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Lie pencils

DEFINITION: Let V be a vector space, and S C Hom(/\QV, V) a subspace,
such that for any w € S, the map w(x,y), denoted in the sequel as [z, y]w,
satisfies Jacobi condition [[z, ylw, z]lw + [y, z]lw, z]w + [[2, ]w, ylw = 0. Then S
is called the Lie pencil, or pencil of Lie algebras.

REMARK: This notion appeared in literature under several names.

e A. B. Yanovski: “linear bundle of Lie algebras”.

e N. A. Koreshkov: “Lie sheaves”.

e N. A. Koreshkov: “Lie pencils”.

e N. A. Koreshkov: ‘n-tuple Lie algebras”.

o V. V. Dotsenko and A. S. Khoroshkin: “algebra with n compatible brackets”.
o I. L. Cantor and D. E. Persits: ‘“sheaves of linear Poisson brackets".
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Examples of Lie pencils

EXAMPLE: Let A € Mat(R) be a matrix. Then the multiplication X,Y —
X AY is associative, hence the bracket [X,Y]4 := XAY — Y AX satisfies the
Jacobi identity. This defines a Lie pencil Mat(R) ¢ Hom(A2V,V), where
V = Mat(R).

EXAMPLE: Let R be a vector space with scalar product, A € Mat(R) be
a symmetric matrix, X,Y € so(R) antisymmetric matrices. Then the matrix
X AY satisfies (XAY)T = YAX, hence [X,Y]4 := XAY — YAX defines a Lie
algebra structure on V = so(R). This defines a Lie pencil Sym2(R) C
Hom(A2V, V).

EXAMPLE: Let A be an antisymmetric matrix, X,Y symmetric matrices.
Then the matrix X AY satisfies (XAY)T = —YAX, hence [X,Y]4 := XAY —
Y AX defines a Lie algebra structure on V = Sym2(R). This defines a Lie
pencil so(R) C Hom(A?V, V).

EXAMPLE: Let V be the space of all m x n matrices and S the space of all
n X m matrices, A€ S and X,Y € V. Then [X,Y], .= XAY — YAX defines
a Lie pencil S ¢ Hom(A2V, V).
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T he main conjecture

DEFINITION: A Lie pencil S ¢ Hom(A2V,V) is S-solvable if V admits a
filtration V.= Vy D V73 D ... D Vi, = 0 such that [V;, V;]w C V;_1 for all w € S,
and S-nilpotent if V admits a filtration V=V D> V7 D ... D V;; = 0 such that
[V;,V]w C V;_1 for all w e S.

THE MAIN CONJECTURE: Let S ¢ Hom(A2V, V) be a Lie pencil. Assume
that the Lie algebra (V, [, ]w) is nilpotent for all w € S. Then (V,S) is S-
solvable.

REMARK: In these assumptions, (V,S) is not necessarily S-nilpotent.
I would describe the counter-example later.

REMARK: We are interested in this conjecture only when S = H and the Lie
pencil comes from a hypercomplex structure on a Lie algebra (more about it
later), but it might be true in all generality.
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Chevalley-Eilenberg complex

PROPOSITION: Let w € Hom(A2V, V). Consider the dual map dy : V* — A2V*.
Extend this map to dw : A*V* — AkT1y* using the Leibniz rule dy(z Ay) =
dw(z) Ay + (=1)Zz Adywy. Then d2 = 0 if and only if w defines the Lie
algebra structure on V.

Proof: Left as an exercise. =

DEFINITION: The complex
vr w A2y w ASpx dw,

is called the Chevalley-Eilenberg complex of the Lie algebra (V, |-, ]w).

DEFINITION: A map d € Hom(A*V* A*T1V*) is called a differential if
d? = 0.
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Anticommuting differentials and Lie pencils

REMARK: Let di,d o€ Hom(A*V* A*T1lyv*) be two differentials. Then
di1 + do is a differential if and only if d{,2,; anticommute.

