Bogomolov-Tian-Todorov for holomorphic symplectic manifolds

Misha Verbitsky

Cable car Algebra seminar,

University of Haifa,

June 20, 2024

Complex manifolds

DEFINITION: Let M be a smooth manifold. An almost complex structure is an operator $I: TM \longrightarrow TM$ which satisfies $I^2 = -\operatorname{Id}_{TM}$. The eigenvalues of this operator are $\pm \sqrt{-1}$. The corresponding eigenvalue decomposition is denoted $TM = T^{0,1}M \oplus T^{1,0}(M)$.

DEFINITION: An almost complex structure is **integrable** if $\forall X, Y \in T^{1,0}M$, one has $[X,Y] \in T^{1,0}M$. In this case *I* is called a **complex structure operator**. A manifold with an integrable almost complex structure is called a **complex manifold**.

THEOREM: (Newlander-Nirenberg) This definition is equivalent to the standard one.

CLAIM: (the Hodge decomposition determines the complex structure) Let M be a smooth 2n-dimensional manifold. Then there is a bijective correspondence between the set of almost complex structures, and the set of sub-bundles $T^{0,1}M \subset TM \otimes_{\mathbb{R}} \mathbb{C}$ satisfying $\dim_{\mathbb{C}} T^{0,1}M = n$ and $T^{0,1}M \cap TM = 0$ (the last condition means that there are no real vectors in $T^{1,0}M$, that is, that $T^{0,1}M \cap T^{1,0}M = 0$).

Proof: Set
$$I|_{T^{1,0}M} = \sqrt{-1}$$
 and $I|_{T^{0,1}M} = -\sqrt{-1}$.

Hodge theory

DEFINITION: Let (M, I) be a complex manifold, $\{U_i\}$ its covering, and and $z_1, ..., z_n$ holomorphic coordinate system on each covering patch. The bundle $\wedge^{p,q}(M, I)$ of (p,q)-forms on (M, I) is generated locally on each coordinate patch by monomials $dz_{i_1} \wedge dz_{i_2} \wedge ... \wedge dz_{i_p} \wedge d\overline{z}_{i_{p+1}} \wedge ... \wedge dz_{i_{p+q}}$. The Hodge decomposition is a decomposition of vector bundles:

 $\Lambda^d_{\mathbb{C}}(M) = \bigoplus_{p+q=d} \Lambda^{p,q}(M).$

DEFINITION: A manifold is called Kähler if it equipped with a closed real (1,1)-form ω such that $\omega(Ix, x) > 0$ for any non-zero vector x.

THEOREM: ("Hodge decomposition on cohomology") Let M be a compact Kähler manifold. Then any cohomology class can be represented as a sum of closed (p,q)-forms.

Schouten brackets

DEFINITION: Let M be a complex manifold, and $\Lambda^{0,p}(M) \otimes T^{1,0}M$ the sheaf of $T^{1,0}M$ -valued (0,p)-forms. Consider the commutator bracket $[\cdot, \cdot]$ on $T^{1,0}M$, and let $\overline{\mathcal{O}}_M$ denote the sheaf of antiholomorphic functions. Since $[\cdot, \cdot]$ is $\overline{\mathcal{O}}_M$ -linear, it is naturally extended to $\Lambda^{0,p}(M) \otimes_{C^{\infty}M} T^{1,0}M = \overline{\Omega^p M} \otimes_{\overline{\mathcal{O}}_M} T^{1,0}M$, giving a bracket

$$[\cdot, \cdot] : \Lambda^{0,p}(M) \otimes T^{1,0}M \times \Lambda^{0,q}(M) \otimes T^{1,0}M \longrightarrow \Lambda^{0,p+q}(M) \otimes T^{1,0}M.$$

This bracket is called **Schouten bracket**.

REMARK: Since $[\cdot, \cdot]$ is $\overline{\mathcal{O}}_M$ -linear, the Schouten bracket satisfies the Leibnitz identity:

$$\overline{\partial}([\alpha,\beta]) = [\overline{\partial}\alpha,\beta] + [\alpha,\overline{\partial}\beta].$$

This allows one to extend the Schouten bracket to the $\overline{\partial}$ -cohomology of the complex $(\Lambda^{0,*}(M)\otimes T^{1,0}M,\overline{\partial})$, which coincide with the cohomology of the sheaf of holomorphic vector fields: $[\cdot,\cdot]$: $H^p(TM) \times H^q(TM) \longrightarrow H^{p+q}(TM)$.

