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The Kähler cone and its faces

This is joint work with Ekaterina Amerik.

DEFINITION: Let M be a compact, Kähler manifold, Kah ⊂ H1,1(M,R) is

Kähler cone, and Kah its closure in H1,1(M,R), called the nef cone. A face

of a Kähler cone is an intersection of the boundary of Kah and a hyperplane

V ⊂ H1,1(M,R) which has a non-empry interior.

CONJECTURE: (Morrison-Kawamata cone conjecture)

Let M be a Calabi-Yau manifold. Then the group Aut(M) of biholomorphic

automorphisms of M acts on the set of faces of Kah with finite number of

orbits.

REMARK: Today I will describe the Kähler cone on holomorphically sym-

plectic manifolds in terms of topological invariants, called MBM classes.

These are (roughly speaking) classes of minimal rational curves.

This description was used in our proof of cone conjecture for holomorphically

symplectic manifolds.
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(−2)-classes on a K3 surface

CLAIM: (Hodge index theorem)

Let M be a Kähler surface. Then the form η −→
∫
M η ∧ η has signature

(+,−,−, ...) on H1,1(M,R).

DEFINITION: Positive cone Pos(M) on a Kähler surface is the one of the

two components of

{v ∈ H1,1(M,R) |
∫
M
η ∧ η > 0}

which contains a Kähler form.

DEFINITION: A cohomology class η ∈ H2(M,Z) on a K3 surface is called

(−2)-class if
∫
M η ∧ η = −2.

REMARK: Let M be a K3 surface, and η ∈ H1,1(M,Z) a (−2)-class. Then

either η or −η is effective. Indeed, χ(η) = 2 + η2

2 = 1 by Riemann-Roch.
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Kähler cone for a K3 surface

THEOREM: Let M be a K3 surface, and S the set of all effective (−2)-

classes. Then Kah(M) is the set of all v ∈ Pos(M) such that 〈v, s〉 > 0 for

all s ∈ S.

DEFINITION: A Weyl chamber on a K3 surface is a connected component

of Pos(M)\S⊥, where S⊥ is a union of all planes s⊥ for all (-2)-classes s ∈ S.

The reflection group of a K3 surface is a group W generated by reflections

with respect to all s ∈ S.

REMARK: Clearly, a Weyl chamber is a fundamental domain of W , and W

acts transitively on the set of all Weyl chambers. Moreover, the Kähler cone

of M is one of its Weyl chambers.
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Hyperkähler manifolds

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian

structure g and a triple of complex structures I, J,K, satisfying quaternionic

relations I ◦ J = −J ◦ I = K, such that g is Kähler for I, J,K.

REMARK: A hyperkähler manifold has three symplectic forms

ωI := g(I·, ·), ωJ := g(J ·, ·), ωK := g(K·, ·).

REMARK: This is equivalent to ∇I = ∇J = ∇K = 0: the parallel translation

along the connection preserves I, J,K.

DEFINITION: Let M be a Riemannian manifold, x ∈ M a point. The

subgroup of GL(TxM) generated by parallel translations (along all paths) is

called the holonomy group of M .

REMARK: A hyperkähler manifold can be defined as a manifold which

has holonomy in Sp(n) (the group of all endomorphisms preserving I, J,K).
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Holomorphically symplectic manifolds

DEFINITION: A holomorphically symplectic manifold is a complex manifold

equipped with non-degenerate, holomorphic (2,0)-form.

REMARK: Hyperkähler manifolds are holomorphically symplectic. Indeed,

Ω := ωJ +
√
−1 ωK is a holomorphic symplectic form on (M, I).

THEOREM: (Calabi-Yau) A compact, Kähler, holomorphically symplectic

manifold admits a unique hyperkähler metric in any Kähler class.

DEFINITION: For the rest of this talk, a hyperkähler manifold is a com-

pact, Kähler, holomorphically symplectic manifold.

DEFINITION: A hyperkähler manifold M is called simple if π1(M) = 0,

H2,0(M) = C.

Bogomolov’s decomposition: Any hyperkähler manifold admits a finite cov-

ering which is a product of a torus and several simple hyperkähler manifolds.

Further on, all hyperkähler manifolds are assumed to be simple.
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The Bogomolov-Beauville-Fujiki form

THEOREM: (Fujiki). Let η ∈ H2(M), and dimM = 2n, where M is hy-

perkähler. Then
∫
M η2n = cq(η, η)n, for some primitive integer quadratic form

q on H2(M,Z), and c > 0 a rational number.

