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The Kähler cone and its faces

The work presented here (on the slides 13-15) is done in collaboration with

Ekaterina Amerik.

DEFINITION: Let M be a compact, Kähler manifold, Kah ⊂ H1,1(M,R) is

Kähler cone, and Kah its closure in H1,1(M,R), called the nef cone. A face

of a Kähler cone is an intersection of the boundary of Kah and a hyperplane

V ⊂ H1,1(M,R) which has a non-empry interior.

CONJECTURE: (Morrison-Kawamata cone conjecture)

Let M be a Calabi-Yau manifold. Then the group Aut(M) of biholomorphic

automorphisms of M acts on the set of faces of Kah with finite number of

orbits.
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Birational Kähler cone

REMARK: Define pseudo-isomorphism M −→M ′ as a birational map which

is an isomorphism outside of codimension > 2 subsets of M,M ′.

REMARK: For any pseudo-isomorphic manifolds M,M ′, one has H2(M) =

H2(M ′).

DEFINITION: Movable Kähler cone, also known as birational Kähler

cone and birational nef cone is a closure of a union of Kah(M ′) for all M ′

pseudo-isomorphic to M .

CONJECTURE: (Morrison-Kawamata birational cone conjecture)

Let M be a Calabi-Yau manifold. Then the group Bir(M) if birational auto-

morphisms of M acts on the set of faces of the movable cone with finite

number of orbits.
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(−2)-classes on a K3 surface

CLAIM: (Hodge index theorem)

Let M be a Kähler surface. Then the form η −→
∫
M η ∧ η has signature

(+,−,−, ...) on H1,1(M,R).

DEFINITION: Positive cone Pos(M) on a Kähler surface is the one of the

two components of

{v ∈ H1,1(M,R) |
∫
M
η ∧ η > 0}

which contains a Kähler form.

DEFINITION: A cohomology class η ∈ H2(M,Z) on a K3 surface is called

(−2)-class if
∫
M η ∧ η = −2.

REMARK: Let M be a K3 surface, and η ∈ H1,1(M,Z) a (−2)-class. Then

either η or −η is effective. Indeed, χ(η) = 2 + η2

2 = 1 by Riemann-Roch.
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Kähler cone for a K3 surface

THEOREM: Let M be a K3 surface, and S the set of all effective (−2)-

classes. Then Kah(M) is the set of all v ∈ Pos(M) such that 〈v, s〉 > 0 for

all s ∈ S.

DEFINITION: A Weyl chamber on a K3 surface is a connected component

of Pos(M)\S⊥, where S⊥ is a union of all planes s⊥ for all (-2)-classes s ∈ S.

The reflection group of a K3 surface is a group W generated by reflections

with respect to all s ∈ S.

REMARK: Clearly, a Weyl chamber is a fundamental domain of W , and W

acts transitively on the set of all Weyl chambers. Moreover, the Kähler cone

of M is one of its Weyl chambers.
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Cone conjecture for a K3 surface

THEOREM: Let M be a K3 surface. Then Aut(M) is the group of all

isometries of H1,1(M,Z) preserving the Kähler chamber.

COROLLARY: Morrison-Kawamata cone conjecture holds for a K3

surface.

Proof. Step 1: A group Γ of isometries of a lattice Λ acts with finitely many

orbits on the set {l ∈ Λ | l2 = x} for any given x (see Kneser, Quadratische

Formen, Satz 30.2). Therefore, Γ acts with finitely many orbits on the

set of (−2)-vectors in Λ.

Step 2: For each pair of faces F, F ′ of a Kähler cone and w ∈ O(Λ) mapping F

to F ′, w maps Kah to itself or to an adjoint Weyl chamber K′. Then K′ = r(K),

where r is the reflection fixing F ′. In the first case, w ∈ Aut(M). In the second

case, rw maps F to F ′ and maps Kah to itself, hence rw ∈ Aut(M).
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Hyperkähler manifolds

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian

structure g and a triple of complex structures I, J,K, satisfying quaternionic

relations I ◦ J = −J ◦ I = K, such that g is Kähler for I, J,K.

REMARK: A hyperkähler manifold has three symplectic forms

ωI := g(I·, ·), ωJ := g(J ·, ·), ωK := g(K·, ·).

REMARK: This is equivalent to ∇I = ∇J = ∇K = 0: the parallel translation

along the connection preserves I, J,K.

DEFINITION: Let M be a Riemannian manifold, x ∈ M a point. The

subgroup of GL(TxM) generated by parallel translations (along all paths) is

called the holonomy group of M .

