Pseudoholomorphic curves with boundary on holomorphic Lagrangian subvarieties and formality in the Fukaya category

Misha Verbitsky (IMPA)

Joint work with Jake P. Solomon

III Mini-Workshop em Geometria Simplética

June 20-21, 2018, PUC-Rio.

Complex manifolds

DEFINITION: Let *M* be a smooth manifold. An **almost complex structure** is an operator $I: TM \longrightarrow TM$ which satisfies $I^2 = -\operatorname{Id}_{TM}$.

The eigenvalues of this operator are $\pm \sqrt{-1}$. The corresponding eigenvalue decomposition is denoted $TM = T^{0,1}M \oplus T^{1,0}(M)$.

DEFINITION: An almost complex structure is **integrable** if $\forall X, Y \in T^{1,0}M$, one has $[X,Y] \in T^{1,0}M$. In this case *I* is called **a complex structure operator**. A manifold with an integrable almost complex structure is called **a complex manifold**.

THEOREM: (Newlander-Nirenberg) **This definition is equivalent to the usual one.**

Kähler manifolds

DEFINITION: An Riemannian metric g on an almost complex manifold M is called **Hermitian** if g(Ix, Iy) = g(x, y). In this case, $g(x, Iy) = g(Ix, I^2y) = -g(y, Ix)$, hence $\omega(x, y) := g(x, Iy)$ is skew-symmetric.

DEFINITION: The differential form $\omega \in \Lambda^{1,1}(M)$ is called the Hermitian form of (M, I, g).

THEOREM: Let (M, I, g) be an almost complex Hermitian manifold. Then the following conditions are equivalent.

(i) The complex structure I is integrable, and the Hermitian form ω is closed.

(ii) One has $\nabla(I) = 0$, where ∇ is the Levi-Civita connection

 ∇ : End $(TM) \longrightarrow$ End $(TM) \otimes \Lambda^1(M)$.

DEFINITION: A complex Hermitian manifold M is called Kähler if either of these conditions hold. The cohomology class $[\omega] \in H^2(M)$ of a form ω is called **the Kähler class** of M. The set of all Kähler classes is called **the Kähler cone**.

Hyperkähler manifolds

DEFINITION: A hypercomplex manifold is a manifold M equipped with three complex structure operators I, J, K, satisfying quaternionic relations

$$IJ = -JI = K$$
, $I^2 = J^2 = K^2 = -\operatorname{Id}_{TM}$

(the last equation is a part of the definition of almost complex structures).

DEFINITION: A hyperkähler manifold is a hypercomplex manifold equipped with a metric g which is Kähler with respect to I, J, K.

REMARK: This is equivalent to $\nabla I = \nabla J = \nabla K = 0$: the parallel translation along the connection preserves I, J, K.

DEFINITION: Let M be a Riemannian manifold, $x \in M$ a point. The subgroup of $GL(T_xM)$ generated by parallel translations (along all paths) is called **the holonomy group** of M.

REMARK: A hyperkähler manifold can be defined as a manifold which has holonomy in Sp(n) (the group of all endomorphisms preserving I, J, K).

Holomorphically symplectic manifolds

REMARK: A hyperkähler manifold M is equipped with 3 symplectic forms $\omega_I, \omega_J, \omega_K$. The form $\Omega := \omega_J + \sqrt{-1} \omega_K$ is a holomorphic symplectic **2-form on** (M, I).

DEFINITION: A holomorphically symplectic manifold is a complex manifold equipped with non-degenerate, holomorphic (2,0)-form.

COROLLARY: A hyperkähler manifold is **Calabi-Yau**, that is, admits a holomorphic trivialization of its canonical bundle $\Lambda^{\dim_{\mathbb{C}} M,0}(M)$. Indeed, the top power of Ω gives such a trivialization.

THEOREM: (Calabi-Yau)

A compact, Kähler, holomorphically symplectic manifold admits a unique hyperkähler metric in any Kähler class.

