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Lie pencils

DEFINITION: Let V be a vector space, and S ⊂ Hom(Λ2V, V ) a subspace,

such that for any w ∈ S, the map w(x, y), denoted in the sequel as [x, y]w,

satisfies Jacobi condition [[x, y]w, z]w + [[y, z]w, x]w + [[z, x]w, y]w = 0. Then S

is called the Lie pencil, or pencil of Lie algebras.

REMARK: This notion appeared in literature under several names.

• A. B. Yanovski: “linear bundle of Lie algebras”.

• N. A. Koreshkov: “Lie sheaves”.

• N. A. Koreshkov: “Lie pencils”.

• N. A. Koreshkov: “n-tuple Lie algebras”.

• V. V. Dotsenko and A. S. Khoroshkin: “algebra with n compatible brackets”.

• I. L. Cantor and D. E. Persits: “sheaves of linear Poisson brackets”.
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Examples of Lie pencils

EXAMPLE: Let A ∈ Mat(R) be a matrix. Then the multiplication X,Y →
XAY is associative, hence the bracket [X,Y ]A := XAY − Y AX satisfies the

Jacobi identity. This defines a Lie pencil Mat(R) ⊂ Hom(Λ2V, V ), where

V = Mat(R).

EXAMPLE: Let R be a vector space with scalar product, A ∈ Mat(R) be

a symmetric matrix, X,Y ∈ so(R) antisymmetric matrices. Then the matrix

XAY satisfies (XAY )⊥ = Y AX, hence [X,Y ]A := XAY − Y AX defines a Lie

algebra structure on V = so(R). This defines a Lie pencil Sym2(R) ⊂
Hom(Λ2V, V ).

EXAMPLE: Let A be an antisymmetric matrix, X,Y symmetric matrices.

Then the matrix XAY satisfies (XAY )⊥ = −Y AX, hence [X,Y ]A := XAY −
Y AX defines a Lie algebra structure on V = Sym2(R). This defines a Lie

pencil so(R) ⊂ Hom(Λ2V, V ).

EXAMPLE: Let V be the space of all m× n matrices and S the space of all

n×m matrices, A ∈ S and X,Y ∈ V . Then [X,Y ]A := XAY − Y AX defines

a Lie pencil S ⊂ Hom(Λ2V, V ).
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The main conjecture

DEFINITION: A Lie pencil S ⊂ Hom(Λ2V, V ) is S-solvable if V admits a

filtration V = V0 ⊃ V1 ⊃ ... ⊃ Vn = 0 such that [Vi, Vi]w ⊂ Vi−1 for all w ∈ S,

and S-nilpotent if V admits a filtration V = V0 ⊃ V1 ⊃ ... ⊃ Vn = 0 such that

[Vi, V ]w ⊂ Vi−1 for all w ∈ S.

THE MAIN CONJECTURE: Let S ⊂ Hom(Λ2V, V ) be a Lie pencil. Assume

that the Lie algebra (V, [·, ·]w) is nilpotent for all w ∈ S. Then (V, S) is S-

solvable.

REMARK: In these assumptions, (V, S) is not necessarily S-nilpotent.

I would describe the counter-example later.

REMARK: We are interested in this conjecture only when S = H and the Lie

pencil comes from a hypercomplex structure on a Lie algebra (more about it

later), but it might be true in all generality.
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Chevalley-Eilenberg complex

PROPOSITION: Let w ∈ Hom(Λ2V, V ). Consider the dual map dw : V ∗ −→ Λ2V ∗.
Extend this map to dw : ΛkV ∗ −→ Λk+1V ∗ using the Leibniz rule dw(x ∧ y) =

dw(x) ∧ y + (−1)x̃x ∧ dwy. Then d2
w = 0 if and only if w defines the Lie

algebra structure on V .

Proof: Left as an exercise.

DEFINITION: The complex

V ∗
dw−→ Λ2V ∗

dw−→ Λ3V ∗
dw−→ ...

is called the Chevalley-Eilenberg complex of the Lie algebra (V, [·, ·]w).

DEFINITION: A map d ∈ Hom(Λ•V ∗,Λ•+1V ∗) is called a differential if

d2 = 0.
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Anticommuting differentials and Lie pencils

REMARK: Let d1, d :2∈ Hom(Λ•V ∗,Λ•+1V ∗) be two differentials. Then

d1 + d2 is a differential if and only if d1,2d anticommute.