Proof: (di + dz)? = d5 + d3 + didy + dody = d1do + dpody. ®

COROLLARY: Let V be a vector space, and S ¢ Hom(A®*V* A*T1y*) pbe
a collection of anti-commuting differentials satisfying the Leibniz rule. Then
the dual maps define a Lie pencil S — Hom(A2V,V). Moreover, any Lie
pencil is obtained this way. m

“Differentials on N®*V* define Lie algebra structures on V; anti-commuting
differentials define Lie pencils”.

REMARK: Anticommuting differentials are pre-eminent in complex ge-
ometry: d,d° = IdI—1,8,5 and so on. This is why we are interested in
Lie pencils.
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Complex structures

DEFINITION: Let M be a smooth manifold. An almost complex structure
is an operator I : TM — TM which satisfies I2 = —Idp,y.

The eigenvalues of this operator are =v/—1. The corresponding eigenvalue
decomposition is denoted TM @ C = T%1 M @ T1.O(M).

DEFINITION: An almost complex structure is integrable if VX, Y € 71007,
one has [X,Y] € T1}OM. In this case I is called a complex structure op-
erator. A manifold with an integrable almost complex structure is called a
complex manifold.

THEOREM: (Newlander-Nirenberg)
This definition is equivalent to the usual one.

REMARK: It is sufficient to check the condition [T19M,T10M] ¢ T1OM
on any set of generators of T1.O0M. In particular, if (M,I) is homogeneous
(equipped with a transitive Lie group action preserving I) it suffices to check
it on invariant vector fields.
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Nilmanifolds

DEFINITION: Let M be a smooth manifold equipped with a transitive action
of nilpotent Lie group. Then M is called a nilmanifold.

REMARK: All nilmanifolds are obtained as quotient spaces, M = G/H.

THEOREM: (Malcev)

Let g be a nilpotent Lie algebra defined over Q, and G its Lie group. Then G
contains a discrete subgroup I such that G/I' is compact, and ' = e'_9,
where My is a lattice subalgebra in g. Moreover, g = Iy ®q R. Finally, all
nilmanifolds are obtained this way.

REMARK: Topologically, all simply connected nilpotent Lie groups are
diffeomorphic to R"”, and all nilmanifolds are iterated circle fibrations.
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Complex nilmanifolds

DEFINITION: An integrable complex structure on a real Lie algebra g is
a subalgebra g0 ¢ g ®p C such that gl 9@ gl0 =g C

REMARK: Any such decomposition defines a complex structure I on
g by I‘gl,o = +/—1 and I‘go,l — —v/—1. Integrability of complex structure is
given by [T19G, T1.9G] ¢ T1.9G, which is equivalent to [gl0, g1:0] c ¢1:0.

REMARK: Left-invariant complex structures on a connected real Lie group
are in 1 to 1 correspondence with integrable complex structures on its
Lie algebra.

DEFINITION: Let G be a group equipped with a left-invariant complex
structure, and [ C G a cocompact lattice. Since [ acts on GG by biholomor-
phisms, the compact manifold M = G/I" inherits a complex structure. It is
called a complex nilmanifold.
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Iwasawa-type complex structures

1 % %

EXAMPLE: Iwasawa manifold is the quotient of [0 1 x| (group N3(C)
O 01

of upper triangular complex matrices) by a lattice '. As an example of ' we

can take N3(Z[v/—1]).

REMARK: Let I be a bi-invariant complex structure on a nilpotent Lie group
(. Such a complex structure is called Iwasawa type.

REMARK: Complex structure on g is bi-invariant if and only if M := (G, 1)/l
IS homogeneous under the left action of G. Then the left invariant vector
fields are holomorphic, and this implies that [X,Y] = 0 whenever X € T1.0)\f
and Y ¢ 701

COROLLARY: Let I be a complex structure on a Lie algebra g. Then I is
bi-invariant if and only if [¢%1, g19] = 0.