Calibrations

DEFINITION: (Harvey-Lawson, 1982)

Let $W \subset V$ be a *p*-dimensional subspace in a Euclidean space, and Vol(*W*) denote the Riemannian volume form of $W \subset V$, defined up to a sign. For any *p*-form $\eta \in \Lambda^p V$, let **comass** comass(η) be the maximum of $\frac{\eta(v_1, v_2, ..., v_p)}{|v_1||v_2|...|v_p|}$, for all *p*-tuples $(v_1, ..., v_p)$ of vectors in *V* and face be the set of planes $W \subset V$ where $\frac{\eta}{\operatorname{Vol}(W)} = \operatorname{comass}(\eta)$.

DEFINITION: A **precalibration** on a Riemannian manifold is a differential form with comass ≤ 1 everywhere.

DEFINITION: A calibration is a precalibration which is closed.

DEFINITION: Let η be a k-dimensional precalibration on a Riemannian manifold, and $Z \subset M$ a k-dimensional subvariety (we always assume that the Hausdorff dimension of the set of singular points of Z is $\leq k - 2$, because in this case a compactly supported differential form can be integrated over Z). We say that Z is calibrated by η if at any smooth point $z \in Z$, the space T_zZ is a face of the precalibration η .

H. Blaine Lawson, Jr., Berkeley, 1972 F. Reese Harvey, Berkeley, 1968

Source: George M. Bergman, Berkeley

Calibrations (2)

REMARK: Clearly, for any precalibration η , one has

$$\operatorname{Vol}(Z) \geqslant \int_{Z} \eta, \quad (*)$$

where Vol(Z) denotes the Riemannian volume of a compact Z, and the equality happens iff Z is calibrated by η . If, in addition, η is closed, the number $\int_Z \eta$ is a cohomological invariant. Then, the inequality (*) implies that Zminimizes the Riemannian volume in its homology class.

DEFINITION: A subvariety Z is called **minimal** if for any sufficiently small deformation Z' of Z in class C^1 , one has $Vol(Z') \ge Vol(Z)$.

REMARK: Calibrated subvarieties are obviously minimal.

EXAMPLE: (Wirtenger's inequality) Let ω be a Kähler form. Then $\frac{\omega^d}{d!2^d}$ is a calibration which calibrates *d*-dimensional complex subvarieties. In patricular, complex subvarieties in Kähler manifolds are minimal.

Special Lagrangian subvarieties

DEFINITION: A Calabi-Yau manifold is a Kähler manifold (M, I, ω) admitting a non-degenerate, holomorphic section of canonical bundle $\Phi \in \Gamma(\Lambda^{n,0}(M, I)$ satisfying $|\Phi| = 1$.

REMARK: Let (M, I, Φ, ω) be a Calabi-Yau manifold. Then $2^{n/2} \operatorname{Re} \Phi$ is a calibration. Indeed, for any *n* real tangent vectors $x_1, ..., x_n$ of length 1, one has

$$\operatorname{Re}\Phi(x_1,...,x_n) = \operatorname{Re}\Phi(x_1^{1,0},...,x_n^{1,0}) \leq \prod |x_i^{1,0}| = 2^{-n/2}$$

DEFINITION: A special Lagrangian subvariety of (M, I, ω, Φ) is one which is calibrated by Re Φ .

CLAIM: (Harvey-Lawson) All special Lagrangian subvarieties are Lagrangian.

REMARK: Converse is clearly false: any Lagrangian variety can be deformed in such a way that its volume is increased, hence **not all Lagrangian subvarieties are minimal.**

Special Lagrangian and holomorphic Lagrangian subvarieties

REMARK: Construction of families of special Lagrangian subvarieties in Calabi-Yau manifolds is a difficult and important problem; essentially the only way to solve it is to use holomorphically symplectic manifolds.

DEFINITION: A complex subvariety $X \subset M$ in a holomorphically symplectic manifold (M, I, Ω) is called **holomorphic Lagrangian** if $\Omega|_X = 0$.

