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Plan.

1. Motivation: Kodaira theorem on embedding of Kähler manifolds into

CPn. Discussion of a posible non-Kähler analogue.

2. LCK manifolds: Locally conformally Kähler (LCK) manifolds, and their

definition.

3. Deformational stability problem for LCK manifolds: Counterexamples

to deformational stability. Vaisman manifolds and Inoue manifolds. A new

notion: LCK manifolds with potential.

4. Hopf manifolds. The “LCK with potential” embedding theorem - an

LCK analogue of Kodaira’s theorem.

5. Cohomology theories for LCK manifolds. Morse-Novikov class, Bott-

Chern class, and the applications to embeddiong.

6. Some open questions: A locally conformally Kähler ddc-lemma and its

applications.

2



LCK manifolds with potential Misha Verbitsky

Kodaira’s theorem

DEFINITION: A Kähler manifold is a complex, Hermitian manifold, with

a Hermitian form ω ∈ Λ1,1(M) which is closed: dω = 0.

REMARK: A complex submanifold of a Kähler manifold is again Kähler.

Indeed, a restriction of a closed form is closed.

THEOREM: Let M be a compact, Kähler manifold, ω its Kähler form, [ω] ∈
H2(M,R) its cohomology class. Assume that [ω] is rational: [ω] ∈ H2(M,Q).

Then M admits a complex embedding into CPn.

QUESTION: Can we obtain a similar result for other classes of (non-

Kähler) manifolds?

QUESTION: More specifically: find a class of geometric structures which

are inherited by complex subvarieties, and any complex manifold with such

a structure admits a complex embedding to a model space.
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Locally conformally Kähler (LCK) manifolds

REMARK: It is always assumed that LCK manifolds have dimC > 1.

DEFINITION: Let M be a complex manifold, M̃ −→M its covering, M̃/Γ =
M , and Γ the monodromy group freely acting on M̃ . Assume that M̃ is
Kähler, and Γ acts on M̃ by homotheties. Then M is called locally confor-
mally Kähler (LCK).

EXAMPLE: A classical Hopf manifold Cn\0/x ∼ qx is obviously LCK, if
|q| > 1.

REMARK: A Hopf manifold is non-Kähler. Indeed, it is diffeomorphic to
S1 × S2n−1.

REMARK: All non-Kähler compact complex surfaces are LCK, except
one of three classes of Inoue surfaces, and those class VII surfaces which have
no spherical shells (by Kato’s conjecture, all class VII surfaces have spherical
shells).

REMARK: A non-Kähler simply connected manifold can never be LCK.
Hence e.g. Calabi-Eckmann manifolds are not LCK. Also, the non-
Kähler twistor spaces of compact 4-manifolds are never LCK (Ornea-
V.-Vuletescu).
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LCK manifolds and Hermitian geometry

CLAIM: If (M, I, ω) is a Hermitian manifold with dω = θ ∧ω, for some closed
1-form θ, then (M, I) is LCK.

Proof: For some covering of M the pullback θ̃ of θ is exact, θ̃ = dϕ, and
there the pullback of ω is conformal to a Kähler form ω̃ = e−ϕω.

REMARK: The converse is also true. Given an LCK manifold M with a
Kähler covering (M̃

π−→ M, ω̃), consider a Hermitian form ω on M such that
π∗ω is conformally equivalent to ω̃. Then ω = ϕω̃, hence dω = dϕ∧ ω̃ = dϕ

ϕ ∧ω.

DEFINITION: A Hermitian manifold (M, I, ω) is called locally conformally
Kähler (LCK) if dω = θ ∧ ω, for some closed 1-form θ.

REMARK: This definition is equivalent to the one given on the previous
slide.

DEFINITION: The form θ is called the Lee form of an LCK-manifold.

CLAIM: If dimCM > 2, and dω = θ ∧ ω, then θ is always closed.

Proof: 0 = d2ω = dθ ∧ ω, but · ∧ ω : Λ2(M)−→ Λ4(M) is always injective
for dimCM > 2.
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Globally conformally Kähler LCK manifolds

DEFINITION: An LCK manifold (M, I, ω, θ) is called globally conformally

Kähler if its Lee form θ is exact.

REMARK: If θ = dϕ, then e−ϕω is Kähler.

PROOF: Indeed, d(e−ϕω) = e−ϕω ∧ θ − e−ϕω ∧ dϕ = 0.

