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Complex manifolds

DEFINITION: Let M be a smooth manifold. An almost complex structure
is an operator I : TM −→ TM which satisfies I2 = − IdTM . The eigenvalues
of this operator are ±

√
−1 . The corresponding eigenvalue decomposition

is denoted TM = T0,1M ⊕ T1,0(M).

DEFINITION: An almost complex structure is integrable if ∀X,Y ∈ T1,0M ,
one has [X,Y ] ∈ T1,0M . In this case I is called a complex structure op-
erator. A manifold with an integrable almost complex structure is called a
complex manifold.

THEOREM: (Newlander-Nirenberg)
This definition is equivalent to the standard one.

CLAIM: (the Hodge decomposition determines the complex structure)
Let M be a smooth 2n-dimensional manifold. Then there is a bijective
correspondence between the set of almost complex structures, and
the set of sub-bundles T0,1M ⊂ TM ⊗R C satisfying dimC T

0,1M = n and
T0,1M ∩ TM = 0 (the last condition means that there are no real vectors in
T1,0M , that is, that T0,1M ∩ T1,0M = 0).

Proof: Set I
∣∣∣T1,0M =

√
−1 and I

∣∣∣T0,1M = −
√
−1 .
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Hodge theory

DEFINITION: Let (M, I) be a complex manifold, {Ui} its covering, and and

z1, ..., zn holomorphic coordinate system on each covering patch. The bundle

Λp,q(M, I) of (p, q)-forms on (M, I) is generated locally on each coordinate

patch by monomials dzi1 ∧ dzi2 ∧ ... ∧ dzip ∧ dzip+1
∧ ... ∧ dzip+q

. The Hodge

decomposition is a decomposition of vector bundles:

ΛdC(M) =
⊕

p+q=d

Λp,q(M).

DEFINITION: A manifold is called Kähler if it equipped with a closed real

(1,1)-form ω such that ω(Ix, x) > 0 for any non-zero vector x.

THEOREM: (“Hodge decomposition on cohomology”) Let M be a com-

pact Kähler manifold. Then any cohomology class can be represented

as a sum of closed (p, q)-forms.
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Schouten brackets

DEFINITION: Let M be a complex manifold, and Λ0,p(M) ⊗ T1,0M the

sheaf of T1,0M-valued (0, p)-forms. Consider the commutator bracket [·, ·] on

T1,0M , and let OM denote the sheaf of antiholomorphic functions. Since [·, ·] is

OM-linear, it is naturally extended to Λ0,p(M)⊗C∞MT1,0M = ΩpM⊗OMT
1,0M ,

giving a bracket

[·, ·] : Λ0,p(M)⊗ T1,0M × Λ0,q(M)⊗ T1,0M −→ Λ0,p+q(M)⊗ T1,0M.

This bracket is called Schouten bracket.

REMARK: Since [·, ·] is OM-linear, the Schouten bracket satisfies the Leibnitz

identity:

∂([α, β]) = [∂α, β] + [α, ∂β].

This allows one to extend the Schouten bracket to the ∂-cohomology of

the complex (Λ0,∗(M)⊗T1,0M,∂), which coincide with the cohomology of the

sheaf of holomorphic vector fields: [·, ·] : Hp(TM)×Hq(TM)−→Hp+q(TM).
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Maurer-Cartan equation and deformations

CLAIM: Let (M, I) be an almost complex manifold, and B an abstract vector

bundle over C isomorphic to Λ0,1(M). Consider a differential operator ∂ :

C∞M −→B = Λ0,1(M) satisfying the Leibnitz rule. Its symbol is a linear map

u : Λ1(M,C)−→B. Then B = Λ1(M,C)
ker u = Λ0,1(M). Extend ∂ : C∞M −→B

to the corresponding exterior algebra using the Leibnitz rule:

C∞M ∂−→ B
∂−→ Λ2B

∂−→ Λ3B
∂−→ ...

