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Complex manifolds

DEFINITION: Let M be a smooth manifold. An almost complex structure
is an operator I : TM — TM which satisfies I2 = —Idp,. The eigenvalues
of this operator are ++/—1. The corresponding eigenvalue decomposition
is denoted TM = T9%1Mm @ T1.O(M).

DEFINITION: An almost complex structure is integrable if VX,Y € T1.0)7,
one has [X,Y] € THOM. In this case I is called a complex structure op-
erator. A manifold with an integrable almost complex structure is called a
complex manifold.

THEOREM: (Newlander-Nirenberg)
T his definition is equivalent to the standard one.

CLAIM: (the Hodge decomposition determines the complex structure)
Let M be a smooth 2n-dimensional manifold. Then there is a bijective
correspondence between the set of almost complex structures, and
the set of sub-bundles T\ ¢ TM ®g C satisfying dim¢7%1M = n and
TOIM NnTM =0 (the last condition means that there are no real vectors in
T1OM, that is, that 791 M N 7190 = 0).

Proof: Set I|y10y, = v—1 and I|poa1y =—v—1. =
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Hodge theory

DEFINITION: Let (M,I) be a complex manifold, {U;} its covering, and and
z1, ..., zn, holomorphic coordinate system on each covering patch. The bundie
NPA(M,T) of (p,q)-forms on (M,I) is generated locally on each coordinate
patch by monomials dz;; A dz;, A ... A dzip A\ dzipJrl ANAY dzip+q. The Hodge
decomposition is a decomposition of vector bundles:

N(M) = @ API(M).
p+q=d

DEFINITION: A manifold is called Kahler if it equipped with a closed real
(1,1)-form w such that w(lz,z) > 0 for any non-zero vector z.

THEOREM: (“Hodge decomposition on cohomology”) Let M be a com-
pact Kahler manifold. Then any cohomology class can be represented
as a sum of closed (p, g)-forms.
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Schouten brackets

DEFINITION: Let M be a complex manifold, and A%P(M) @ T1OM the
sheaf of T1:OM-valued (0, p)-forms. Consider the commutator bracket [-,-] on
7190, and let @, denote the sheaf of antiholomorphic functions. Since [-, -] is
O,s-linear, it is naturally extended to AOP(M)® ooy T1OM = QPM@)@MTLOM,
giving a bracket

[., ] : /\O,p(M) X Tl’OM X /\O,CI(M) 028 Tl’OM SN /\O,p—l—q(M) ® Tl’OM.

This bracket is called Schouten bracket.

REMARK: Since [-,-] is Op-linear, the Schouten bracket satisfies the Leibnitz
identity:

9([e, B]) = [0cv, B] + [, O8]

This allows one to extend the Schouten bracket to the 9-cohomology of
the complex (A%*(M)®T1O9M,d), which coincide with the cohomology of the
sheaf of holomorphic vector fields: [-,-] : HP(TM) x HI(TM) — HPTI(TM).
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Maurer-Cartan equation and deformations

CLAIM: Let (M, I) be an almost complex manifold, and B an abstract vector
bundle over C isomorphic to A%1(M). Consider a differential operator 9 :
C®M — B = AY1(M) satisfying the Leibnitz rule. Its symbol is a linear map

1 _
w: AY(M,C) — B. Then B = A~WM0) — A01(pf). Extend §: C®°M —s B
ker u

to the corresponding exterior algebra using the Leibnitz rule:

c*m -2 B 2 A2 95 A3B 2
T hen integrability of [ is equivalent to 52 = 0.
Proof:. This is essentially the Newlander-Nirenberg theorem. =

REMARK: Almost complex deformations of I are given by the sections ~ €
7100 @ AQL(M), with the integrability relation (84 ~)2 = 0 rewritten as the
Maurer-Cartan equation 9(y) = —{v,v}. Here 9(y) is identified with the
anticommutator {9,~}, and {v,~} is anticommutator of v with itself, where ~
is considered as a A91(M)-valued differential operator. This identifies {v,~}
with the Schouten bracket.

REMARK: We shall write [v,~] instead of {v,~}, because this usage is more

common.
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Solving the Maurer-Cartan equation recursively

DEFINITION: The Kuranishi deformation space, can be defined as the
space of solutions of Maurer-Cartan equation 9(v) = —[v,v] modulo the
diffeomorphism action.