REMARK: By the same argument, if θ = θ′+ dϕ, then e−ϕω has the Lee

form θ′. This gives:

CLAIM: Let (M, I, ω, θ) be an LCK manifold. Then (M, I, eψω) is also LCK,

and its Lee form lies in the same cohomology class. Conversely, for each

1-form θ′ in the cohomology class of θ, there exists an LCK manifold

(M, I, eψω) with θ′ its Lee form.
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LCK structures on Kähler manifolds

THEOREM: (Izu Vaisman) Any LCK structure (M, I, ω, θ) on a compact

Kähler manifold is globally conformally Kähler.

Proof. Step 1: By a conformal change of ω, we may assume that θ is a sum
of a holomorphic and an antiholomorphic form. Then d(Iθ) = 0.

Step 2: Unless θ = 0 (and then ω is Kähler),

d(ωn−1) ∧ I(θ) = (n− 1)ω ∧ θ ∧ I(θ)

is a non-zero positive form. Therefore,
∫
M d(ωn−1) ∧ I(θ) > 0.

Step 3: Since I(θ) is closed, d(ωn−1) ∧ I(θ) = d(ωn−1 ∧ I(θ)) is exact, hence
Stoke’s implies

∫
M d(ωn−1) ∧ I(θ) = 0. Step 2 implies then that θ = 0.

REMARK: We obtain the following corollary. Let (M,ω, θ) be a compact
LCK manifold. Then either θ is exact, and then M is Kähler, or θ is

non-exact, and then M cannot admit any Kähler structure.

REMARK: Further on, we consider only LCK manifolds where θ is non-

exact.
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Vaisman manifolds

REMARK: Vaisman conjectured that all non-Kähler LCK manifolds have b1
odd. A counterexample was found by Oeljeklaus and Toma in 2005.

REMARK: Another conjecture of Vaisman: No non-Kähler compact LCK

manifold can be homotopy equivalent to a compact Kähler manifold.

Still unknown.

For a subclass of LCK manifold, the topology is well understood.

DEFINITION: An LCK manifold (M,ω, θ) is called Vaisman (“generalized

Hopf”) if ∇LCθ = 0, where ∇LC is the Levi-Civita connection.

THEOREM: (Kamishima-Ornea, 2001) If M is compact, Vaisman is equiv-

alent to M admitting a conformal holomorphic flow, acting non-isometrically

on its Kähler covering.

EXAMPLE: A Hopf manifold Cn\0/〈A〉 is Vaisman. It is isometric to

S2n−1 × S1, and the Lee field is d
dt.
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Structure theorem for Vaisman manifolds

DEFINITION: Let X be a projective orbifold, and L an ample line bundle on
X. Assume that the total space of L is smooth outside of the zero divizor.
The algebraic cone C(X,L) of X,L is the space of all non-zero vectors in
L∗.

THEOREM: (Ornea-V.) Any Vaisman manifold is diffeomorphic to a

quotient of C(X,L) by x ∼ qx, where q ∈ C, |q| > 1.

PROPOSITION: A quotient C(X,L)/(x ∼ qx) is always Vaisman.

Proof. Step 1: Let h denote a metric of negative curvature on L∗, and
ϕ(v) := h(v, v) be the corresponding function on C(X,L). Denote by dc the
differential dc := IdI−1. Then ddcϕ is a Kähler form on C(X,L) (a local
calculation).

Step 2: The map v −→ qv is conformal with respect to this metric. There-

fore, M := C(X,L)/(x ∼ qx) is LCK.

Step 3: The natural C∗-action is conformal, hence by Kamishima-Ornea

M is Vaisman.
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Kähler potentials

DEFINITION: Let (M, I, ω) be a Kähler manifold. A Kähler potential is a

function satisfying ddcψ = ω. Locally, a Kähler potential always exists, and it

is unique up to adding real parts of holomorphic functions.

OBSERVATION: Let (M,ω, θ) be a Vaisman manifold, and

(M̃, ω̃)
π−→ M be its Kähler covering. Then π∗θ is exact on M̃ : π∗θ = dν.

Moreover, the function ψ := e−ν is a Kähler potential: ddcψ = ω̃.

OBSERVATION: Let γ ∈ Γ be any element. Since Γ preserves θ, we have

γ∗ν = ν + cγ, where cγ is a constant. Then γ∗ψ = e−cγψ (automorphic

property).

COROLLARY: A small deformation of a Vaisman manifold is LCK.

