Аменабельные группы

лекция 3

Миша Вербицкий 6 августа 2011

Летняя математическая школа "Алгебра и геометрия" 1 - 7 августа, 2011, ЯГПУ, Ярославль, Россия

Литература

Аменабельность:

- * http://terrytao.wordpress.com/2008/02/14/kleiners-proof-of-gromovs-theorem/
- * http://terrytao.wordpress.com/2009/04/14/some-notes-on-amenability/

Геометрическая теория групп:

* Wolfgang Lueck, "Survey on geometric group theory", http://arxiv.org/abs/0806.3771
* Wolfgang Lueck, "On the Farrell-Jones and related Conjectures", http://arxiv.org/abs/0710.2269

Свойство Каждана Т

* Bekka, de la Harpe, Valette, (2008), Kazhdan's property (T) http://perso.univ-rennes1.fr/bachir.bekka/KazhdanTotal.pdf

Метрическая геометрия:

- * Бураго Д.Ю., Бураго Ю.Д., Иванов С.В. "Курс метрической геометрии"
- * Громов М. "Гиперболические группы"

Риманова геометрия:

- * Громов, "Знак и геометрический смысл кривизны"
- * Милнор, "Теория Морса"
- * Бессе А. Многообразия Эйнштейна
- * Gallot S., Hulin D., Lafontaine J. Riemannian geometry

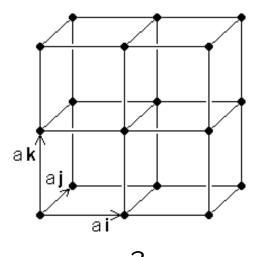
Граф Кэли (повторение)

Все группы лекции предполагаются по умолчанию конечно порожденными.

ОПРЕДЕЛЕНИЕ: Набор образующих группы G есть множество элементов S, мультипликативно порождающих G. В дальнейшем, мы будем всегда предполагать, что $s \in S \Leftrightarrow s^{-1} \in S$.

ОПРЕДЕЛЕНИЕ: Пусть G — группа, $\{s_i\}$ — набор образующих. Граф Кэли пары $(G, \{s_i\})$ есть граф, вершины которого — элементы G, а ребра соединяют точки вида g и gs_i .

ПРИМЕР: Граф Кэли для \mathbb{Z}^n с обычным набором образующих есть кубическая решетка.



Метрика слов на группе

ОПРЕДЕЛЕНИЕ: С каждым графом связано топологическое пространство графа: набор отрезков, соединяющих набор отмеченных точек — вершин. Оно снабжено метрикой, таким образом, что каждое ребро изометрично отрезку длины 1, и расстояние между точками a,b — длина кратчайшего пути из a в b.

ОПРЕДЕЛЕНИЕ: Метрика слов на группе $d_S(\cdot,\cdot)$ есть метрика на группе G с системой образующих S, полученная ограничением обычной метрики на графе Кэли.

ЗАМЕЧАНИЕ: Обозначим за $|x|_S$ расстояние $d_S(e,x)$. Тогда $|x|_S$ есть минимальная длина слова W, составленного из букв $s_i \in S$ такого, что произведение всех букв W составляет x.

Группы полиномиального и экспоненциального роста (повторение)

Пусть G,S — группа с заданной системой образующих, а Γ_S — ее граф Кэли. Обозначим за $b_s(N)$ число вершин графа в шаре радиуса N с центром в e.

ОПРЕДЕЛЕНИЕ: Группа G называется группой полиномиального роста степени $\leqslant d$, если $b_s(N) \leqslant CN^d + C'$ для каких-то констант C, C'.

ОПРЕДЕЛЕНИЕ: Группа G называется группой экспоненциального роста, если $b_s(N) \geqslant \alpha^N$ для какой-то константы $\alpha > 0$.

ПРИМЕР: \mathbb{Z}^n – группа полиномиального роста.

ПРИМЕР: \mathbb{F}_n , $n \ge 2$ — группа экспоненциального роста.

Теорема Громова

ОПРЕДЕЛЕНИЕ: Нижний центральный ряд группы G есть ряд вида

$$G_0 = G \supset G_1 = [G, G] \supset G_2 = [G, [G, G]] \supset G_3 = [G, [G, G, G]] \supset ...$$

ОПРЕДЕЛЕНИЕ: Нильпотентная группа есть группа, нижний центральный ряд которой конечен и обрывается на $G_n = \{e\}$.