DEFINITION: Write v as power series, v = > 2 tH‘l%-. Then the Maurer-
Cartan becomes

=0, Op=— > [yl G
i+j=p—1
We say that deformations of complex structures are unobstructed if the
solutions ~1,...,vn,... of (**) can be found for g in any given cohomology
class [yo] € HY (M, TM).

REMARK 1: Notice that the sum >, ., 1[v;,~,] is always 9-closed.

Indeed, the Schouten bracket commutes with 9, hence

> bewl=— Y Dbuhpwll+ el wl Goo)

i+j=p—1 i+j+k=p—1
vanishes as a sum of triple supercommutators. Obstructions to deforma-
tions are given by cohomology classes of the sums Zi_|_j:p_1[%,7j], which

are defined inductively. These classes are called Massey powers of ~q.
6
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Tian-Todorov lemma

DEFINITION: Assume that M is a complex n-manifold with trivial canon-
ical bundle Kj,;, and & a non-degenerate section of Kj;. We call a pair
(M,®) a Calabi-Yau manifold. Substitution of a vector field into @ gives
an isomorphism TM = Q™ 1(M). Similarly, one obtains an isomorphism

AOIN @ APTM — AQIM @ AP POM = AP~9PML (%)

Yukawa product e : APIM @ APL:91 )M — APTP1—1,9F41 \f is obtained from the
usual product

AN @ APTM x AOU M @ APLTM —s A9 A @ APTPIT 0
using the isomorphism (*).

TIAN-TODOROV LEMMA: Let (M,®) be a Calabi-Yau manifold, and

[., ] : /\O,p(M) & Tl’OM e /\O,Q(M) R Tl’OM N /\O,p—|—q(M) ® Tl’OM.

its Schouten bracket. Using the isomorphism (*), we can interpret Schouten
bracket as a map

-] 0 AP LP(M) x AP — AT LPTO()).
Then, for any a € A»~LP(M), 8 € A»~LP1(M), one has
[, B] = d(cv @ B) — (D) @ B — (—1)" "1 TPq e (0B),

where e denotes the Yukawa product.
7
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dd®-lemma

DEFINITION: Let M be a complex manifold, and I : TM —TM its
complex structure operator. The twisted differential of M is IdI~!
A*(M) — A*TL1(M), where I acts on 1-forms as an operator dual to I :
TM — TM, and on the rest of differential forms multiplicatively.

REMARK: Consider the Hodge decomposition of the de Rham differential,
d = 049, where 8 : APY(M,I) — APTLa(M 1) and & : API(M,T) — APTLa(M D).
Then d = Red and d¢ =Imd. Also, dd¢ = 2/—1 00.

THEOREM: (dd°-lemma) Let n be a form on a compact Kahler manifold,
satisfying one of the following conditions.

(1). n is an exact (p,q)-form. (2). n is d-exact, d°-closed.

Then n iIs dd“-exact, that is, n € imdd®. Equivalently, if n is 9-exact and
O-closed, it is dd°-exact.

REMARK: This statement is weaker that the Kahler condition, but it im-
mediately implies almost every cohomological property of Kahler manifolds,
except the Lefschetz sl(2)-action. In particular, dd°-lemma is sufficient to
prove the Bogomolov-Tian-Todorov theorem, claiming that the deforma-
tions of Calabi-Yau manifolds are unobstructed.

8
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Bogomolov-Tian-Todorov theorem

THEOREM: Let M be a compact complex n-manifold with trivial canon-
ical bundle which satisfies dd“-lemma. Then its deformations are unob-
structed.

Proof. Step 1: Let's start with a cohomology class [yo] € HY(TM) =
HI(Q"=1M). To prove that the deformations are unobstructed, we need to
solve the equation system

O =0, dvp=— > [yl (=)
i+j=p—1
recursively, starting from a representative vo of [yp]. Identifying A91(T1.00)
with AL (AP=L.Opy = An—1L1(A1), we choose a representative vg € A»~11(\M)
of [vo] which is 0 and 0-closed; this is possible to do using dd-lemma (in
Kahler situation, take a harmonic representative).