Theorem: (Harvey-Lawson)

Let (M, I, J, K, g) be a hyperkähler manifold, $X \subset (M, I)$ a holomorphic Lagrangian subvariety, and $J_1 := aJ + bK$ a complex structure, $a^2 + b^2 = 1$, $J_1I = -J_1I$. Then X is special Lagrangian with respect to a symplectic form ω_{J_1} , where $\omega_{J_1} = a\omega_J + b\omega_K$.

Pseudoholomorphic curves in almost complex manifolds

DEFINITION: Let (M, I) be an almost complex manifold. A 2-dimensional compact subvariety $Z \subset M$ (smooth with isolated singularities) is called a **pseudoholomorphic curve** if TZ is *I*-invariant in all smooth points of Z.

REMARK: If *I* is a complex structure, **pseudoholomorphic subvarieties** are complex curves.

DEFINITION: Let $Z \subset M$ be a metric space. An ε -neighbourhood $Z(\varepsilon)$ of Z is a union of all ε -balls centered in Z. Hausdorff metric d_H on subsets M is defined as follows: $d_H(X,Y)$ is infimum of all ε such that $Y \subset X(\varepsilon)$ and $X \subset Y(\varepsilon)$.

THEOREM: (Gromov)

Let (M, I, g) be an almost complex Hermitian manifold, $C \in \mathbb{R}^{>0}$, and \mathfrak{S}_C the set of all pseudoholomorphic curves S which satisfy $Vol(S) \leq C$, equipped with the Hausdorff metric and induced Hausdorff topology. Then \mathfrak{S}_C is compact.

REMARK: For complex curves, this result is due to Bishop (1960-ies).

Pseudoholomorphic curves in symplectic manifolds

DEFINITION: An almost complex structure on a manifold is an operator $I: TM \longrightarrow TM$ such that $I^2 = -$ Id. An almost complex structure is compatible with a symplectic form ω if ω is *I*-invariant, and the symmetric form $g(x, y) = \omega(x, Iy) = \omega(y, Ix)$ is positive definite.

EXERCISE: Prove that the space of almost complex structures compatible with a given form ω is contractible.

REMARK: Let $Z \subset M$ be a pseudoholomorphic curve in an almost complex symplectic manifold (M, I, ω) . Then $\int_Z \omega = 2 \operatorname{Vol}(Z)$.

COROLLARY: (Gromov)

Let (M, I, ω) be an almost complex symplectic manifold, and \mathfrak{S} the set of all pseudoholomorphic curves S, equipped with the Hausdorff metric and induced topology. Then each connected component of \mathfrak{S} is compact.

Proof: Since $\int_Z \omega = 2 \operatorname{Vol}(Z)$, volume is a cohomological invariant, hence constant on each connected component. Then compactness of each connected component is implied by Gromov's theorem; indeed, the union of all connected components with $\int_Z \omega \leq C$ is compact.

Pseudoholomorphic curves with boundary in a Lagrangian subvariety

THEOREM: (Gromov)

Let (M, I, ω) be an almost complex symplectic manifold, $L \subset M$ a Lagrangian subvariety, and \mathfrak{S}_L the set of all pseudoholomorphic curves S, with boundary on L. Consider \mathfrak{S}_L as a metric space equipped with the Hausdorff metric. **Then each connected component of** \mathfrak{S}_L **is compact.**

REMARK: As a motivation for this statement, we remark that (just as it happens in case of curves without boundary), $Vol(S) = \int_S \omega$ is a topological invariant, as the following trivial result implies.

CLAIM: Let (M, I, ω) be an almost complex symplectic manifold, $L \subset M$ a Lagrangian subvariety, and Z a 2-dimensional singular chain with boundary in L. Then $\int_S \omega = \langle [S], [\omega] \rangle$, where $[S] \in H_2(M, L)$ and $\omega \in H^2(M, L)$ are the corresponding (co-)homology classes in (co-)homology of a pair (M, L).