ОПРЕДЕЛЕНИЕ: Группа называется **виртуально нильпотентной**, если она содержит нильпотентную подгруппу конечного индекса.

Теорема Громова: Любая группа полиномиального роста виртуально нильпотентна.

Я расскажу схему доказательства теоремы Громова, принадлежащую Брюсу Клейнеру:

Bruce Kleiner, A new proof of Gromov's theorem on groups of polynomial growth, http://arxiv.org/abs/0710.4593

Группа, проектирующаяся на \mathbb{Z} , и ее порядок роста

Утверждение 1: Предположим, что задано сюрьективное отображение $\varphi: G \longrightarrow \mathbb{Z}$, а G — группа полиномиального роста степени d. Тогда $G_0:=\ker \varphi$ — группа полиномиального роста, степени $\leqslant d-1$.

ДОКАЗАТЕЛЬСТВО: Выберем какой-то набор элементов $S_0 \subset G_0$, и пусть $g \in G$ проектируется в образующую \mathbb{Z} . Обозначим за $B_e(R,S_0)$ R-шар в подгруппе, порожденной S_0 , а за $B_e(R,S_0 \cup \{g\})$ — аналогичный шар, порожденный $S_0 \cup \{g\}$.

Шаг 1:

$$B_e(2N, S_0 \cup \{g\}) \supset B_e(N, S_0) \cdot \{g^{-N}, g^{-N+1}, ...g^N\}.$$

Шаг 2: Множество $B_e(N, S_0) \cdot \{g^{-N}, g^{-N+1}, ... g^N\} \subset G$ содержит $\geqslant 2N|B_e(N, S_0)|$ элементов.

Шаг 3: Если $|B(N,S_0)| > CN^d$, то

$$|B(2N, S_0) \cup \{g\}| > C2N^{d+1} = \frac{C}{2^n} (2N)^{d+1}.$$

Значит, группа, порожденная S_0 и $\{g\}$, имеет показатель степени роста на $\geqslant 1$ больше, чем степень роста группы, порожденной S_0 .

Скрещенное произведение

ОПРЕДЕЛЕНИЕ: Пусть K — группа, а φ —действие K на группе L автоморфизмами. Скрещенное произведение $L \rtimes_{\varphi} K$ есть $L \times K$ с произведением, заданным формулой

$$(l,k)(l',k') = (ll',\varphi_{l'}(k)k').$$

УПРАЖНЕНИЕ: Рассмотрим точную последовательность групп

$$\{e\} \longrightarrow G_0 \longrightarrow G \longrightarrow \mathbb{Z} \longrightarrow \{e\}.$$

Докажите, что $G = G_0 \rtimes_{\varphi} \mathbb{Z}$.

УПРАЖНЕНИЕ: Пусть $G_0 = \mathbb{Z}^m$ — абелева группа без кручения, φ — действие \mathbb{Z} на G_0 , а $G = G_0 \rtimes_{\varphi} \mathbb{Z}$. Докажите, что G нильпотентна тогда и только тогда, когда матрица, $A := \varphi(1) \in GL(m,\mathbb{Z})$ имеет конечный порядок, т.е. удовлетворяет $A^N = \mathrm{Id}$.

УПРАЖНЕНИЕ: В условиях предыдущей задачи, докажите, что G имеет полиномиальный рост, если A конечного порядка, и экспоненциальный рост, если бесконечного.

Редукция теоремы Громова к существованию представлений

УПРАЖНЕНИЕ: (*) Пусть $G = G_0 \rtimes_{\varphi} \mathbb{Z}$, где G_0 нильпотентна. Докажите, что G имеет полиномиальный рост тогда и только тогда, когда она виртуально нильпотентна.

ЗАМЕЧАНИЕ: Предположим, что всякая группа полиномиального роста допускает сюрьективное отображение в \mathbb{Z} . Пользуясь утверждением со слайда выше и индукцией по степени роста в теореме Громова, мы можем считать, что G_0 — виртуально нильпотентна, а $G = G_0 \rtimes_{\varphi} \mathbb{Z}$. Применив предыдущее упражнение, мы получим, что G также виртуально нильпотентна.

