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T he Kahler cone and its faces

The work presented here (on the slides 13-15) is done in collaboration with
Ekaterina Amerik.

DEFINITION: Let M be a compact, Kihler manifold, Kah ¢ HL1(M,R) is
Kahler cone, and Kah its closure in Hb1(M, R), called the nef cone. A face
of a Kahler cone is an intersection of the boundary of Kah and a hyperplane
Vv ¢ HL1(M,R) which has a non-empry interior.

CONJECTURE: (Morrison-Kawamata cone conjecture)

Let M be a Calabi-Yau manifold. Then the group Aut(M) of biholomorphic
automorphisms of M acts on the set of faces of Kah with finite number of
orbits.
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Birational Kahler cone

REMARK: Define pseudo-isomorphism M — M’ as a birational map which
is an isomorphism outside of codimension > 2 subsets of M, M’.

REMARK: For any pseudo-isomorphic manifolds M, M’, one has H2(M) =
H2(M").

DEFINITION: Movable Kahler cone, also known as birational Kahler
cone and birational nef cone is a closure of a union of Kah(M’) for all M’
pseudo-isomorphic to M.

CONJECTURE: (Morrison-Kawamata birational cone conjecture)

Let M be a Calabi-Yau manifold. Then the group Bir(M) if birational auto-
morphisms of M acts on the set of faces of the movable cone with finite
number of orbits.
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(—2)-classes on a K3 surface

CLAIM: (Hodge index theorem)
Let M be a Kahler surface. Then the form n — [,;n7 A n has signature
(+,—,—,...) on HLI(M,R).

DEFINITION: Positive cone Pos(M) on a Kahler surface is the one of the
two components of

fve HMOMLR) | [ nAn>0}

which contains a Kahler form.

DEFINITION: A cohomology class n € H2(M,Z) on a K3 surface is called
(—2)-class if [ynAn=—-2.

REMARK: Let M be a K3 surface, and n € HL1(M,Z) a (—2)-class. Then
2
either n or —n is effective. Indeed, x(n) =2+ 5 = 1 by Riemann-Roch.
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Kahler cone for a K3 surface

THEOREM: Let M be a K3 surface, and S the set of all effective (—2)-
classes. Then Kah(M) is the set of all v € Pos(M) such that (v,s) > 0 for
all s € §.

DEFINITION: A Weyl chamber on a K3 surface is a connected component
of Pos(M)\S+, where S+ is a union of all planes st for all (-2)-classes s € S.
The reflection group of a K3 surface is a group W generated by reflections
with respect to all s € S.

REMARK: Clearly, a Weyl chamber is a fundamental domain of W, and W
acts transitively on the set of all Weyl chambers. Moreover, the Kahler cone
of M is one of its Weyl chambers.
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Cone conjecture for a K3 surface

THEOREM: Let M be a K3 surface. Then Aut(M) is the group of all
isometries of H1:1(M,7) preserving the Kahler chamber.

COROLLARY: Morrison-Kawamata cone conjecture holds for a K3
surface.

Proof. Step 1: A group [ of isometries of a lattice A acts with finitely many
orbits on the set {{ e A | 12 =z} for any given = (see Kneser, Quadratische
Formen, Satz 30.2). Therefore, I acts with finitely many orbits on the
set of (—2)-vectors in A.

Step 2: For each pair of faces F, F’ of a Kdhler cone and w € O(A) mapping F
to F/, w maps Kah to itself or to an adjoint Weyl chamber K’. Then K' = r(K),
where r is the reflection fixing F’. In the first case, w € Aut(M). In the second
case, rw maps F to F’ and maps Kah to itself, hence rw € Aut(M). =
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Hyperkahler manifolds

DEFINITION: A hyperkahler structure on a manifold M is a Riemannian
structure g and a triple of complex structures I, J, K, satisfying quaternionic
relations ToJ = —J oI = K, such that g is Kahler for I, J, K.

REMARK: A hyperkahler manifold has three symplectic forms
Wy .= g(Ia)' W L= g(‘]a)’ WK -— g(Ka)

REMARK: This is equivalent to VI =VJ = VK = 0: the parallel translation
along the connection preserves I, J, K.

DEFINITION: Let M be a Riemannian manifold, € M a point. The
subgroup of GL(T,M) generated by parallel translations (along all paths) is
called the holonomy group of M.