Definition: This form is called Bogomolov-Beauville-Fujiki form. It is

defined by the Fujiki’s relation uniquely, up to a sign. The sign is

determined from the following formula (Bogomolov, Beauville)

λq(η, η) =
∫
X
η ∧ η ∧Ωn−1 ∧Ωn−1−

−
n− 1

n

(∫
X
η ∧Ωn−1 ∧Ωn

)(∫
X
η ∧Ωn ∧Ωn−1

)
where Ω is the holomorphic symplectic form, and λ > 0.

Remark: q has signature (3, b2 − 3). It is negative definite on primitive

forms, and positive definite on 〈Ω,Ω, ω〉, where ω is a Kähler form.
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MBM classes

DEFINITION: Negative class on a hyperkähler manifold is η ∈ H2(M,R)

satisfying q(η, η) < 0.

DEFINITION: Let (M, I) be a hyperkähler manifold. A rational homology

class z ∈ H1,1(M, I) is called minimal if for any Q-effective homology classes

z1, z2 ∈ H1,1(M, I) satisfying z1 + z2 = z, the classes z1, z2 are proportional.

A negative rational homology class z ∈ H1,1(M, I) is called monodromy bi-

rationally minimal (MBM) if γ(z) is minimal and Q-effective for one of

birational models (M, I ′) of (M, I), where γ ∈ O(H2(M)) is an element of the

monodromy group of (M, I).

This property is deformationally invariant.

THEOREM: Let z ∈ H2(M,Z) be negative, and I, I ′ complex structures in

the same deformation class, such that η is of type (1,1) with respect to I and

I ′. Then η is MBM in (M, I) ⇔ it is MBM in (M, I ′).
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MBM classes for Pic(M) = Z

The MBM and divisorial classes are better understood if the Picard group has

rank one and generated by a negative vector (in this case M is non-algebraic).

THEOREM: Let (M, I) be a hyperkähler manifold, rk Pic(M, I) = 1, and

z ∈ H1,1(M, I) a non-zero negative class. Then z is monodromy birationally

minimal if and only if ±z is Q-effective.

Proof. Step 1: If (M, I) has a rational curve, it is by definition minimal,

hence represents an MBM class.

Step 2: If (M, I) has no rational curves, it has no exceptional divisors, hence

its Kähler cone is equal to the positive cone (Huybrechts, Boucksom).

Therefore, z is orthogonal to a Kähler class, and hence non-effective.

REMARK: This argument proves that MBM classes correspond to faces

of a Kähler cone for rk Pic(M, I) = 1.
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MBM classes and the Kähler cone

THEOREM: Let (M, I) be a hyperkähler manifold, and S ⊂ H1,1(M, I) the

set of all MBM classes in H1,1(M, I). Consider the corresponding set of

hyperplanes S⊥ := {W = z⊥ | z ∈ S} in H1,1(M, I). Then the Kähler cone

of (M, I) is a connected component of Pos(M, I)\ ∪ S⊥, where Pos(M, I)

is a positive cone of (M, I). Moreover, for any connected component K of

Pos(M, I)\ ∪ S⊥, there exists γ ∈ O(H2(M)) in a monodromy group of M ,

and a hyperkähler manifold (M, I ′) birationally equivalent to (M, I), such that

γ(K) is a Kähler cone of (M, I ′).

REMARK: This implies that MBM classes correspond to faces of the

Kähler cone.
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MBM classes and the Kähler cone: the picture

REMARK: This implies that z⊥ ∩ Pos(M, I) either has dense intersection

with the interior of the Kähler chambers (if z is not MBM), or is a union

of walls of those (if z is MBM); that is, there are no “barycentric partitions”

in the decomposition of the positive cone into the Kähler chambers.

Allowed partition Prohibited partition
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Families of rational curves: lower bound on dimension

THEOREM: (Z. Ran)

Let M be a hyperkähler manifold of dimension 2n. Then any rational curve

C ⊂M deforms in a family of dimension at least 2n− 2.