Then integrability of I is equivalent to ∂
2

= 0.

Proof: This is essentially the Newlander-Nirenberg theorem.

REMARK: Almost complex deformations of I are given by the sections γ ∈
T1,0M ⊗Λ0,1(M), with the integrability relation (∂+ γ)2 = 0 rewritten as the

Maurer-Cartan equation ∂(γ) = −{γ, γ}. Here ∂(γ) is identified with the

anticommutator {∂, γ}, and {γ, γ} is anticommutator of γ with itself, where γ

is considered as a Λ0,1(M)-valued differential operator. This identifies {γ, γ}
with the Schouten bracket.

REMARK: We shall write [γ, γ] instead of {γ, γ}, because this usage is more

common.
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Solving the Maurer-Cartan equation recursively

DEFINITION: The Kuranishi deformation space, can be defined as the

space of solutions of Maurer-Cartan equation ∂(γ) = −[γ, γ] modulo the

diffeomorphism action.

DEFINITION: Write γ as power series, γ =
∑∞
i=0 t

i+1γi. Then the Maurer-

Cartan becomes

∂γ0 = 0, ∂γp = −
∑

i+j=p−1

[γi, γj]. (∗∗)

We say that deformations of complex structures are unobstructed if the

solutions γ1, ..., γn, ... of (**) can be found for γ0 in any given cohomology

class [γ0] ∈ H1(M,TM).

REMARK 1: Notice that the sum
∑
i+j=p−1[γi, γj] is always ∂-closed.

Indeed, the Schouten bracket commutes with ∂, hence

∂
∑

i+j=p−1

[γi, γj] = −
∑

i+j+k=p−1

[γi, [γj, γk]] + [[γi, γj], γk]. (∗ ∗ ∗)

vanishes as a sum of triple supercommutators. Obstructions to deforma-

tions are given by cohomology classes of the sums
∑
i+j=p−1[γi, γj], which

are defined inductively. These classes are called Massey powers of γ0.
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Tian-Todorov lemma

DEFINITION: Assume that M is a complex n-manifold with trivial canon-
ical bundle KM , and Φ a non-degenerate section of KM . We call a pair
(M,Φ) a Calabi-Yau manifold. Substitution of a vector field into Φ gives
an isomorphism TM ∼= Ωn−1(M). Similarly, one obtains an isomorphism

Λ0,qM ⊗ ΛpTM −→ Λ0,qM ⊗ Λn−p,0M = Λn−q,pM. (∗)
Yukawa product • : Λp,qM⊗Λp1,q1M −→ Λp+p1−n,q+q1M is obtained from the
usual product

Λ0,qM ⊗ ΛpTM × Λ0,q1M ⊗ Λp1TM −→ Λ0,q+q1M ⊗ Λp+p1TM

using the isomorphism (*).

TIAN-TODOROV LEMMA: Let (M,Φ) be a Calabi-Yau manifold, and

[·, ·] : Λ0,p(M)⊗ T1,0M × Λ0,q(M)⊗ T1,0M −→ Λ0,p+q(M)⊗ T1,0M.

its Schouten bracket. Using the isomorphism (*), we can interpret Schouten
bracket as a map

[·, ·] : Λn−1,p(M)× Λn−1,q(M)−→ Λn−1,p+q(M).

Then, for any α ∈ Λn−1,p(M), β ∈ Λn−1,p1(M), one has

[α, β] = ∂(α • β)− (∂α) • β − (−1)n−1+pα • (∂β),

where • denotes the Yukawa product.
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ddc-lemma

DEFINITION: Let M be a complex manifold, and I : TM −→ TM its
complex structure operator. The twisted differential of M is IdI−1 :
Λ∗(M)−→ Λ∗+1(M), where I acts on 1-forms as an operator dual to I :
TM −→ TM , and on the rest of differential forms multiplicatively.