Мы свели теорему Громова к следующему утверждению.

TEOPEMA: Любая группа полиномиального роста допускает сюрьективый гомоморфизм в \mathbb{Z} .

Именно это и доказывает Клейнер.

Аменабельные группы (повторение)

Для любого множества S, обозначим за 2^S множество его подмножеств. Обозначим за $A \coprod B$ объединение непересекающихся подмножеств S.

ОПРЕДЕЛЕНИЕ: Функция $2^S \stackrel{\mu}{\longrightarrow} \mathbb{R}^{\geqslant 0}$ называется конечно-аддитивной мерой, если верно свойство конечной аддитивности: $\mu(A \coprod B) = \mu(A) + \mu(B)$.

ОПРЕДЕЛЕНИЕ: Пусть G — группа, $g \in G$, а $L_g : G \longrightarrow G$ — отображение **левого сдвига**, переводящее x в gx. Функция $2^G \stackrel{\mu}{\longrightarrow} \mathbb{R}$ называется **левоинвариантной**, если $\mu(L_g(A)) = \mu(A)$ для любого $A \subset G$.

ОПРЕДЕЛЕНИЕ: Конечно-аддитивная мера $2^S \stackrel{\mu}{\longrightarrow} \mathbb{R}^{\geqslant 0}$ называется **вероятностной**, если $\mu(S) = 1$.

ОПРЕДЕЛЕНИЕ: Группа G называется **аменабельной**, если существует конечно-аддитивная левоинвариантная вероятностная мера μ : $2^G \longrightarrow \mathbb{R}^{\geqslant 0}$.

ТЕОРЕМА: Любая группа полиномиального роста аменабельна.

Множества Фёлнера (повторение)

Обозначим число элементов конечного множества за |A|.

ОПРЕДЕЛЕНИЕ: Пусть $A, B \subset S$ — множества. симметрическая разность A и B — это $A \triangle B := (A \cup B) \setminus (A \cap B)$.

ОПРЕДЕЛЕНИЕ: Пусть G — группа, а $F_n \subset G$ — последовательность подмножеств. $\{F_n\}$ называется последовательностью Фёльнера (Følner sequence), если для каждого $g \in G$, $\lim_n \frac{|F_n \triangle L_g(F_n)|}{|F_n|} = 0$.

TEOPEMA: Пусть G — группа, снабженная последовательностью Фёльнера. **Тогда** G аменабельна.

Erling Følner, 18.11.1919-10.10.1991, dansk matematiker, professor ved Danmarks Tekniske Højskole 1954-74. Følner publicerede sammen med Harald Bohr en omfattende undersøgelse af generaliserede næsten-periodiske funktioner, som han i sin doktorafhandling fulgte op med yderligere undersøgelser. Senere har han publiceret vigtige resultater om næsten-periodiske funktioner på grupper med anvendelser på gruppeteori.

Аменабельность групп полиномиального роста

Пусть G — группа полиномиального роста, снабженная набором образующих и соответствующей метрикой. Обозначим шар радиуса r с центром в g за $B_q(r)$.

Мы докажем, что на группе полиномиального роста **для подходящей** последовательности $N_i \longrightarrow \infty$ шары $\{B_e(N_i)\}$ образуют последовательность Фёльнера.

Доказательство аменабельности групп полиномиального роста.

Шаг 1: Левый перенос шара дает $L_g(B_e(N)) = B_g(N) \subset B_e(|g| + N)$, где |g| := d(g, e) (здесь используется неравенство треугольника).

Шаг 2:

$$B_e(N)\backslash L_g(B_e(N))\subset B_e(|g|+N)\backslash B_e(N).$$

Следовательно,

$$|B_e(N)\triangle gB_e(N)| \leqslant 2\Big(|B_e(|g|+N)|-|B_e(N)|\Big).$$

Аменабельность групп полиномиального роста (продолжение)

Шаг 3: Обозначим за $b(N) := |B_e(N)|$. Если для каждого k имеет место

$$\lim_{N \to \infty} \frac{b(N+k) - b(N)}{b(N)} = 0$$

TO

$$\frac{|B_e(N)\triangle gB_e(N)|}{|B_e(N)|} \leqslant 2\frac{b(N+|g|)-b(N)}{b(N)}$$

стремится к нулю, то есть $B_e(N)$ — **множества Фёльнера.** Это имеет место, например, если b(N) — полином.