Proof: (d1 + d2)2 = d2
1 + d2

2 + d1d2 + d2d1 = d1d2 + d2d1.

COROLLARY: Let V be a vector space, and S ⊂ Hom(Λ•V ∗,Λ•+1V ∗) be

a collection of anti-commuting differentials satisfying the Leibniz rule. Then

the dual maps define a Lie pencil S → Hom(Λ2V, V ). Moreover, any Lie

pencil is obtained this way.

“Differentials on Λ•V ∗ define Lie algebra structures on V ; anti-commuting

differentials define Lie pencils”.

REMARK: Anticommuting differentials are pre-eminent in complex ge-

ometry: d, dc := IdI−1, ∂, ∂ and so on. This is why we are interested in

Lie pencils.
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Complex structures

DEFINITION: Let M be a smooth manifold. An almost complex structure

is an operator I : TM −→ TM which satisfies I2 = − IdTM .

The eigenvalues of this operator are ±
√
−1 . The corresponding eigenvalue

decomposition is denoted TM ⊗ C = T0,1M ⊕ T1,0(M).

DEFINITION: An almost complex structure is integrable if ∀X,Y ∈ T1,0M ,

one has [X,Y ] ∈ T1,0M . In this case I is called a complex structure op-

erator. A manifold with an integrable almost complex structure is called a

complex manifold.

THEOREM: (Newlander-Nirenberg)

This definition is equivalent to the usual one.

REMARK: It is sufficient to check the condition [T1,0M,T1,0M ] ⊂ T1,0M

on any set of generators of T1,0M . In particular, if (M, I) is homogeneous

(equipped with a transitive Lie group action preserving I) it suffices to check

it on invariant vector fields.
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Nilmanifolds

DEFINITION: Let M be a smooth manifold equipped with a transitive action

of nilpotent Lie group. Then M is called a nilmanifold.

REMARK: All nilmanifolds are obtained as quotient spaces, M = G/H.

THEOREM: (Malčev)

Let g be a nilpotent Lie algebra defined over Q, and G its Lie group. Then G

contains a discrete subgroup Γ such that G/Γ is compact, and Γ = eΓg,

where Γg is a lattice subalgebra in g. Moreover, g ∼= Γg ⊗Q R. Finally, all

nilmanifolds are obtained this way.

REMARK: Topologically, all simply connected nilpotent Lie groups are

diffeomorphic to Rn, and all nilmanifolds are iterated circle fibrations.
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Complex nilmanifolds

DEFINITION: An integrable complex structure on a real Lie algebra g is

a subalgebra g1,0 ⊂ g⊗R C such that g1,0 ⊕ g1,0 = g⊗R C

REMARK: Any such decomposition defines a complex structure I on

g by I
∣∣∣g1,0 =

√
−1 and I

∣∣∣g0,1 = −
√
−1 . Integrability of complex structure is

given by [T1,0G,T1,0G] ⊂ T1,0G, which is equivalent to [g1,0, g1,0] ⊂ g1,0.

REMARK: Left-invariant complex structures on a connected real Lie group

are in 1 to 1 correspondence with integrable complex structures on its

Lie algebra.

DEFINITION: Let G be a group equipped with a left-invariant complex

structure, and Γ ⊂ G a cocompact lattice. Since Γ acts on G by biholomor-

phisms, the compact manifold M = G/Γ inherits a complex structure. It is

called a complex nilmanifold.
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Iwasawa-type complex structures

EXAMPLE: Iwasawa manifold is the quotient of

1 ∗ ∗
0 1 ∗
0 0 1

 (group N3(C)

of upper triangular complex matrices) by a lattice Γ. As an example of Γ we
can take N3(Z[

√
−1 ]).

REMARK: Let I be a bi-invariant complex structure on a nilpotent Lie group
G. Such a complex structure is called Iwasawa type.

REMARK: Complex structure on g is bi-invariant if and only if M := (G, I)/Γ
is homogeneous under the left action of G. Then the left invariant vector
fields are holomorphic, and this implies that [X,Y ] = 0 whenever X ∈ T1,0M

and Y ∈ T0,1M .