PROOF: Let M̃ be a Kähler covering of (M, I), M = M̃/Γ, and ψ an au-

tomorphic potential on M̃ . Consider a small deformation I ′ of I. Then

dI ′dI ′−1ψ is also a positive (1,1)-form. It is automorphic, hence Γ acts on

(M̃, I, dI ′dI ′−1ψ) by holomorphic homotheties. .
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LCK manifold: deformational stability

THEOREM: (Kodaira) A small deformation of a Kähler manifold is

again Kähler.

REMARK: Not true for Vaisman or LCK manifolds.

THEOREM: (Belgun, Tricerri) Inoue surfaces of type S+
N,p,q,r,t admit an

LCK structure when t ∈ R and do not admit it when t ∈ C\R.

DEFINITION: Let A ∈ End(Cn) be a matrix with all eigenvalues |αi| < 1,

and H := Cn\0/〈A〉 the quotient by the group generated by A. Then H is

called a linear Hopf manifold.

THEOREM: A linear Hopf manifold is Vaisman if and only if A is

diagonalizable.

REMARK: Therefore, neither LCK manifolds nor Vaisman manifolds

are stable under small deformations.
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LCK manifolds with potential

DEFINITION: Let (M,ω, θ) be a compact LCK manifold, (M̃, ω̃) its Kähler
covering, Γ the deck transform group, M = M̃/Γ. and ψ ∈ C∞M̃ a Kähler
potential, ψ > 0. Assume that for any γ ∈ Γ, γ∗ψ = cγψ, for some constant cγ.
Then ψ is called an automorphic potential of M , and M an LCK manifold
with potential.

EXAMPLE: All Hopf manifolds (including non-Vaisman Hopf) are LCK with
potential. All LCK manifolds with potential are small deformations of
Vaisman (Ornea-V., 2009). Therefore, LCK with potential are diffeo-
morphic to quotients of algebraic cones by the standard Z-action.

PROPOSITION: (Ornea-V., 2010) Let (M,ω, θ) be an LCK manifold with
an automorphic potential. Then it has a Kähler covering with mon-
odromy Z.

THEOREM: A small deformation of an LCK manifold with potential is
again an LCK manifold with potential.

PROOF: Let M̃ be a Kähler covering of (M, I), M = M̃/Γ, and ψ an au-
tomorphic potential on M̃ . Consider a small deformation I ′ of I. Then
dI ′dI ′−1ψ is also a positive (1,1)-form. It is automorphic, hence Γ acts on
(M̃, I, dI ′dI ′−1ψ) by holomorphic homotheties. .

12



LCK manifolds with potential Misha Verbitsky

Stein manifolds

DEFINITION: A complex variety M is called holomorphically convex if

for any infinite discrete subset S ⊂ M , there exists a holomorphic function

f ∈ OM which is unbounded on S.

DEFINITION: A complex variety is called Stein if it is holomorphically con-

vex, and has no compact complex subvarieties.

REMARK: Equivalently, a complex variety is Stein if it admits a closed

holomorphic embedding into Cn.

THEOREM: (K. Oka, 1942) A complex manifold M is Stein if and only

M admits a Kähler metric with a Kähler potential which is positive and

proper (proper = preimages of compact sets are compact).

THEOREM: (Rossi 1965, Andreotti-Siu 1970) Let M be a complex manifold

with a boundary, dimCM > 2, and ϕ a proper Kähler potential on M , taking

values in [c,∞[, and equal to c in the boundary of M . Then there exists a

Stein variety Mc with isolated singularities, containing M , and it is unique.
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Embedding an LCK manifold into a linear Hopf

THEOREM: Let (M,ω, θ) be an LCK manifold with potential, dimCM > 2,
and M̃ is its Kähler covering. Then M̃ can be compactified by adding a
single point to its origin, and the resulting variety is Stein. Moreover,
the monodromy Γ acts on M̃ by holomorphic automorphisms.

PROOF: Follows from Rossi-Andreotti-Siu theorem (we glue in the hole left
by excising the set of points where ψ 6 c).

COROLLARY: An LCK manifold with potential admits a holomorphic
embedding into a Hopf manifold.

PROOF: A holomorphic embedding into a Hopf manifold is the same as an
automorphic embedding into Cn. Using the Stein property, we find a suitable
space V ⊂ OM̃ preserved by Γ. This gives a map M̃/Γ−→ (V \0)/Γ.

This is an LCK analogue of Kodaira’s embedding result!