Step 2: Using induction, we may assume that (**) is solved up to ~,_1, and,
moreover, the solutions satisfy 0v; = 0. By Tian-Todorov lemma,

a = [y;,7] = (v @) — (8y;) @ v; — (—1)" 1Py 0 (9v,) = A(y; @),
hence it is 0-exact; as shown in Remark 1 above, it is also 9-closed. By dd¢-
lemma, « is d9-exact. This implies that —37,4 .—, 1[v;,v;] = 00B8. Taking
v := 0B, we obtain a solution of (**) which is also d-closed, hence
satisfy the induction assumptions. =

9
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Holomorphically symplectic manifolds

DEFINITION: Let (M,I) be a complex manifold, and Q € A2(M,C) a dif-
ferential form. We say that €2 is non-degenerate if kerQ2 N ITpxM = 0. We
say that it is holomorphically symplectic if it is non-degenerate, df2 = 0O,
and Q(IX,Y) =vV/-1Q(X,Y).

REMARK: The equation Q(IX,Y) = +v/—12Q2(X,Y) means that 2 is complex
linear with respect to the complex structure on Tr M induced by I.

REMARK: Consider the Hodge decomposition TeM = T19M & 701 M (de-
composition according to eigenvalues of I). Since Q(IX,Y) = /-1 Q(X,Y)
and I(Z) = —/—1 Z for any Z € T%1(M), we have ker(Q) > T%1(M). Since
kerQ2 NIpM = 0, real dimension of its kernel is at most dimp M, giving
dimg ker Q = dim M. Therefore, ker(Q) = 79111,

COROLLARY: Let €2 be a holomorphically symplectic form on a complex
manifold (M,I). Then [ is determined by 2 uniquely.

10
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C-symplectic structures

DEFINITION: (Bogomolov, Deev, V.) Let M be a smooth 4n-dimensional
manifold. A complex-valued form €2 on M is called almost C-symplectic if
Qrtl = 0 and Q" A Q" is a non-degenerate volume form. It is called C-
symplectic when it is also closed.

THEOREM: Let Q € A2(M,C) be a C-symplectic form, and Tg’l(M) be
equal to ker2, where kerQ2 :={v e TM C | Q.v = 0}. Then Tg’l(M) D
Tgoz’l(M) = TM ®r C, hence the sub-bundle Tg’l(M) defines an almost

complex structure I on M. If, in addition, €2 is closed, [ iIs integrable,
and 2 is holomorphically symplectic on (M, Ig).

Proof: Rank of € is 2n because Q"1T1 = 0 and Re 2 is non-degenerate. Then
ker Qdker 2 = TeM. The relation [Tg’l(M),Tg’l(M)] C Tg’l(M) follows from
Cartan’s formula

1 5 ;
dAX1, X2, X3) = = 3 (=1)7 Liex,, Q(Xoy Xo3) + (=1)7Q[Xoy, X, Xo3)
oE2 3

which gives, for all X, Y € T%1M, and any Z € TM,
dQ(X,Y, 7)) = Q([X,Y], Z2),

implying that [X,Y] € TO1M. m
11
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Local Torelli theorem

DEFINITION: Let (M,1,92) be a holomorphically symplectic manifold, and
CSymp the space of all C-symplectic forms. The quotient CTeich := %Si#f?g'o
is called the holomorphically symplectic Teichmuller space, and the map
CTeich — H?(M,C) taking (M, I, ) to the cohomology class [Q2] € H2(M, C)

the holomorphically symplectic period map.

DEFINITION: Let M be a compact complex manifold. We say that M
satisfies 90-lemma in term AP4(M) if any O-closed, 0-exact (p,q)-form
belongs to the image of 90.

THEOREM: (“Local Torelli theorem”)
Let (M, Q) be a C-symplectic manifold. Assume that H%1 (M) =0, H2O0(M) =
C. Assume also that M satisfies 89-lemma in AL2(M) and has Hodge decom-

2
position in H2(M). Let W := H %?C). Then the period map composed with

the natural projection H?(M,C) — W defines a local difeomorphism from
CTeich to a neighbourhood of O in W.