Шаг 4: Для заданных $\varepsilon>0, k\in\mathbb{N}$, рассмотрим множество $N(\varepsilon,k)$ таких $N\in\mathbb{N}$, что $\frac{b(N+k)-b(N)}{b(N)}<\varepsilon$. Легко видеть, что $N(\varepsilon,k)$ монотонно зависят от k и ε :

$$N(\varepsilon,k) \supset N(\varepsilon,k+1), N(\varepsilon+\delta,k) \supset N(\varepsilon,k)$$

для любого $\delta \geqslant 0$.

Если $n \notin N(\varepsilon,k)$, то $\frac{b(N+k)}{b(N)} > 1+\varepsilon$. Коль скоро b(N) растет полиномиально, множество $N(\varepsilon,k)$ бесконечно для любого ε,k .

Аменабельность групп полиномиального роста (окончание)

Шаг 5: Возьмем последовательность $\{N_i\}$ такую, что

$$N_i \in N\left(\frac{1}{i}, i\right) \subset N\left(\frac{1}{i+1}, i+1\right) \subset \dots$$

Тогда $F_n:=B_e(N_i)$ – последовательность Фёльнера, так как $\forall g$ с |g|< m, и любого $N_i\in N(\frac{1}{m},m)$, имеет место неравенство

$$\frac{|B_e(N_i)\triangle gB_e(N_i)|}{|B_e(N_i)|} \leqslant 2\frac{b(N_i + |g|) - b(N_i)}{b(N_i)} \leqslant 2\frac{b(N_i + m) - b(N_i)}{b(N_i)} < \frac{2}{m}.$$

Свойство (Т) Каждана

ОПРЕДЕЛЕНИЕ: Гильбертов базис в эрмитовом векторном пространстве H есть минимальный набор векторов, такой, что их линейные комбинации плотны в H.

ОПРЕДЕЛЕНИЕ: Гильбертово пространство H есть полное бесконечномерное эрмитово пространство, снабженное счетным гильбертовым базисом.

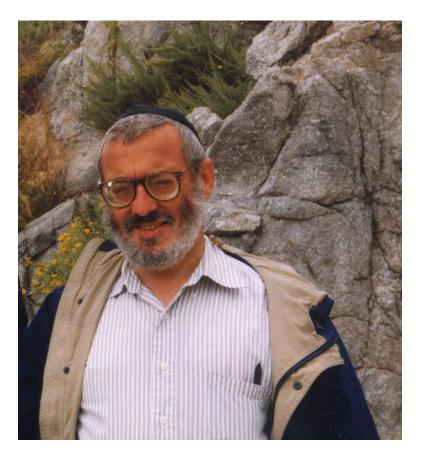
УПРАЖНЕНИЕ: Докажите, что все гильбертовы пространства изоморфны как эрмитовы векторные пространства.

ОПРЕДЕЛЕНИЕ: Группа G называется группой Каждана, если выполнено свойство (Т):

(Т) Для любого изометрического действия G на гильбертовом пространстве H, G сохраняет какую-то фиксированную точку $h \in H$.

ЗАМЕЧАНИЕ: Изначально Каждан определял (Т) иначе, а это определение принадлежит Серру; его равносильность определению Каждана называется Delorme-Guichardet Theorem.

Д. А. Каждан



David Kazhdan (р. 20 июня 1946)

David Kazhdan, "On the connection of the dual space of a group with the structure of its closed subgroups", Functional analysis and its applications 1 (1): 63-65, (1967).

Свойство (Т) Каждана (продолжение)

УПРАЖНЕНИЕ: Пусть s есть изометрия H. Докажите, что s аффинно.

Тривиальный пример: $\mathbb Z$ действует на H сдвигами на вектор v, очевидно, без неподвижных точек.

СЛЕДСТВИЕ: Абелева группа \mathbb{Z}^n не обладает свойством (T).