REMARK: A hyperkähler manifold can be defined as a manifold which

has holonomy in Sp(n) (the group of all endomorphisms preserving I, J,K).

7



MBM classes and cone conjecture M. Verbitsky

Holomorphically symplectic manifolds

DEFINITION: A holomorphically symplectic manifold is a complex manifold

equipped with non-degenerate, holomorphic (2,0)-form.

REMARK: Hyperkähler manifolds are holomorphically symplectic. Indeed,

Ω := ωJ +
√
−1 ωK is a holomorphic symplectic form on (M, I).

THEOREM: (Calabi-Yau) A compact, Kähler, holomorphically symplectic

manifold admits a unique hyperkähler metric in any Kähler class.

DEFINITION: For the rest of this talk, a hyperkähler manifold is a com-

pact, Kähler, holomorphically symplectic manifold.

DEFINITION: A hyperkähler manifold M is called simple if π1(M) = 0,

H2,0(M) = C.

Bogomolov’s decomposition: Any hyperkähler manifold admits a finite cov-

ering which is a product of a torus and several simple hyperkähler manifolds.

Further on, all hyperkähler manifolds are assumed to be simple.

8



MBM classes and cone conjecture M. Verbitsky

The Bogomolov-Beauville-Fujiki form

THEOREM: (Fujiki). Let η ∈ H2(M), and dimM = 2n, where M is hy-

perkähler. Then
∫
M η2n = cq(η, η)n, for some primitive integer quadratic form

q on H2(M,Z), and c > 0 a rational number.

Definition: This form is called Bogomolov-Beauville-Fujiki form. It is

defined by the Fujiki’s relation uniquely, up to a sign. The sign is

determined from the following formula (Bogomolov, Beauville)

λq(η, η) =
∫
X
η ∧ η ∧Ωn−1 ∧Ωn−1−

−
n− 1

n

(∫
X
η ∧Ωn−1 ∧Ωn

)(∫
X
η ∧Ωn ∧Ωn−1

)
where Ω is the holomorphic symplectic form, and λ > 0.

Remark: q has signature (3, b2 − 3). It is negative definite on primitive

forms, and positive definite on 〈Ω,Ω, ω〉, where ω is a Kähler form.
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Birational nef cone on a hyperkähler manifold

DEFINITION: A cohomology class ν ∈ H1,1(M) is called pseudoeffective

if it can be represented by a positive, closed current.

THEOREM: (Huybrechts, Boucksom)

On any hyperkähler manifold M , birational Kähler cone is dual (with re-

spect to the BBF pairing) to the pseudoeffective cone. Moreover, the

birational Kähler cone is a union of Kähler cones for all hyperkähler mani-

folds M ′ pseudo-isomorphic to M.

THEOREM: Divisorial Zariski decomposition (Boucksom).

For any pseudoeffective ν, we have ν = ν0+
∑
αiEi, where ν0 is birationally

nef, αi positive numbers, and Ei are exceptional divisors.

COROLLARY: Let η ∈ Pos(M) be an element of a positive cone on a

hyperkähler manifold. Then η is birationally nef if and only if q(η,E) > 0

for any exceptional divisor E.

REMARK: In other words, the faces of birational Kähler cone are dual

to the classes of exceptional divisors.
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Divisorial reflections and Weyl chambers

DEFINITION: Monodromy group Γ of a hyperkähler manifold is a sub-

group of O(H2(M,Z), q) generated by monodromy operators for all Gauss-

Manin local system associated with complex deformations of M .

REMARK: The monodromy group of a hyperkähler manifold is a finite

index subgroup in O(H2(M,Z), q) (follows from global Torelli).

THEOREM: (Markman)

For each exceptional divisor E on a hyperkähler manifold, there exists a

reflection rE ∈ O(H2(M,Z)) in the monodromy group fixing E⊥.

DEFINITION: Such a reflection is called a divisorial reflection.

DEFINITION: Weyl chamber on a hyperkähler manifold is a connected

component of Pos(M)\E⊥, where E⊥ is a union of all planes e⊥ for all excep-

tional divisors e.

REMARK: A Weyl chamber is a fundamental domain of a group generated by

divisorial reflections. Birational Kähler cone is one of the Weyl chambers.
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The proof of birational cone conjecture

THEOREM: Let M be a hyperkähler manifold. Then Bir(M) is the group
of all γ ∈ Γ preserving the birational Kähler chamber KahB. Here Γ is the
monodromy group.
Proof: Follows from global Torelli.

COROLLARY: (Markman) Birational Morrison-Kawamata cone con-
jecture holds for hyperkähler manifolds.