Proof: By adjunction formula, deg(NC) = −2 and rk(NC) = 2n − 1, which

implies that C deforms in a family of dimension at least 2n − 3. The extra

parameter is due to the existence of the twistor space Tw(M). This is

a complex manifold of dimension n + 1, fibered over CP1 in such a way

that M is one of the fibers and the other fibers correspond to the other

complex structures coming from the hyperkähler action on M . The same

adjunction argument shows that C deforms in Tw(M) in a family of dimension

at least 2n− 2. But all deformations of C are contained in M since the

neighbouring fibers contain no curves.
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Families of rational curves: coisotropicity

DEFINITION: A complex analytic subvariety Z of a holomorphically sym-

plectic manifold (M,Ω) is called isotropic if Ω|Z = 0 and coisotropic if Ω

has rank 1
2 dimCM − codimCZ on TZ in all smooth points of Z, which is the

minimal possible rank for a 2n− p-dimensional subspace in a 2n-dimensional

symplectic space.

THEOREM: Let M be a hyperkähler manifold, C ⊂ M a minimal rational

curve, and Z ⊂ M the union of all deformations of C in M . Then Z is a

coisotropic subvariety of M.

Proof. Step 1: Let V be a MRC quotient of Z. Since fibers of π : Z −→ V

are rationally connected, they are isotropic.

Step 2: Let k := codimZ. Let T be the irreducible component of the

parameter space for deformations of C in M . We have dim(T ) > 2n − 2 by

Ziv Ran. Therefore the dimension of the universal family of curves over T

is at least 2n − 1. Since it projects onto Z which is 2n − k-dimensional, the

fibers of this projection are of dimension at least k − 1.
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Families of rational curves: coisotropicity (2)

THEOREM: Let M be a hyperkähler manifold, C ⊂ M a minimal rational
curve, and Z ⊂ M the union of all deformations of C in M . Then Z is a
coisotropic subvariety of M.

Proof. Step 1: Let V be a MRC quotient of Z. Since fibers of π : Z −→ V

are rationally connected, they are isotropic.

Step 2: Let k := codimZ. Let T be the irreducible component of the
parameter space for deformations of C in M . We have dim(T ) > 2n − 2 by
Ziv Ran. Therefore the dimension of the universal family of curves over T
is at least 2n − 1. Since it projects onto Z which is 2n − k-dimensional, the
fibers of this projection are of dimension at least k − 1.

Step 3: By bend-and-break, there is only a finite number of minimal
rational curves through two general points. This means that the fibers
of the MRC fibration π : Z −→ V are at least k-dimensional, and dimV 6
dimM − 2k.

Step 4: Since the fibers of π are isotropic, one has rk Ω|Z 6 dimV =
1/2 dimM − k, hence Z is coisotropic, and the inequality dimV 6 dimM − 2k
is equality.
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Families of rational curves: upper bound

COROLLARY: The deformation space of minimal rational curves on

a holomorphic symplectic manifold is 2n− 2-dimensional.

Proof. Step 1: Let C be a minimal rational curve, and Z the union of all its

deformations k := codimZ. Consider the MRC map π : Z −→ V . We have

shown that dimV = dimM − 2k.

Step 2: Since dimV = dimM−2k, the fibers of π : Z −→ V are k-dimensional.

Applying bend-and-break again, we obtain that there is a 2k − 2-dimensional

family of deformations of C in each fiber of π.
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Families of rational curves: deformational invariance (local)

COROLLARY: Let C be a minimal rational curve in a hyperkähler manifold

M0. Then any small deformation Mt of M = M0 such that the homology

class z of C stays of type (1,1) on Mt, contains a deformation of C.

Proof: From Riemann-Roch theorem it follows that C deforms in a family of

dimension at least 2n−3 + dim(Def(M)). Since the deformations of C inside

any Mt form a family of dimension 2n − 2 (when nonempty), the conclusion

follows.
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Families of rational curves: deformational invariance (global)

COROLLARY: If C is minimal, any deformation Mt of M = M0 such that

the corresponding homology class remains of type (1,1) has a birational

model containing a rational curve in that homology class.

Proof: Let Teich(M)0 be the connected component of the Teichmüller space

of M containing the parameter point for our complex manifold M0, and

Teichz(M)0 the part of it where z remains of type (1,1). Connecting Mt

with M0 by a path and applying the above corollary, we obtain the proof.

Birational models appear since Teichz(M) is not Hausdorff, so that at the

end of a path we might arrive to another point of Teichz(M), not separable

from Mt. However, a theorem of Huybrechts implies that unseparable points

of Teichz(M) correspond to birational complex manifolds.

REMARK: This proves the deformational invariance of MBM classes.
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