Maurer-Cartan equation and deformations

CLAIM: Let (M, I) be an almost complex manifold, and B an abstract vector bundle over \mathbb{C} isomorphic to $\Lambda^{0,1}(M)$. Consider a differential operator $\overline{\partial}$: $C^{\infty}M \longrightarrow B = \Lambda^{0,1}(M)$ satisfying the Leibnitz rule. Its symbol is a linear map $u : \Lambda^1(M, \mathbb{C}) \longrightarrow B$. Then $B = \frac{\Lambda^1(M, \mathbb{C})}{\ker u} = \Lambda^{0,1}(M)$. Extend $\overline{\partial} : C^{\infty}M \longrightarrow B$ to the corresponding exterior algebra using the Leibnitz rule:

$$C^{\infty}M \xrightarrow{\overline{\partial}} B \xrightarrow{\overline{\partial}} \Lambda^2 B \xrightarrow{\overline{\partial}} \Lambda^3 B \xrightarrow{\overline{\partial}} \dots$$

Then integrability of *I* is equivalent to $\overline{\partial}^2 = 0$. **Proof:** This is essentially the Newlander-Nirenberg theorem.

REMARK: Almost complex deformations of I are given by the sections $\gamma \in T^{1,0}M \otimes \Lambda^{0,1}(M)$, with the integrability relation $(\overline{\partial} + \gamma)^2 = 0$ rewritten as **the Maurer-Cartan equation** $\overline{\partial}(\gamma) = -\{\gamma, \gamma\}$. Here $\overline{\partial}(\gamma)$ is identified with the anticommutator $\{\overline{\partial}, \gamma\}$, and $\{\gamma, \gamma\}$ is anticommutator of γ with itself, where γ is considered as a $\Lambda^{0,1}(M)$ -valued differential operator. This identifies $\{\gamma, \gamma\}$ with the Schouten bracket.

REMARK: We shall write $[\gamma, \gamma]$ instead of $\{\gamma, \gamma\}$, because this usage is more common.

Solving the Maurer-Cartan equation recursively

DEFINITION: The Kuranishi deformation space, can be defined as the space of solutions of Maurer-Cartan equation $\overline{\partial}(\gamma) = -[\gamma, \gamma]$ modulo the diffeomorphism action.

DEFINITION: Write γ as power series, $\gamma = \sum_{i=0}^{\infty} t^{i+1} \gamma_i$. Then the Maurer-Cartan becomes

$$\overline{\partial}\gamma_0 = 0, \quad \overline{\partial}\gamma_p = -\sum_{i+j=p-1} [\gamma_i, \gamma_j]. \quad (**)$$

We say that deformations of complex structures are **unobstructed** if the solutions $\gamma_1, ..., \gamma_n, ...$ of (**) can be found for γ_0 in any given cohomology class $[\gamma_0] \in H^1(M, TM)$.

REMARK 1: Notice that the sum $\sum_{i+j=p-1} [\gamma_i, \gamma_j]$ is always $\overline{\partial}$ -closed. Indeed, the Schouten bracket commutes with $\overline{\partial}$, hence

$$\overline{\partial} \sum_{i+j=p-1} [\gamma_i, \gamma_j] = -\sum_{i+j+k=p-1} [\gamma_i, [\gamma_j, \gamma_k]] + [[\gamma_i, \gamma_j], \gamma_k]. \quad (***)$$

vanishes as a sum of triple supercommutators. Obstructions to deformations are given by cohomology classes of the sums $\sum_{i+j=p-1} [\gamma_i, \gamma_j]$, which are defined inductively. These classes are called Massey powers of γ_0 .

Tian-Todorov lemma

DEFINITION: Assume that M is a complex n-manifold with trivial canonical bundle K_M , and Φ a non-degenerate section of K_M . We call a pair (M, Φ) a Calabi-Yau manifold. Substitution of a vector field into Φ gives an isomorphism $TM \cong \Omega^{n-1}(M)$. Similarly, one obtains an isomorphism

$$\Lambda^{0,q} M \otimes \Lambda^p T M \longrightarrow \Lambda^{0,q} M \otimes \Lambda^{n-p,0} M = \Lambda^{n-q,p} M. \quad (*)$$

Yukawa product • : $\Lambda^{p,q}M \otimes \Lambda^{p_1,q_1}M \longrightarrow \Lambda^{p+p_1-n,q+q_1}M$ is obtained from the usual product

$$\Lambda^{0,q}M \otimes \Lambda^p TM \times \Lambda^{0,q_1}M \otimes \Lambda^{p_1}TM \longrightarrow \Lambda^{0,q+q_1}M \otimes \Lambda^{p+p_1}TM$$

using the isomorphism (*).

