefore LCK.

THEOREM: (Ornea-V.-Vuletescu)

Let M = X × Y , where M is an LCK manifold, and X a surface of one of the

known classes (any surface if GSS conjecture is true). Then M is Kähler.
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Non-Kähler surfaces

REMARK: A complex surface is a compact complex manifold of complex

dimension 2.

THEOREM: (follows from Kodaira classification; a direct proof is due

to Buchdahl and Lamari) A complex surface M admits a Kähler struc-

ture if and only if b1(M) is even.

DEFINITION: A complex surface M is called class VII if b1(M) = 1. It is

called elliptic if it admits a holomorphic map to a compact curve with fiber

an elliptic curve.

THEOREM: (Belgun, Ornea-V.-Vuletescu) A complex, non-Kähler

surface with b1(M) > 1 is elliptic and LCK.
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The GSS conjecture

DEFINITION: Let S ⊂ C2 be a standard sphere, and Sε its ε-neighbourhood.
A complex surface M admits a global spherical shell if there is a holomorphic
embedding Sε→M , for some ε > 0, such that the complement of its image
is connected. A surface admitting a global spherical shell is called a Kato
surface.

REMARK: Kato surfaces can be constructed explicitly from germs of
birational automorphisms of C2.

CONJECTURE: (GSS conjecture, due to Kato)
Let M be a class VII surface with b2 > 0. Then M is a Kato surface.

REMARK: When b2 = 0, the structure theorem for surfaces of class VII is
due to Bogomolov (later today).

REMARK: By results of G. Dlousky, K. Oeljeklaus and M. Toma, a Kato
surface M admits at least b2(M) distinct rational curves, and, conversely, if
a complex surface admits b2(M) distinct rational curves in a certain
configuration, it is a Kato surface.

THEOREM: (Brunella)
Kato surfaces admit an LCK structure.
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Inoue surfaces

DEFINITION: Consider the action of Z on Z3 associated with a linear oper-

ator A ∈ SL(3,Z) with one of the real eigenvalues > 1, and let ΓS0
be the cor-

responding semidirect product ΓS0
:= Z3 oZ. Let Heis be the group of upper

triangular integer matrices 3×3, Z(Heis) = Z its center, and let Z act on Heis

by automorphisms with real eigenvalues α, α−1 6= ±1 on Z2 = Heis /Z(Heis).

We denote by ΓS+
:= HeisoZ the corresponding semidirect product when

α > 0 and ΓS− := HeisoZ when α < 0.

DEFINITION: Let H be the upper half-plane. Consider the groups ΓS0
, ΓS±

acting cocompactly, faithfully and discontinuously on C × H. The quotient

manifolds C×H/ΓS0
, C×H/ΓS+

, C×H/ΓS− are called the Inoue surfaces of

class S0, S+, S−.
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Bogomolov’s theorem about surfaces of class VII

DEFINITION: a Hopf surface is a quotient of C2\0 by an action of Z which

acts on C2 by holomorphic contractions.

THEOREM: (F. Belgun)

Inoue surfaces of class S0 and S− are LCK. Inoue surfaces of class S+ are

LCK if and only if they are double covers of S−.

DEFINITION: a Hopf surface is a quotient of C×H by an action of Z which

acts on C2 by holomorphic contractions.

THEOREM: (Bogomolov, Li-Yau-Zheng, Teleman)

Let M be a class VII surface with b2 = 0. Then M is a Hopf surface or an

Inoue surface.

10



Can products admit LCK metrics? M. Verbitsky

Vaisman manifolds

DEFINITION: An LCK manifold is a Vaisman manifold if it admits a

continuous action of complex isometries.

REMARK: This is actually a theorem, due to many autors, primarily Kamishima,

Ornea, Istrati, V.; the original definition is that “(M, I, g, ω) is Vaisman if the

Lee form θ is parallel with respect to the Levi-Civita connection.”

EXAMPLE: All non-Kähler elliptic surfaces are Vaisman.

DEFINITION: A linear Hopf manifold is a quotient M := Cn\0
〈A〉 where A is

a linear contraction. When A is diagonalizable, M is called diagonal Hopf.

EXAMPLE: All diagonal Hopf manifolds are Vaisman, and all non-

diagonal Hopf manifolds are LCK and not Vaisman.

THEOREM: (Ornea-V.)

All complex submanifolds of Vaisman manifolds are Vaisman. All Vais-

man manifolds admit a holomorphic embedding to a diagonal Hopf

manifold (which is Vaisman, too).
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χ-automorphic functions

CLAIM: Conformally equivalent Kähler forms are proportional.

Proof: Let efω and ω be Kähler forms. Then 0 = d(efω) = efω ∧ df . A

multiplication with ω defines an injective map Λ1(M)
∧ω−→ Λ3(M), hence efω∧

df = 0 implies df = 0.

COROLLARY: Let (M,ω, θ) be an LCK manifold, (M̃, ω̃) its Kähler cover.

Then the deck transform group Γ acts on M̃, ω̃ by homotheties.

DEFINITION: Denote by χ : Γ→R>0 the corresponding character, γ∗ω̃ =

χ(γ)ω̃. A function ϕ on M̃ is called χ-automorphic if γ∗ϕ = χ(γ)ϕ.
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LCK manifolds with potential

DEFINITION: An LCK manifold is called an LCK manifold with LCK

potential if the Kähler form ω̃ on M̃ has a χ-automorphic potential, ω̃ = ddcϕ,

where ϕ is a χ-automorphic function.

REMARK: A small deformation of an LCK manifold might be non-LCK. A

small deformation of Vaisman might be non-Vaisman. A small deformation

of LCK with potential is LCK with potential.