REMARK: Converse is also true: any complex subvariety of a Hopf man-
ifold admits an LCK potential. Indeed, a subvariety of an LCK manifold
with potential is again an LCK manifold with potential.
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A picture of an algebraic cone

A picture of an algebraic cone, with the fundamental domains of the Z-action

marked. Each of these domains has two components of the boundary:

strictly pseudoconvex and strictly pseudoconcave. The pseudoconcave

component is filled in, using Rossi-Andreotti-Siu.
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Morse-Novikov class of an LCK manifold

DEFINITION: Let (M,ω, θ) be an LCK manifold, and

dθ := d− θ : Λi(M)−→ Λi+1(M)

the “Morse-Novikov” differential on differential forms. Its cohomology Hi
θ(M)

are called the Morse-Novikov cohomology of M .

DEFINITION: Let (M,ω, θ) be an LCK manifold, and L a trivial line bundle,

with flat connection defined as ∇ := ∇0+θ, where ∇0 is the trivial connection.

Then L is called the weight bundle of M .

REMARK: The cohomology of the local system (L,∇) is naturally iden-

tified with Hi
θ(M).

DEFINITION: Clearly, dθω = 0. Its cohomology class [ω] ∈ H2
θ (M) is called

the Morse-Novikov class of M .

REMARK: The Morse-Novikov class is an LCK analogue of a Kähler class.
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Automorphic forms of an LCK manifold

Let (M̃, ω̃) be a Kähler covering of an LCK manifold M = M̃/Γ. Consider the

character of Γ, defined through the scale factor of ω̃: γ∗ω̃ = χ(γ)ω̃, ∀γ ∈ Γ.

DEFINITION: A differential form α on M̃ is called automorphic if γ∗α =

χ(γ)α, where χ : Γ−→ R>0 is the character of Γ defined above.

REMARK: An automorphic form on M̃ is the same as L-valued form

on M.

DEFINITION: Let M be an LCK manifold, Λ1,1
χ,d(M̃) the space of closed,

automorphic (1,1)-forms on its Kähler covering M̃ , and C∞χ (M̃) be the space

of automorphic functions on M̃ . Consider the quotient

H
1,1
BC(M,L) :=

Λ1,1
χ,d(M̃)

ddc(C∞χ (M̃))
.

This group is finite-dimensional. It is called the Bott-Chern cohomology

group of an LCK manifold.
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Bott-Chern class of an LCK manifold

DEFINITION: The Kähler form ω̃ on M̃ is obviously closed and automorphic.

Its cohomology class [ω̃] ∈ H1,1
BC(M,L) is called the Bott-Chern class of M .

REMARK: It is a holomorphic version of a Morse-Novikov class.

A tautological claim: An LCK manifold admits automorphic potential

if and only if its Bott-Chern class vanishes.

A cohomological version of the LCK embedding theorem: Let M be an

LCK manifold. Then M admits a complex embedding to a Hopf manifold

iff its Bott-Chern class vanishes.
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Morse-Novikov and Bott-Chern class

REMARK: The Bott-Chern cohomology group is
H

1,1
BC(M,L) := Λ1,1

χ,d(M̃)/ddc(C∞χ (M̃)), and the Morse-Novikov is

H2
θ (M) := Λ2

χ,d/d(Λ1
χ,d). This gives a natural map H

1,1
BC(M,L)−→H2

θ (M)
mapping the Bott-Chern class to Morse-Novikov class.

PROBLEM: Morse-Novikov class is very easy to compute, because it’s topo-
logical invariant. Bott-Chern class is hard to compute. Can we express Bott-
Chern through Morse-Novikov?

CONJECTURE: (an LCK ddc-lemma) Let M be an LCK-manifold, and η
an automorphic (1,1)-form on M , with η = dρ for an automorphic 1-form ρ.
Then η = ddcν, where ν is an automorphic function.

REMARK: If this is true, we would be able to find many new examples
of complex manifolds which are not LCK. Indeed, the Morse-Novikov
cohomology of (M,L) often vanishes, but then the ddc-lemma would imply
that M is LCK with potential, hence diffeomorphic to Vaisman.

REMARK: Suppose that the LCK ddc-lemma is false. Then M̃ admits a
holomorphic line bundle B, representing a non-torsion, infinitely divisible ele-
ment in Pic(M̃), such that the monodromy action γ satisfies γ∗(B) ∼= B ⊗B.
Bizzarre!

19