Еще примеры: $SL(n,\mathbb{Z})$ для $n\geqslant 3$, $SO(p,q,\mathbb{Z})$, $p>q\geqslant 2$, $SO(3,3,\mathbb{Z})$, $Sp(n,\mathbb{Z})$, $F_4(\mathbb{Z})$, $Sp(n,1,\mathbb{Z})$, $n\geqslant 2$.

Свойства групп Каждана:

- 1. Группы Каждана конечно порождены.
- 2. Фактор группы Каждана по ее коммутанту конечен.
- 3. Любая нормальная подгруппа группы Каждана G имеет конечный индекс, или лежит в центре G и конечна.

Гармонические функции на графах

ЗАМЕЧАНИЕ: Все графы предполагаются не имеющими изолированных вершин. Любое ребро графа канонически отождествлено с отрезком [0,1].

ОПРЕДЕЛЕНИЕ: Пусть Γ — граф, а f : $\Gamma \longrightarrow \mathbb{R}$ — функция на его топологическом пространстве. **Гармоническая функция** на графе есть функция, линейная на ребрах, такая, что для любой вершины v, имеем $\sum_{\gamma} \frac{d}{dx} f|_{\gamma} = 0$, где сумма берется по ребрам, примыкающим к v. Это условие утверждает, что сумма производных f по всем ребрам, примыкающим к v, равна нулю.

ЗАМЕЧАНИЕ: Иначе говоря, производные f по всем ребрам графа удовлетворяют закону токов Кирхгофа.

ОПРЕДЕЛЕНИЕ: Функция f на графе Γ называется функцией полиномиального роста степени $\leqslant d$, если для какой-то точки $c \in \Gamma$ и C > 0, для всех шаров $B_c(R)$ с центром в c имеем $\sup_{B_c(R)} |f| \leqslant CR^d$.

TEOPEMA: (Теорема Клейнера) Пусть G — группа полиномиального роста, а Γ ее граф Кэли. Обозначим за V_d пространство гармонических функций полиномиального роста степени $\leqslant d$ на Γ . Тогда V_d конечномерно.

Гармоничность и функционал энергии.

ЗАМЕЧАНИЕ: Аналогичным образом определяется **гармоническое отображение в векторное пространство.**

ОПРЕДЕЛЕНИЕ: Пусть G — счетная группа, которая действует изометриями на гильбертовом пространстве H. Определим **энергию** точки $v \in H$ формулой $E(v) := \sum_{g \in G} \|v - g(v)\|^2$.

TEOPEMA: (Кореваар-Шоен, Мок) Пусть G — группа полиномиального роста, которая действует изометриями на гильбертовом пространстве H, с конечной энергией. **Тогда у энергии** E **найдется локальный минимум на** H.

ЗАМЕЧАНИЕ: Пусть v — минимум энергии действия G на H. Рассмотрим вложение графа Кэли Γ_G в H, переводящее вершины g в g(v), а ребра в прямолинейные отрезки. **Тогда это отображение гармонично.**

Схема доказательства Клейнера теоремы Громова.

УТВЕРЖДЕНИЕ: Пусть группа G аменабельна. Тогда она не обладает свойством (Т).

СЛЕДСТВИЕ: Существует действие G на гильбертовом пространстве H, с конечной энергией.

СЛЕДСТВИЕ: Существует гармоническое, G-эквивариантное отображение $\xi: \Gamma_G \longrightarrow H$.

Шаг 1: Поскольку ξ G-эквивариантно, оно **липшицево.**

Шаг 2: По теореме Клейнера, пространство гармонических липшицевых функций на Γ_G конечномерно. Значит, образ Γ_G сидит в конечномерном подпространстве H.

Шаг 3: Мы получили представление G в группе A аффинных изометрий \mathbb{R}^n .

Схема доказательства Клейнера теоремы Громова (продолжение).

ТЕОРЕМА: "Альтернатива Титса"

Пусть $\Gamma \subset A$ — конечно-порожденная подгруппа группы Ли. Тогда Γ виртуально разрешима, либо содержит свободную группу \mathbb{F}_2 .

Шаг 4: Образ G в A бесконечен и разрешим, значит, фактор этого образа по коммутанту — бесконечная коммутативная группа.

Шаг 5: Применяя классификацию коммутативных групп, получаем сюрьективный гомоморфизм $G \longrightarrow \mathbb{Z}$. Это и нужно для доказательства теоремы Громова.