Proof. Step 1: Let δ be the discriminant of a lattice H2(M,Z), and E
an exceptional divisor. Then |E2| 6 2δ. Indeed, otherwise the reflection
x−→ x− 2 q(x,E)

q(E,E)E would not be integer.

Step 2: A group of isometries of a lattice Λ acts with finitely many orbits on
the set {l ∈ Λ | l2 = x} for any given x (see Kneser, Quadratische Formen,
Satz 30.2). Therefore, Γ acts with finitely many orbits on the set of
classes of exceptional divisors.

Step 3: For each pair of faces F, F ′ of a birational Kähler cone and w ∈ O(Λ)
mapping F to F ′, w maps KahB to itself or to an adjoint Weyl chamber
K′. Then K′ = r(K), where r is the reflection fixing F ′. In the first case,
w ∈ Aut(M). In the second case, rw maps F to F ′ and maps KahB to itself,
hence rw ∈ Aut(M).
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MBM classes

DEFINITION: Negative class on a hyperkähler manifold is η ∈ H2(M,R)
satisfying q(η, η) < 0.

DEFINITION: Let (M, I) be a hyperkähler manifold. A rational homology
class z ∈ H1,1(M, I) is called minimal if for any Q-effective homology classes
z1, z2 ∈ H1,1(M, I) satisfying z1 + z2 = z, the classes z1, z2 are proportional.
A negative rational homology class z ∈ H1,1(M, I) is called monodromy bi-
rationally minimal (MBM) if γ(z) is minimal and Q-effective for one of
birational models (M, I ′) of (M, I), where γ ∈ O(H2(M)) is an element of the
monodromy group of (M, I).

DEFINITION: Let (M, I) be a hyperkaehler manifold. A negative rational
class z ∈ H

1,1
Q (M, I) is called divisorial if z = λ[D] for some divisor D and

λ ∈ Q.

These properties are deformationally invariant.

THEOREM: Let z ∈ H2(M,Z) be negative, and I, I ′ complex structures in
the same deformation class, such that η is of type (1,1) with respect to I and
I ′. Then

* η is divisorial in (M, I) ⇔ it is divisorial in (M, I ′).
* η is MBM in (M, I) ⇔ it is MBM in (M, I ′).
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MBM classes for Pic(M) = Z

The MBM and divisorial classes are better understood if the Picard group has
rank one and generated by a negative vector (in this case M is non-algebraic).

THEOREM: Let (M, I) be a hyperkähler manifold, rk Pic(M, I) = 1, and
z ∈ H1,1(M, I) a non-zero negative class. Then z is monodromy birationally
minimal if and only if ±z is Q-effective.

Proof. Step 1: If (M, I) has a rational curve, it is by definition minimal,
hence represents an MBM class.

Step 2: If (M, I) has no rational curves, it has no exceptional divisors, hence
birational Kähler cone is equal to the positive cone (Boucksom).

Step 3: If (M, I) has no rational curves, any pseudo-isomorphism from (M, I)
to another hyperkähler manifold must be trivial. Indeed, pseudo-isomorphisms
are birational, and exceptional locus of a birational map is covered by rational
curves. Then KahB = Kah: birational Kähler cone is Kähler cone is positive
cone.

REMARK: This argument proves that MBM classes correspond to faces
of a Kähler cone for rk Pic(M, I) = 1.
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MBM classes and the Kähler cone

THEOREM: Let (M, I) be a hyperkähler manifold, and S ⊂ H1,1(M, I) the

set of all MBM classes in H1,1(M, I). Consider the corresponding set of

hyperplanes S⊥ := {W = z⊥ | z ∈ S} in H1,1(M, I). Then the Kähler cone

of (M, I) is a connected component of Pos(M, I)\ ∪ S⊥, where Pos(M, I)

is a positive cone of (M, I). Moreover, for any connected component K of

Pos(M, I)\ ∪ S⊥, there exists γ ∈ O(H2(M)) in a monodromy group of M ,

and a hyperkähler manifold (M, I ′) birationally equivalent to (M, I), such that

γ(K) is a Kähler cone of (M, I ′).

REMARK: MBM classes correspond to faces of the Kähler cone.

REMARK: Morrison-Kawamata cone conjecture would follow if we

prove that monodromy group acts on the set of MBM rays with finitely

many orbits. This is implied by the following conjecture.

CONJECTURE: Let M be a hyperkähler manifold. Then there exists a

constant C > 0, such that for any minimal rational curve S ⊂ (M, I) with

q(S, S) < 0, one has |q(S, S)| < C.
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