REMARK: A hyperkahler manifold can be defined as a manifold which
has holonomy in Sp(n) (the group of all endomorphisms preserving I, J, K).
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Holomorphically symplectic manifolds

DEFINITION: A holomorphically symplectic manifold is a complex manifold
equipped with non-degenerate, holomorphic (2,0)-form.

REMARK: Hyperkahler manifolds are holomorphically symplectic. Indeed,
QR =wj+ v—1wg is a holomorphic symplectic form on (M, I).

THEOREM: (Calabi-Yau) A compact, Kahler, holomorphically symplectic
manifold admits a unique hyperkahler metric in any Kahler class.

DEFINITION: For the rest of this talk, a hyperkahler manifold is a com-
pact, Kahler, holomorphically symplectic manifold.

DEFINITION: A hyperkdahler manifold M is called simple if 7{(M) = O,
H29(M) =C.

Bogomolov’s decomposition: Any hyperkahler manifold admits a finite cov-
ering which is a product of a torus and several simple hyperkahler manifolds.

Further on, all hyperkahler manifolds are assumed to be simple.
8
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The Bogomolov-Beauville-Fujiki form

THEOREM: (Fujiki). Let n € H2(M), and dimM = 2n, where M is hy-
perkdhler. Then [,;7°" = cq(n,n)"™, for some primitive integer quadratic form
g on H2(M,Z), and ¢ > 0 a rational number.

Definition: This form is called Bogomolov-Beauville-Fujiki form. It is
defined by the Fujiki’'s relation uniquely, up to a sign. The sign is
determined from the following formula (Bogomolov, Beauville)

Aa(n, 1) = /Xn AnAQTTIAT L

1 _ e
_n (/ n/\Q”_l/\Q”> (/ nAQPAQ" 1)
n X X

where €2 is the holomorphic symplectic form, and A\ > 0.

Remark: ¢ has signature (3,6, — 3). It is negative definite on primitive
forms, and positive definite on (Q2,Q,w), where w is a Kahler form.



MBM classes and cone conjecture M. Verbitsky

Birational nef cone on a hyperkahler manifold

DEFINITION: A cohomology class v € Hb1(M) is called pseudoeffective
if it can be represented by a positive, closed current.

THEOREM: (Huybrechts, Boucksom)

On any hyperkahler manifold M, birational Kahler cone is dual (with re-
spect to the BBF pairing) to the pseudoeffective cone. Moreover, the
birational Kahler cone is a union of Kahler cones for all hyperkahler mani-
folds M’ pseudo-isomorphic to M.

THEOREM: Divisorial Zariski decomposition (Boucksom).
For any pseudoeffective v, we have v = 1o+ > «o; F;, where v is birationally
nef, «; positive numbers, and E; are exceptional divisors.

COROLLARY: Let n € Pos(M) be an element of a positive cone on a
hyperkahler manifold. Then 7 is birationally nef if and only if ¢g(n,E) > 0
for any exceptional divisor E.

REMARK: In other words, the faces of birational Kahler cone are dual
to the classes of exceptional divisors.
10
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Divisorial reflections and Weyl chambers

DEFINITION: Monodromy group [ of a hyperkahler manifold is a sub-
group of O(HQ(M, 7),q) generated by monodromy operators for all Gauss-
Manin local system associated with complex deformations of M.

REMARK: The monodromy group of a hyperkahler manifold is a finite
index subgroup in O(H?2(M,Z),q) (follows from global Torelli).

THEOREM: (Markman)
For each exceptional divisor E on a hyperkahler manifold, there exists a
reflection rp € O(H2%(M,Z)) in the monodromy group fixing E-L.

DEFINITION: Such a reflection is called a divisorial reflection.

DEFINITION: Weyl chamber on a hyperkahler manifold is a connected
component of Pos(M)\E-+, where E-+ is a union of all planes el for all excep-
tional divisors e.

REMARK: A Weyl chamber is a fundamental domain of a group generated by
divisorial reflections. Birational Kahler cone is one of the Weyl chambers.
11
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The proof of birational cone conjecture

THEOREM: Let M be a hyperkahler manifold. Then Bir(M) is the group
of all v € ' preserving the birational Kahler chamber Kahg. Here I' is the
monodromy group.

Proof: Follows from global Torelli. m

COROLLARY: (Markman) Birational Morrison-Kawamata cone con-
jecture holds for hyperkahler manifolds.