Proof: If this [¢91, g101 = 0, then Liex Y = 0 is of type (1,0) for any right-
invariant vector fields X,Y, with Y of type (1,0). Then gYg~1 € g1:0 for any
g € G, hence T1.9G is bi-invariant. =
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Locally trivial elliptic fibrations

REMARK: “A surface’” here would always mean ‘“a compact complex
manifold of complex dimension 2.

REMARK: Let L be a line bundle on a complex manifold X, TotL* the
space of non-zero vectors of L, and o« € C a number satisfying |a|] > 1, and
M = Tot L*/{a) the quotient by the corresponding Z-action. Then M is a
locally trivial eliptic fibration over X with fiber C*/{«).

REMARK: Any locally trivial elliptic fibration over a curve has this
nature. Its Chern class is Chern class of L.
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Kodaira surface

DEFINITION: Let T, T’ be elliptic curves. Kodaira surface = : M — T
is a locally trivial holomorphic fibration over T with fiber T/ and non-trivial
Chern class.

A remark on terminology: These are “primary” Kodaira surfaces. “Sec-
ondary’”’ ones are obtained by taking finite unramified quotients.

REMARK: The Kodaira surface is diffeomorphic to a quotient S1 x (G/Gy)
where G is a 3-dimensional Heisenberg group, and Gy a lattice in GG. There-
fore, Kodaira surface is a nilmanifold. Its complex structure is left-invariant,
but not bi-invariant.

EXERCISE: Check that the manifold M is a complex nilmanifold, but
it iIs not homogeneous.

REMARK: Kodaira surface is not Kahler. Indeed, the cohomology class
of #*(wp) vanishes, where wp is the Kahler form on T. The product of wp
and the Kahler form on M (if it exists) is a positive volume form, hence

It cannot be exact.
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Complex nilmanifolds and the Lie pencils

CLAIM: Let (M,I) be an almost complex manifold, and d¢ := IdI~!
AfM —s ARFTIAT the twisted de Rham differential. The almost complex
structure I is integrable if and only if d and d¢ anticommute.

Proof: Left as an exercise. =

COROLLARY: Let g be a Lie algebra, and I € Endg an operator which
satisfies 12 = —Id (“an almost complex structure”). Consider the twisted Lie
bracket [X,Y]; := I[I"1X,I71Y]. Then I is integrable if and only if the
2-dimensional space S dgenerated by [-,-] and [-,:]; is a Lie pencil. =

DEFINITION: Recall that the central series iof a Lie algebra g is the
sequence go =g D g1 D g2 D ... such that g; = [g,9;,-1].
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The Millionschikov’s conjecture

QUESTION: (D. Millionschikov)

Let (g,1) be a Lie algebra equipped with an integrable complex structure, and
N the length of the central series of g. Prove that dlrfnv < 2/3.

REMARK: Millionschikov discovered a family of algebras (g, I) of real dimen-
sion 6n and with central series of length 4n, hence this bound is optimal.

DEFINITION: Let S € Hom(A2V,V) be a Lie pencil. An S-ideal in V is a
subspace V; C V such that [V,Vi]w C V7 for all w € S, and an S-subalgebra
a subspace V7 C V such that [Vq,Vi]w C V7 for all w € S.

PROPOSITION: Let g be the Millionschikov algebra, and S ¢ Hom(A2(g), g)
be the 2-dimensional Lie pencil associated with the complex structure as
above. Then (g,S) is not S-nilpotent.

Proof:. Suppose that g is S-nilpotent, and g D g1 D go... the corresponding
chain of S-ideals, with g; being generated by [g,g;,_1]w for all w € S. Using
induction, we obtain that g; are I-invariant; indeed, [g,Ig;]; = I[g,9;]. Then

dimp % > 2, hence d|]r¥19 < 1/2. However, for Millionshchikov's algebra we

have = 2/3, a contradiction. =

14
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Hypercomplex nilmanifolds

DEFINITION: Let M be a smooth manifold equipped with endomorphisms
I,J,K : TM — TM, satisfying the quaternionic relation I[? = J2 = K2 =
IJK = —1Id. Suppose that I, J, K are integrable almost complex structures.
Then (M,I,J,K) is called a hypercomplex manifold.