COROLLARY: Let I be a complex structure on a Lie algebra g. Then I is

bi-invariant if and only if [g0,1, g1,0] = 0.

Proof: If this [g0,1, g1,0] = 0, then LieX Y = 0 is of type (1,0) for any right-
invariant vector fields X,Y , with Y of type (1,0). Then gY g−1 ∈ g1,0 for any
g ∈ G, hence T1,0G is bi-invariant.
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Locally trivial elliptic fibrations

REMARK: “A surface” here would always mean “a compact complex

manifold of complex dimension 2”.

REMARK: Let L be a line bundle on a complex manifold X, TotL∗ the

space of non-zero vectors of L, and α ∈ C a number satisfying |α| > 1, and

M := TotL∗/〈α〉 the quotient by the corresponding Z-action. Then M is a

locally trivial eliptic fibration over X with fiber C∗/〈α〉.

REMARK: Any locally trivial elliptic fibration over a curve has this

nature. Its Chern class is Chern class of L.
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Kodaira surface

DEFINITION: Let T , T ′ be elliptic curves. Kodaira surface π : M −→ T

is a locally trivial holomorphic fibration over T with fiber T ′ and non-trivial

Chern class.

A remark on terminology: These are “primary” Kodaira surfaces. “Sec-

ondary” ones are obtained by taking finite unramified quotients.

REMARK: The Kodaira surface is diffeomorphic to a quotient S1 × (G/GZ)

where G is a 3-dimensional Heisenberg group, and GZ a lattice in G. There-

fore, Kodaira surface is a nilmanifold. Its complex structure is left-invariant,

but not bi-invariant.

EXERCISE: Check that the manifold M is a complex nilmanifold, but

it is not homogeneous.

REMARK: Kodaira surface is not Kähler. Indeed, the cohomology class

of π∗(ωT ) vanishes, where ωT is the Kähler form on T . The product of ωT
and the Kahler form on M (if it exists) is a positive volume form, hence

it cannot be exact.
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Complex nilmanifolds and the Lie pencils

CLAIM: Let (M, I) be an almost complex manifold, and dc := IdI−1 :

ΛkM −→ Λk+1M the twisted de Rham differential. The almost complex

structure I is integrable if and only if d and dc anticommute.

Proof: Left as an exercise.

COROLLARY: Let g be a Lie algebra, and I ∈ End g an operator which

satisfies I2 = − Id (“an almost complex structure”). Consider the twisted Lie

bracket [X,Y ]I := I[I−1X, I−1Y ]. Then I is integrable if and only if the

2-dimensional space S generated by [·, ·] and [·, ·]I is a Lie pencil.

DEFINITION: Recall that the central series iof a Lie algebra g is the

sequence g0 = g ⊃ g1 ⊃ g2 ⊃ ... such that gi = [g, gi−1].
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The Millionschikov’s conjecture

QUESTION: (D. Millionschikov)
Let (g, I) be a Lie algebra equipped with an integrable complex structure, and
N the length of the central series of g. Prove that N

dimR g 6 2/3.

REMARK: Millionschikov discovered a family of algebras (g, I) of real dimen-
sion 6n and with central series of length 4n, hence this bound is optimal.

DEFINITION: Let S ⊂ Hom(Λ2V, V ) be a Lie pencil. An S-ideal in V is a
subspace V1 ⊂ V such that [V, V1]w ⊂ V1 for all w ∈ S, and an S-subalgebra
a subspace V1 ⊂ V such that [V1, V1]w ⊂ V1 for all w ∈ S.

PROPOSITION: Let g be the Millionschikov algebra, and S ⊂ Hom(Λ2(g), g)
be the 2-dimensional Lie pencil associated with the complex structure as
above. Then (g, S) is not S-nilpotent.

Proof: Suppose that g is S-nilpotent, and g ⊃ g1 ⊃ g2... the corresponding
chain of S-ideals, with gi being generated by [g, gi−1]w for all w ∈ S. Using
induction, we obtain that gi are I-invariant; indeed, [g, Igi]I = I[g, gi]. Then
dimR

gi
gi+1

> 2, hence N
dim g 6 1/2. However, for Millionshchikov’s algebra we

have N
dimR g = 2/3, a contradiction.
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Hypercomplex nilmanifolds

DEFINITION: Let M be a smooth manifold equipped with endomorphisms

I, J,K : TM −→ TM , satisfying the quaternionic relation I2 = J2 = K2 =

IJK = − Id . Suppose that I, J, K are integrable almost complex structures.