REMARK: Consider the Hodge decomposition of the de Rham differential,
d = ∂+∂, where ∂ : Λp,q(M, I)−→ Λp+1,q(M, I) and ∂ : Λp,q(M, I)−→ Λp+1,q(M, I).
Then d = Re ∂ and dc = Im ∂. Also, ddc = 2

√
−1 ∂∂.

THEOREM: (ddc-lemma) Let η be a form on a compact Kähler manifold,
satisfying one of the following conditions.
(1). η is an exact (p, q)-form. (2). η is d-exact, dc-closed.
Then η is ddc-exact, that is, η ∈ im ddc. Equivalently, if η is ∂-exact and
∂-closed, it is ddc-exact.

REMARK: This statement is weaker that the Kähler condition, but it im-
mediately implies almost every cohomological property of Kähler manifolds,
except the Lefschetz sl(2)-action. In particular, ddc-lemma is sufficient to
prove the Bogomolov-Tian-Todorov theorem, claiming that the deforma-
tions of Calabi-Yau manifolds are unobstructed.
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Bogomolov-Tian-Todorov theorem

THEOREM: Let M be a compact complex n-manifold with trivial canon-
ical bundle which satisfies ddc-lemma. Then its deformations are unob-
structed.
Proof. Step 1: Let’s start with a cohomology class [γ0] ∈ H1(TM) =
H1(Ωn−1M). To prove that the deformations are unobstructed, we need to
solve the equation system

∂γ0 = 0, ∂γp = −
∑

i+j=p−1

[γi, γj]. (∗∗)

recursively, starting from a representative γ0 of [γ0]. Identifying Λ0,1(T1,0M)
with Λ0,1(Λn−1,0M) = Λn−1,1(M), we choose a representative γ0 ∈ Λn−1,1(M)
of [γ0] which is ∂ and ∂-closed; this is possible to do using ∂∂-lemma (in
Kähler situation, take a harmonic representative).

Step 2: Using induction, we may assume that (**) is solved up to γn−1, and,
moreover, the solutions satisfy ∂γi = 0. By Tian-Todorov lemma,

α := [γi, γj] = ∂(γi • γj)− (∂γi) • γj − (−1)n−1+pγi • (∂γj) = ∂(γi • γj),
hence it is ∂-exact; as shown in Remark 1 above, it is also ∂-closed. By ddc-
lemma, α is ∂∂-exact. This implies that −

∑
i+j=n−1[γi, γj] = ∂∂β. Taking

γn := ∂β, we obtain a solution of (**) which is also ∂-closed, hence
satisfy the induction assumptions.
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Holomorphically symplectic manifolds

DEFINITION: Let (M, I) be a complex manifold, and Ω ∈ Λ2(M,C) a dif-

ferential form. We say that Ω is non-degenerate if ker Ω ∩ TRM = 0. We

say that it is holomorphically symplectic if it is non-degenerate, dΩ = 0,

and Ω(IX, Y ) =
√
−1 Ω(X,Y ).

REMARK: The equation Ω(IX, Y ) =
√
−1Ω(X,Y ) means that Ω is complex

linear with respect to the complex structure on TRM induced by I.

REMARK: Consider the Hodge decomposition TCM = T1,0M ⊕ T0,1M (de-

composition according to eigenvalues of I). Since Ω(IX, Y ) =
√
−1 Ω(X,Y )

and I(Z) = −
√
−1 Z for any Z ∈ T0,1(M), we have ker(Ω) ⊃ T0,1(M). Since

ker Ω ∩ TRM = 0, real dimension of its kernel is at most dimRM , giving

dimR ker Ω = dimM . Therefore, ker(Ω) = T0,1M.

COROLLARY: Let Ω be a holomorphically symplectic form on a complex

manifold (M, I). Then I is determined by Ω uniquely.
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C-symplectic structures

DEFINITION: (Bogomolov, Deev, V.) Let M be a smooth 4n-dimensional
manifold. A complex-valued form Ω on M is called almost C-symplectic if
Ωn+1 = 0 and Ωn ∧ Ωn is a non-degenerate volume form. It is called C-
symplectic when it is also closed.