DEFINITION: A hypercomplex structure on a Lie algebra g is an action
of quaternion algebra such that the almost complex structures induced on g

by I,J, K are integrable.

REMARK: Hypercomplex structures on a Lie algebra are the same as
left-invariant hypercomplex structures on the corresponding Lie group.
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Hypercomplex nilmanifolds and the Lie pencils

CLAIM: Let d,d; = IdI~1,d; := JdJ 1, di ;= KdK—1 be the twisted de
Rham differentials on a hypercomplex manifold. Then d,d;,d;,dx anticom-
mute.

Proof: Clearly, {d;,d;} = I{d, I 1d;1}I~1, and I~1d;I = dj, hence {d;,d;} =
I{d,dgx}I~1. This anticommutator vanishes, because K is integrable. m

REMARK: From this observation we obtain that a hypercomplex structure
on a Lie algebra defines a Lie pencil of dimension 4, obtained by twisting
the Lie bracket with the quaternions.
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H-solvable hypercomplex Lie algebras

DEFINITION: Let (g,1,J,K) be a complex structure on a nilpotent Lie
algebra. For any subspace u C g, denote by Hu the space u+ Iu+ Ju + Ku.
Define g} := Hlg,g] and g;, ; = [g;", 0;'] + I([gi', g;7']). The algebra g is called
H-solvable if this sequence terminates.

PROPOSITION: The S-solvability for the Lie pencil S associated to a hy-
percomplex Lie algebra g is equivalent to H-solvability of this algebra.

Proof. Step 1: Define gf as a subspace of g generated by [g;_1,0;—1]w, fOr
all w e §. Clearly, g is S-solvable if and only if this sequence terminates.
We are going to show that g2 = g for all 1.

Step 2: For any spaces U,V C gand L =1,J K, we have L[LU,LV]| D [U,V]r.

If U,V are H-invariant, this gives L[U,V] = [U,V];, hence H[U,V] = [U,V] +
[U,V];+ U, V];+[UV]g. Then g7 =g implies g7, ; =g’ ;. m
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The “main conjecture” for complex and hypercomplex structures

S-solvability for complex nilmanifolds:

Let (g,1) be a complex structure on a nilpotent Lie algebra. Consider the
following family of subalgebras, defined inductively: g(f = [g,9] + I([g,9]), ...,
9%—1 = [o%, 0% + I([g%, 6%]). “The main conjecture” for this particular Lie
pencil claims that this sequence terminates. It was proven by S. Salamon.

S-solvability for hypercomplex nilmanifolds: “Main conjecture” claims
that any hypercomplex Lie algebra is H-solvable.

This conjecture is proven only for special cases, but it has many important
geometric consequences.

THEOREM: (Yu. Gorginian)

Let M = G/I" be a hypercomplex nilmanifold, and g the corresponding Lie
algebra. Consider a complex structure of form L = al + bJ 4+ cK, where a? -+
b2+4c2 = 1. Assume that g is H-solvable. Then the complex manifold (M, L)
does not contain complex curves, for all a,b,c outside of a countable
set.
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S-solvability for 2-dimensional Lie pencils
We prove the following generalization of Salamon’s theorem.

THEOREM: (Gorginian-Soldatenkov-V.)
Let S € Hom(A2V, V) be a 2-dimensional Lie pencil. Assume that for all w € S,
the corresponding Lie algebra (V, [-, ]w) is nilpotent. Then V is S-solvable.

To prove it, we translate the notion of Lie pencils to the language of algebraic
geometry. The following definition is equivalent to the original definition of
Lie pencil.

DEFINITION: A k-dimensional Lie pencil on a vector space g is a mor-
phism of vector bundles /\Qg Rc Opk-1 — g Q¢ Opk_l(l) which satisfies Jacobi
identity at each point of the projective space pk—1,
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