EXAMPLE: All Hopf manifolds admit an LCK structure with LCK po-

tential (Ornea-V.).

THEOREM: (Ornea-V.) A compact manifold M , dimCM > 2 admits an

LCK potential if and only if M admits a holomorphic embedding to a

Hopf manifold.

REMARK: This property can be used instead of the definition.

REMARK: In dimension 2 this is also true if we assume the GSS con-

jecture.
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Inoue type LCK manifolds

DEFINITION: A real (p, p)-form A on a complex n-manifold M is called
weakly positive if A ∧ αn−p is a non-negative top form for any Hermitian
form α on M .

DEFINITION: Let A be a weakly positive, non-zero (p, p)-form on a complex
manifold M admitting an LCK structure, dimCM > p > 0. We say that A

consumes the LCK structures if for any LCK structure (ω, θ) on M , θ is
cohomologous to a closed 1-form θ1 such that A ∧ θ1 = 0. We say that an
LCK manifold is of Inoue type if it admits such a form A which is also closed,
dA = 0.

REMARK: All LCK Inoue surfaces and their generalizations to dim > 2,
known as OT-manifolds (Oeljeklaus-Toma manifolds) are of this type.

REMARK: All known LCK manifold belong to one of the following
classes: they are LCK with potential, contain a rational curve, or are of
Inoue type.

CLAIM: All LCK complex surfaces belong to one of these three classes,
if GSS conjecture is true.
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Induced globally conformally Kähler (IGCK) submanifolds

DEFINITION: Let (M, θ, ω) be an LCK manifold, and X ⊂ M a complex

subvariety. It is called induced globally conformally Kähler (IGCK) if θ|X
is exact.

EXAMPLE: Let M be a classical Hopf manifold, M = Cn\0/〈λ Id〉, and

E = C\0
Z ⊂M an elliptic curve obtained from a complex line in Cn\0. Clearly,

E is Kähler, but the Lee form θ = −d log |z| is not exact on E, hence E

is not IGCK.

EXAMPLE: A blow-up of a point in an LCK manifold is again LCK (Tricerri,

Vuletescu), and the exceptional divisor is IGCK, as well as all its sub-

manifolds.

EXAMPLE: Any Kähler-type submanifold of complex dimension > 1 is

IGCK, by Vaisman’s theorem.
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The fibration theorem

THEOREM: (“Fibration theorem”, Ornea-V.-Vuletescu)

Let M be a strict LCK manifold, and X ⊂ M a submanifold which admits a

fibration π : X→Z with complex analytic fibers of positive dimension. Assume

that Z is path connected. Then either X is IGCK, or the fibers of π are

IGCK.

Proof. Step 1: Let M̃ be the minimal Kähler covering of M . Assume that

X is not IGCK and the fibers of X are IGCK. By homotopy lifting lemma,

the fibers of π are lifted to M̃.

Step 2: The deck transform group acts on M by homotheties, hence it takes

a fiber of volume V to a fiber of volume cV , where c 6= 0. This homothety

is non-trivial, because X is not IGCK, hence any connected component X̃

of its preimage is non-compact in M̃ . However, the fibers of X̃→Z̃ are

homologous, hence they cannot have different volume (the volume is an

integral of the top power of the Kähler form, which is a homology invariant).

We have arrined at the contradiction.
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The main result

THEOREM: Let X be a strict LCK manifold which belongs to one of these
three classes: either Inoue type, or has an LCK potential, or has a rational
curve, and Y a complex manifold of positive dimension. Then X × Y does
not admit an LCK structure.

Proof. Step 1: A product of a manifold and a rational curve does not
admit a strict LCK structure (Fibration theorem).

Step 2: A product of a complex manifold and a torus does not admit a strict
LCK structure, because it admits a continuous isometry, hence it is Vaisman,
but a Vaisman manifold cannot be a product, because all its subvarieties
are tangent to a certain holomorphic foliation.

Step 3: An LCK manifold X with potential always contains an elliptic curve
T , hence M = X × Y contains a subvariety T × Y , which is Kähler (Step
2), hence it is IGCK, hence Y is IGCK, which contradicts the Fibration
theorem, because M is fibered over X with fibber Y .

Step 4: It remains to consider the case when X is of Inoue type, which is
done on the next slide.
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Products with an Inoue type manifold

Step 4: Let n = dimCX, and suppose that M = X × Y admits an LCK

structure (θ, ω). Consider the form B := π∗1A ∧ ω
n−p. Then

dB = (n− p)π∗1A ∧ ω
n−p ∧ (π∗1θ1 + π∗2θ2)

= (n− p)π∗1A ∧ ω
n−p ∧ π∗2θ2 = (n− p)B ∧ π∗2θ2.

Consider the pushforward (that is, the fiberwise integral) (π2)∗B ∈ C∞(Y ) of

B to Y . Since B is of type (n, n) it follows that

(π2)∗B(y) =
∫
π−1

2 (y)

(
A ∧ ωn−p

) ∣∣∣∣π−1
2 (y)

=
∫
π−1

2 (y)
A ∧

(
ωn−p

) ∣∣∣∣π−1
2 (y)

.

Now, from the weak positivity of the (p, p)-form A we infer that the function

(π2)∗B is positive and nowhere vanishing. For all η ∈ Λ∗M , we have

(π2)∗(η ∧ π∗2θ2) = (π2)∗(η) ∧ θ2.

Therefore

d(π2)∗B = (π2)∗(dB) = (n− p)(π2)∗(B ∧ π∗2θ2) = (n− p)((π2)∗B) · θ2.

This implies that θ2 = 1
n−pd log((π2)∗B) is exact, contradicting the assumption

that Y is strictly LCK.
18