Proof. Step 1: Let é§ be the discriminant of a lattice H2(M,Z), and E
an exceptional divisor. Then |E2| < 29. Indeed, otherwise the reflection

r—x 2q(E7E)E would not be integer.

Step 2: A group of isometries of a lattice A acts with finitely many orbits on
the set {I e A | 12 =z} for any given z (see Kneser, Quadratische Formen,
Satz 30.2). Therefore, ' acts with finitely many orbits on the set of
classes of exceptional divisors.

Step 3: For each pair of faces F, F' of a birational Kadhler cone and w € O(A)
mapping F to F/, w maps Kahpg to itself or to an adjoint Weyl chamber
K'. Then K' = r(K), where r is the reflection fixing F’. In the first case,
w € Aut(M). In the second case, rw maps F to F/ and maps Kahp to itself,
hence rw € Aut(M). =

12
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MBM classes

DEFINITION: Negative class on a hyperkdhler manifold is n € H2(M,R)
satisfying ¢(n,n) < O.

DEFINITION: Let (M,I) be a hyperkahler manifold. A rational homology
class z € Hy 1(M,I) is called minimal if for any Q-effective homology classes
21,22 € Hy 1(M,I) satisfying z1 + 20 = 2, the classes z1,z> are proportional.
A negative rational homology class z € Hy 1(M,I) is called monodromy bi-
rationally minimal (MBM) if v(z) is minimal and Q-effective for one of
birational models (M, I’) of (M, I), where v € O(H?(M)) is an element of the
monodromy group of (M,I).

DEFINITION Let (M,I) be a hyperkaehler manifold. A negative rational
class z € H @ (M I) is called divisorial if z = A[D] for some divisor D and

A€ Q.
These properties are deformationally invariant.

THEOREM: Let z € H2(M,Z) be negative, and I,I’ complex structures in
the same deformation class, such that n is of type (1,1) with respect to I and
I'. Then
* n is divisorial in (M,I) < it is divisorial in (M, I').
*nis MBM in (M,]) & it is MBM in (M, I').
13
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MBM classes for Pic(M) = Z

The MBM and divisorial classes are better understood if the Picard group has
rank one and generated by a negative vector (in this case M is non-algebraic).

THEOREM: Let (M,I) be a hyperkahler manifold, rk Pic(M,I) = 1, and
z € Hy 1(M,I) a non-zero negative class. Then z is monodromy birationally
minimal if and only if +z is Q-effective.

Proof. Step 1: If (M,I) has a rational curve, it is by definition minimal,
hence represents an MBM class.

Step 2: If (M, ) has no rational curves, it has no exceptional divisors, hence
birational Kahler cone is equal to the positive cone (Boucksom).

Step 3: If (M, I) has no rational curves, any pseudo-isomorphism from (M, I)
to another hyperkahler manifold must be trivial. Indeed, pseudo-isomorphisms
are birational, and exceptional locus of a birational map is covered by rational
curves. Then Kahg = Kah: birational Kahler cone is Kahler cone is positive
cone. m

REMARK: This argument proves that MBM classes correspond to faces
of a Kahler cone for rk Pic(M,I) = 1.

14
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MBM classes and the Kahler cone

THEOREM: Let (M,I) be a hyperkahler manifold, and S C Hy 1(M,I) the
set of all MBM classes in Hp 1(M,I). Consider the corresponding set of
hyperplanes S+ :={W =2+ | 2 S}in H1'1(M,I). Then the Kahler cone
of (M,I) is a connected component of Pos(M, 1)\ U S+, where Pos(M,I)
is a positive cone of (M,I). Moreover, for any connected component K of
Pos(M,I)\ U SL, there exists v € O(H?(M)) in a monodromy group of M,
and a hyperkahler manifold (M, I") birationally equivalent to (M, I), such that
v(K) is a Kahler cone of (M, I).

REMARK: MBM classes correspond to faces of the Kahler cone.

REMARK: Morrison-Kawamata cone conjecture would follow if we
prove that monodromy group acts on the set of MBM rays with finitely
many orbits. This is implied by the following conjecture.

CONJECTURE: Let M be a hyperkahler manifold. Then there exists a
constant C > 0, such that for any minimal rational curve S C (M, I) with
q(S,S) < 0, one has |¢(S,S)| < C.
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