REMARK: Just as it happens for curves without boundary, the Euler characteristic and other cobordism invariants of the space $\mathfrak{S}_L(h)$ of all pseudoholomorphic curves with boundary on L for a given homology class $h \in H_2(M, L)$ give an important topological invariant of the Lagrangian subvariety. It is used to define the Fukaya category of M.

Pseudoholomorphic curves with boundary in hyperkähler manifolds

The main result of today's talk.

THEOREM: Let (M, I, J, K, g) be a hyperkähler manifold, and $L \subset (M, I)$ a holomorphic Lagrangian subvariety. Consider the set $R = S^1$ of all symplectic structures of form $a\omega_J + b\omega_k$, $a^2 + b^2 = 1$. Then for all $\omega_1 \in R$ except a countable number, there are no pseudoholomorphic curves in (M, ω_1, g) with boundary in L.

Proof. Step 1: Let *S* be a 2-dimensional singular chain with boundary on *L*, and let $h := [S] \in H_2(M, L)$ be its homology class. Consider the cohomology class $[\omega] \in H^2(M, L)$ of a given $\omega \in \mathbb{R}$, and let $\varphi_h(\omega) = \int_{\omega} S$ be the corresponding pairing, considered as a function on *R*. Wirtinger's inequality gives $\int_{\omega} S \leq 2 \operatorname{Vol}(S)$, with equality only when *S* is pseudoholomorphic. This implies that for any $\omega \in R$ such that *S* can be represented by a pseudoholomorphic curve, the function $\varphi_h : R \longrightarrow \mathbb{R}$ has a (non-strict) maximum at ω .

M. Verbitsky

Pseudoholomorphic curves with boundary in hyperkähler manifolds (2)

THEOREM: Let (M, I, J, K, g) be a hyperkähler manifold, and $L \subset (M, I)$ a holomorphic Lagrangian subvariety. Consider the set $R = S^1$ of all symplectic structures of form $a\omega_J + b\omega_k$, $a^2 + b^2 = 1$. Then for all $\omega_1 \in R$ except a countable number, there are no pseudoholomorphic curves in (M, ω_1, g) with boundary in L.

Step 2: Let $V \subset H^2(M, L)$ be the space generated by ω_J, ω_K . Extend φ_h to V by the same formula $\varphi_h(\omega) = \int_{\omega} S$. Since φ_h it is linear on V, its restriction to a circle is either identically zero, or has at most one maximum, denoted by t_h . From Step 1 it follows that for any complex structure $t' \in R$ not equal to t_h , the class S cannot be represented by a pseudoholomorphic curve with boundary on L.

Step 3: Let $P \subset R$ be the set of all non-zero maxima $t_h \in R$ for all integer classes $h \in H^2_{\mathbb{Z}}(M,L)$. This set is clearly countable, and for all $t \notin P$, the corresponding complex structure does not admit pseudoholomorphic curves with boundary in L.

REMARK: You don't even need M or L to be compact for this argument.

A_{∞} -categories

An A_{∞} category \mathcal{A} consists of the following data:

- A collection of objects $\mathcal{O}\mathcal{B}\mathcal{A}$.
- For each pair of objects $A, B \in \mathfrak{OBA}$, a graded vector space $Hom_{\mathcal{A}}(A, B)$.
- For each (k + 1)-tuple of objects $A_0, \ldots, A_k, k \ge 0$, a multilinear map

$$\mu_k^{\mathcal{A}}: \bigotimes_{i=1}^k Hom_{\mathcal{A}}(A_{i-1}, A_i) \to Hom_{\mathcal{A}}(A_0, A_k)[2-k].$$

satisfying relation

$$\sum_{m_1 + \dots + m_l = k} \mu_l^{\mathcal{B}}(f_{m_1}(\alpha_1, \dots, \alpha_{m_1}), \dots, f_{m_l}(\alpha_{k-m_l+1}, \dots, \alpha_k)) = \\ = \sum_{k_1 + k_2 = k+1} (-1)^* f_{k_1}(\alpha_1, \dots, \alpha_{i-1}, \mu_{k_2}^{\mathcal{A}}(\alpha_i, \dots, \alpha_{i+k_2-1}), \dots, \alpha_k),$$

where $\star = q - 1 + \sum_{j=1}^{q-1} |\alpha_j|.$

EXAMPLE: Fukaya category, [FOOO] on a symplectic manifold is a category where objects are Lagrangian subvarieties, and the maps μ_i are defined as integrals of certain cohomology classes over the moduli of pseudoholomorphic disks with boundary on these Lagrangian varieties. By Gromov's compactness, μ_i are invariant under the Hamiltonian isotopy of the Lagrangian varieties.