Proof: Surjectivity is Kurnosov-V., injectivity: Soldatenkov-V. (“holomorphic
Moser lemma’).
12
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Holomorphically symplectic Moser’s lemma

DEFINITION: Let (M,I,92) be a holomorphically symplectic manifold, and
CSymp the space of all C-symplectic forms. The quotient CTeich := CS%?;D
is called the holomorphically symplectic Teichmuller space, and the map
CTeich — H2(M,C) taking (M, I,) to the cohomology class [Q] € H2(M,C)

the holomorphically symplectic period map.

The period map is locally an embedding. This is immediately implied by
the following version of Moser’'s lemma.

THEOREM: (Soldatenkov, V.)

Let (M, I1+,92:), t € [0,1] be a family of C-symplectic forms on a compact
manifold. Assume that the cohomology class [:] € H2(M,C) is constant,
and HOY(M,I;) = 0, where HOY(M, I;) = H'(M, Oy, 1)) is cohomology of
the sheaf of holomorphic functions. Then there exists a smooth family of
diffeomorphisms V; € Diffo(M ), such that V7 Qg = ;.

13
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Local Torelli theorem for a K3 surface

REMARK: In real dimension 4, C-symplectic form is a pair wi,w> Oof sym-
plectic forms which satisfy w? = w3 and w; Awy = 0.

THEOREM: Let (M,I,Q2) be a complex holomorphically symplectic surface
with HO>1(M) — 0, that is, a K3 surface. Then for any sufficiently small
cohomology class [n] € HL1(M), there exists a C-symplectic form Q + p,
where p € ALV 4+ AO2)07 is a closed form which satisfies plil A plil =
—Q A p9%2, and pbl is 9-cohomologous to [n]. Moreover, the cohomology
class of p is uniquely determined by [7].

Proof: Next slide

REMARK: This theorem locally identifies H1:1(M) with the neighbourhood
€2 in the C-symplectic Teichmuller space, proving that it is smooth and b, —2-
dimensional. This proves the local Torelli theorem for K3.

REMARK: The proof of this theorem is done using the same argument
as used to prove the Maurer-Cartan equation, central to Kuranishi theory.
Indeed, the equation (*) we are going to solve below is a version of

Maurer-Cartan, adopted and simplified for the C-symplectic structures.
14
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Local Torelli theorem for K3 (2)

THEOREM: Let (M,I1,Q2) be a complex holomorphically symplectic surface
with H91(M) = 0, that is, a K3 surface. Then for any sufficiently small
cohomology class [n] € Hb1(M), there exists a C-symplectic form Q + p,
where p € ALV 4+ AQ2)07 is a closed form which satisfies pbl A plil =
—Q A p92, and pbl is 9-conhomologous to [n]. Moreover, the cohomology
class of p is uniquely determined by [7].

Proof. Step 1: Since (Q+p)? = pllapll = —QApP2, this form is (almost)
C-symplectic. To prove that it is C-symplectic, we need to find p such
that that dp = 0.

Step 2: From Hodge to de Rham isomorphism, we obtain that the coho-
mology class [u] of Q + p is equal to [Q + n + u92]. Since M is K3, we
have HY%2(M) = C[Q], which gives [u%2] = \[Q], for some X € C. since
(Q+p)2 =0, this gives [QAu02] = [n]. Then XA = —%. We proved that
the cohomology class of {2 4 p is uniquely determined by 1.

15
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Local Torelli theorem for K3 (3)

Below, we need the following version of d0-lemma: for any (1,2)-form o,
which is 0-exact and d-closed, a = 93, where 3 is 9-exact.

Step 3: Let An be contraction with the (2,0)-bivector associated with .
This operation clearly commutes with 8. Then pll A pll = —Q A p92 s
equivalent to Aq(pbl A pbl) = —p%2. To solve the equation dp = 0, we
solve the equivalent equation, which is a version of Maurer-Cartan

ON (,011/\,011)_— ,011 8,01’1:0. (%)

Let vo be the harmonic (1,1)-form representing [n]. We solve the equation
(*) inductively by taking

Ovn = ONq ( > v /wj) . (¥%)
1+71=n—1

Such v, is found using 89-lemma, because the RHS of (**) is §-exact and

d-closed, which is clear because & commutes with Aq. Since 9Y;v; =

ONGo (Zi,j ’yi/\fyj) the sum pbl := S ~; is a solution of (*).

Step 4: Since ~;, i > 0 are 0-exact, the 9-cohomology class of ~ is [vo] = [7n].

m
16