THEOREM: Let Ω ∈ Λ2(M,C) be a C-symplectic form, and T
0,1
Ω (M) be

equal to ker Ω, where ker Ω := {v ∈ TM ⊗ C | Ωyv = 0}. Then T
0,1
Ω (M) ⊕

T
0,1
Ω (M) = TM ⊗R C, hence the sub-bundle T

0,1
Ω (M) defines an almost

complex structure IΩ on M. If, in addition, Ω is closed, IΩ is integrable,
and Ω is holomorphically symplectic on (M, IΩ).

Proof: Rank of Ω is 2n because Ωn+1 = 0 and Re Ω is non-degenerate. Then
ker Ω⊕ker Ω = TCM . The relation [T0,1

Ω (M), T0,1
Ω (M)] ⊂ T0,1

Ω (M) follows from
Cartan’s formula

dΩ(X1, X2, X3) =
1

6

∑
σ∈Σ3

(−1)σ̃ LieXσ1
Ω(Xσ2, Xσ3) + (−1)σ̃Ω([Xσ1, Xσ2], Xσ3)

which gives, for all X,Y ∈ T0,1M , and any Z ∈ TM ,

dΩ(X,Y, Z) = Ω([X,Y ], Z),

implying that [X,Y ] ∈ T0,1M .
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Local Torelli theorem

DEFINITION: Let (M, I,Ω) be a holomorphically symplectic manifold, and

CSymp the space of all C-symplectic forms. The quotient CTeich := CSymp
Diff0

is called the holomorphically symplectic Teichmüller space, and the map

CTeich −→H2(M,C) taking (M, I,Ω) to the cohomology class [Ω] ∈ H2(M,C)

the holomorphically symplectic period map.

DEFINITION: Let M be a compact complex manifold. We say that M

satisfies ∂∂-lemma in term Λp,q(M) if any ∂-closed, ∂-exact (p, q)-form

belongs to the image of ∂∂.

THEOREM: (“Local Torelli theorem”)

Let (M,Ω) be a C-symplectic manifold. Assume that H0,1(M) = 0, H2,0(M) =

C. Assume also that M satisfies ∂∂-lemma in Λ1,2(M) and has Hodge decom-

position in H2(M). Let W := H2(M,C)
〈Ω〉 . Then the period map composed with

the natural projection H2(M,C) 7→ W defines a local difeomorphism from

CTeich to a neighbourhood of 0 in W .

Proof: Surjectivity is Kurnosov-V., injectivity: Soldatenkov-V. (“holomorphic

Moser lemma”).
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Holomorphically symplectic Moser’s lemma

DEFINITION: Let (M, I,Ω) be a holomorphically symplectic manifold, and

CSymp the space of all C-symplectic forms. The quotient CTeich := CSymp
Diff0

is called the holomorphically symplectic Teichmüller space, and the map

CTeich −→H2(M,C) taking (M, I,Ω) to the cohomology class [Ω] ∈ H2(M,C)

the holomorphically symplectic period map.

The period map is locally an embedding. This is immediately implied by

the following version of Moser’s lemma.

THEOREM: (Soldatenkov, V.)

Let (M, It,Ωt), t ∈ [0,1] be a family of C-symplectic forms on a compact

manifold. Assume that the cohomology class [Ωt] ∈ H2(M,C) is constant,

and H0,1(M, It) = 0, where H0,1(M, It) = H1(M,O(M,It)) is cohomology of

the sheaf of holomorphic functions. Then there exists a smooth family of

diffeomorphisms Vt ∈ Diff0(M), such that V ∗t Ω0 = Ωt.
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Local Torelli theorem for a K3 surface

REMARK: In real dimension 4, C-symplectic form is a pair ω1, ω2 of sym-
plectic forms which satisfy ω2

1 = ω2
2 and ω1 ∧ ω2 = 0.