Formality

DEFINITION: Let \mathcal{A} be an A_{∞} category. The **associated cohomological** category $H(\mathcal{A})$ has the same objects, its morphism spaces are given by

$$Hom_{H(\mathcal{A})}(A,B) = H^*(Hom_{\mathcal{A}}(A,B),\mu_1^{\mathcal{A}}),$$

and the composition of morphisms is given by

$$[a_2] \circ [a_1] = (-1)^{|a_1|} [\mu_2(a_1, a_2)].$$
⁽¹⁾

We consider $H(\mathcal{A})$ as an A_{∞} category, which h as all operations zero except for k = 2.

DEFINITION: An A_{∞} functor $f : \mathcal{A} \to \mathcal{B}$ induces a functor $H(f) : H(\mathcal{A}) \to H(B)$. It is called **quasi-isomorphism** if H(f) is an equivalence of categories. An A_{∞} -category \mathcal{A} is called **formal** if it is quasi-isomorphic to $H(\mathcal{A})$.

EXAMPLE: Let M be an almost complex symplectic manifold, and $\{L_i\}$ a collection of Lagrangian subvarieties. Assume that all pseudoholomorphic disks with boundaries on $\{L_i\}$ are trivial. Then the corresponding Fukaya category is formal.

Special Lagrangian manifolds and Fukaya category

DEFINITION: Let \mathcal{L} be the (∞ -dimensional) space of Lagrangian submanifolds equipped with a flat U(1)-bundle. The manifold \mathcal{L} is symplectic: indeed, the tangent space of the space of flat U(1) bundles on L in the space $\Lambda^1_{cl}(L)$ of closed 1-forms on L, and the tangent space to the space of Lagrangian submanifolds is also $\Lambda^1_{cl}(L)$.

CLAIM: (R. Thomas, S.-T. Yau)

Consider the Hamiltonian diffeomorphism group Ham acting on the space \mathcal{L} of Lagrangian submanifolds in a Calabi-Yau manifold. Then its moment map is given by the mean curvature, and the zeros of the moment map are special Lagrangian submanifolds.

DEFINITION: A Lagrangian manifold is called **stable** if its Ham-orbit contains a special Lagrangian manifold.

CONJECTURE: (R. Thomas, S.-T. Yau)

Any Lagrangian manifold can be obtained as a connected sum of stable special Lagrangian submanifolds.

If we believe in this conjecture, to study the Fukaya category on a Calabi-Yau manifold it would suffice to consider only special Lagrangian submanifolds.

Special Lagrangian manifolds and formality

THEOREM: Let $\{L_i\}$ be a collection of holomorphic Lagrangian submanifolds in a hyperkähler manifold (M, I, J, K), and $\omega_1 := a\omega_J + b\omega_K$ a general linear combination. **Then the corresponding Fukaya category is formal.**

This theorem follows from

THEOREM: Let $\{L_i\}$ be a collection of special Lagrangian submanifolds, and $J_1 := aJ + bK$ a complex structure with a, b general. Then any J_1 holomorphic disks with boundary on $\cup L_i$ are constant.

Proof: It would follow by the same argument as above, if we prove the following highly non-trivial result.

THEOREM: Let $\{L_i\}$ be a collection of real analytic Lagrangian submanifolds in a compact real analytic symplectic manifold M, and S the set of homotopy classes of maps from disk to M with boundary on $\cup L_i$. Then S is countable.