Then (M, I, J,K) is called a hypercomplex manifold.

DEFINITION: A hypercomplex structure on a Lie algebra g is an action

of quaternion algebra such that the almost complex structures induced on g

by I, J,K are integrable.

REMARK: Hypercomplex structures on a Lie algebra are the same as

left-invariant hypercomplex structures on the corresponding Lie group.
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Hypercomplex nilmanifolds and the Lie pencils

CLAIM: Let d, dI := IdI−1, dJ := JdJ−1, dK := KdK−1 be the twisted de

Rham differentials on a hypercomplex manifold. Then d, dI , dJ , dK anticom-

mute.

Proof: Clearly, {dI , dJ} = I{d, I−1dJI}I−1, and I−1dJI = dK, hence {dI , dJ} =

I{d, dK}I−1. This anticommutator vanishes, because K is integrable.

REMARK: From this observation we obtain that a hypercomplex structure

on a Lie algebra defines a Lie pencil of dimension 4, obtained by twisting

the Lie bracket with the quaternions.
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H-solvable hypercomplex Lie algebras

DEFINITION: Let (g, I, J,K) be a complex structure on a nilpotent Lie

algebra. For any subspace u ⊂ g, denote by Hu the space u + Iu + Ju + Ku.

Define gH1 := H[g, g] and gHi+1 := [gHi , g
H
i ] + I([gHi , g

H
i ]). The algebra g is called

H-solvable if this sequence terminates.

PROPOSITION: The S-solvability for the Lie pencil S associated to a hy-

percomplex Lie algebra g is equivalent to H-solvability of this algebra.

Proof. Step 1: Define gSi as a subspace of g generated by [gi−1, gi−1]w, for

all w ∈ S. Clearly, g is S-solvable if and only if this sequence terminates.

We are going to show that gSi = gHi for all i.

Step 2: For any spaces U, V ⊂ g and L = I, J,K, we have L[LU,LV ] ⊃ [U, V ]L.

If U, V are H-invariant, this gives L[U, V ] = [U, V ]L, hence H[U, V ] = [U, V ] +

[U, V ]J + [U, V ]J + [U, V ]K. Then gSi = gHi implies gSi+1 = gHi+1.
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The “main conjecture” for complex and hypercomplex structures

S-solvability for complex nilmanifolds:

Let (g, I) be a complex structure on a nilpotent Lie algebra. Consider the

following family of subalgebras, defined inductively: gC1 = [g, g] + I([g, g]), ...,

gCi+1 := [gCi , g
C
i ] + I([gCi , g

C
i ]). “The main conjecture” for this particular Lie

pencil claims that this sequence terminates. It was proven by S. Salamon.

S-solvability for hypercomplex nilmanifolds: “Main conjecture” claims

that any hypercomplex Lie algebra is H-solvable.

This conjecture is proven only for special cases, but it has many important

geometric consequences.

THEOREM: (Yu. Gorginian)

Let M = G/Γ be a hypercomplex nilmanifold, and g the corresponding Lie

algebra. Consider a complex structure of form L = aI + bJ + cK, where a2 +

b2+c2 = 1. Assume that g is H-solvable. Then the complex manifold (M,L)

does not contain complex curves, for all a, b, c outside of a countable

set.
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S-solvability for 2-dimensional Lie pencils

We prove the following generalization of Salamon’s theorem.

THEOREM: (Gorginian-Soldatenkov-V.)

Let S ⊂ Hom(Λ2V, V ) be a 2-dimensional Lie pencil. Assume that for all w ∈ S,

the corresponding Lie algebra (V, [·, ·]w) is nilpotent. Then V is S-solvable.

To prove it, we translate the notion of Lie pencils to the language of algebraic

geometry. The following definition is equivalent to the original definition of

Lie pencil.

DEFINITION: A k-dimensional Lie pencil on a vector space g is a mor-

phism of vector bundles Λ2g⊗COPk−1 −→ g⊗COPk−1(1) which satisfies Jacobi

identity at each point of the projective space Pk−1.
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