THEOREM: Let (M, I,Ω) be a complex holomorphically symplectic surface
with H0,1(M) = 0, that is, a K3 surface. Then for any sufficiently small
cohomology class [η] ∈ H1,1(M), there exists a C-symplectic form Ω + ρ,
where ρ ∈ Λ1,1M + Λ0,2M is a closed form which satisfies ρ1,1 ∧ ρ1,1 =
−Ω ∧ ρ0,2, and ρ1,1 is ∂-cohomologous to [η]. Moreover, the cohomology
class of ρ is uniquely determined by [η].

Proof: Next slide

REMARK: This theorem locally identifies H1,1(M) with the neighbourhood
Ω in the C-symplectic Teichmüller space, proving that it is smooth and b2−2-
dimensional. This proves the local Torelli theorem for K3.

REMARK: The proof of this theorem is done using the same argument
as used to prove the Maurer-Cartan equation, central to Kuranishi theory.
Indeed, the equation (*) we are going to solve below is a version of
Maurer-Cartan, adopted and simplified for the C-symplectic structures.
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Local Torelli theorem for K3 (2)

THEOREM: Let (M, I,Ω) be a complex holomorphically symplectic surface

with H0,1(M) = 0, that is, a K3 surface. Then for any sufficiently small

cohomology class [η] ∈ H1,1(M), there exists a C-symplectic form Ω + ρ,

where ρ ∈ Λ1,1M + Λ0,2M is a closed form which satisfies ρ1,1 ∧ ρ1,1 =

−Ω ∧ ρ0,2, and ρ1,1 is ∂-cohomologous to [η]. Moreover, the cohomology

class of ρ is uniquely determined by [η].

Proof. Step 1: Since (Ω+ρ)2 = ρ1,1∧ρ1,1 = −Ω∧ρ0,2, this form is (almost)

C-symplectic. To prove that it is C-symplectic, we need to find ρ such

that that dρ = 0.

Step 2: From Hodge to de Rham isomorphism, we obtain that the coho-

mology class [u] of Ω + ρ is equal to [Ω + η + u0,2]. Since M is K3, we

have H0,2(M) = C[Ω], which gives [u0,2] = λ[Ω], for some λ ∈ C. since

(Ω + ρ)2 = 0, this gives [Ω∧ u0,2] = [η]. Then λ = − [η2]
[Ω∧Ω]

. We proved that

the cohomology class of Ω + ρ is uniquely determined by η.
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Local Torelli theorem for K3 (3)

Below, we need the following version of ∂∂-lemma: for any (1,2)-form α,
which is ∂-exact and ∂-closed, α = ∂β, where β is ∂-exact.

Step 3: Let ΛΩ be contraction with the (2,0)-bivector associated with Ω.
This operation clearly commutes with ∂. Then ρ1,1 ∧ ρ1,1 = −Ω ∧ ρ0,2 is
equivalent to ΛΩ(ρ1,1 ∧ ρ1,1) = −ρ0,2. To solve the equation dρ = 0, we
solve the equivalent equation, which is a version of Maurer-Cartan

∂ΛΩ(ρ1,1 ∧ ρ1,1) = −∂ρ1,1, ∂ρ1,1 = 0. (∗)

Let γ0 be the harmonic (1,1)-form representing [η]. We solve the equation
(*) inductively by taking

∂γn = ∂ΛΩ

 ∑
i+j=n−1

γi ∧ γj

 . (∗∗)

Such γn is found using ∂∂-lemma, because the RHS of (**) is ∂-exact and
∂-closed, which is clear because ∂ commutes with ΛΩ. Since ∂

∑
i γi =

∂ΛΩ

(∑
i,j γi ∧ γj

)
, the sum ρ1,1 :=

∑
γi is a solution of (*).

Step 4: Since γi, i > 0 are ∂-exact, the ∂-cohomology class of γ is [γ0] = [η].
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