TIAN-TODOROV LEMMA: Let (M, Φ) be a Calabi-Yau manifold, and

$$[\cdot, \cdot] : \Lambda^{0,p}(M) \otimes T^{1,0}M \times \Lambda^{0,q}(M) \otimes T^{1,0}M \longrightarrow \Lambda^{0,p+q}(M) \otimes T^{1,0}M.$$

its Schouten bracket. Using the isomorphism (*), we can interpret Schouten bracket as a map

$$[\cdot, \cdot] : \Lambda^{n-1,p}(M) \times \Lambda^{n-1,q}(M) \longrightarrow \Lambda^{n-1,p+q}(M).$$

Then, for any $\alpha \in \Lambda^{n-1,p}(M)$, $\beta \in \Lambda^{n-1,p_1}(M)$, one has

$$[\alpha,\beta] = \partial(\alpha \bullet \beta) - (\partial\alpha) \bullet \beta - (-1)^{n-1+p} \alpha \bullet (\partial\beta),$$

where • denotes the Yukawa product.

dd^c-lemma

DEFINITION: Let M be a complex manifold, and $I : TM \longrightarrow TM$ its complex structure operator. The twisted differential of M is IdI^{-1} : $\Lambda^*(M) \longrightarrow \Lambda^{*+1}(M)$, where I acts on 1-forms as an operator dual to I: $TM \longrightarrow TM$, and on the rest of differential forms multiplicatively.

REMARK: Consider the Hodge decomposition of the de Rham differential, $d = \partial + \overline{\partial}$, where $\partial : \Lambda^{p,q}(M,I) \longrightarrow \Lambda^{p+1,q}(M,I)$ and $\overline{\partial} : \Lambda^{p,q}(M,I) \longrightarrow \Lambda^{p+1,q}(M,I)$. **Then** $d = \operatorname{Re} \partial$ and $d^c = \operatorname{Im} \partial$. Also, $dd^c = 2\sqrt{-1} \partial \overline{\partial}$.

THEOREM: (dd^c -lemma) Let η be a form on a compact Kähler manifold, satisfying one of the following conditions.

(1). η is an exact (p,q)-form. (2). η is d-exact, d^c -closed.

Then η is dd^c -exact, that is, $\eta \in \operatorname{im} dd^c$. Equivalently, if η is ∂ -exact and $\overline{\partial}$ -closed, it is dd^c -exact.

REMARK: This statement is weaker that the Kähler condition, but it immediately implies almost every cohomological property of Kähler manifolds, except the Lefschetz $\mathfrak{sl}(2)$ -action. In particular, dd^c -lemma is sufficient to prove the Bogomolov-Tian-Todorov theorem, claiming that the deformations of Calabi-Yau manifolds are unobstructed.

Bogomolov-Tian-Todorov theorem

THEOREM: Let M be a compact complex n-manifold with trivial canonical bundle which satisfies dd^c -lemma. Then its deformations are unobstructed.

Proof. Step 1: Let's start with a cohomology class $[\gamma_0] \in H^1(TM) = H^1(\Omega^{n-1}M)$. To prove that the deformations are unobstructed, we need to solve the equation system

$$\overline{\partial}\gamma_0 = 0, \quad \overline{\partial}\gamma_p = -\sum_{i+j=p-1} [\gamma_i, \gamma_j]. \quad (**)$$

recursively, starting from a representative γ_0 of $[\gamma_0]$. Identifying $\Lambda^{0,1}(T^{1,0}M)$ with $\Lambda^{0,1}(\Lambda^{n-1,0}M) = \Lambda^{n-1,1}(M)$, we choose a representative $\gamma_0 \in \Lambda^{n-1,1}(M)$ of $[\gamma_0]$ which is ∂ and $\overline{\partial}$ -closed; this is possible to do using $\partial\overline{\partial}$ -lemma (in Kähler situation, take a harmonic representative).

Step 2: Using induction, we may assume that (**) is solved up to γ_{n-1} , and, moreover, the solutions satisfy $\partial \gamma_i = 0$. By Tian-Todorov lemma,

$$\alpha := [\gamma_i, \gamma_j] = \partial(\gamma_i \bullet \gamma_j) - (\partial \gamma_i) \bullet \gamma_j - (-1)^{n-1+p} \gamma_i \bullet (\partial \gamma_j) = \partial(\gamma_i \bullet \gamma_j),$$

hence it is ∂ -exact; as shown in Remark 1 above, it is also $\overline{\partial}$ -closed. By dd^c lemma, α is $\partial\overline{\partial}$ -exact. This implies that $-\sum_{i+j=n-1} [\gamma_i, \gamma_j] = \overline{\partial}\partial\beta$. Taking $\gamma_n := \partial\beta$, we obtain a solution of (**) which is also ∂ -closed, hence satisfy the induction assumptions.

Holomorphically symplectic manifolds

DEFINITION: Let (M, I) be a complex manifold, and $\Omega \in \Lambda^2(M, \mathbb{C})$ a differential form. We say that Ω is **non-degenerate** if ker $\Omega \cap T_{\mathbb{R}}M = 0$. We say that it is **holomorphically symplectic** if it is non-degenerate, $d\Omega = 0$, and $\Omega(IX, Y) = \sqrt{-1} \Omega(X, Y)$.

REMARK: The equation $\Omega(IX, Y) = \sqrt{-1}\Omega(X, Y)$ means that Ω is complex linear with respect to the complex structure on $T_{\mathbb{R}}M$ induced by *I*.

REMARK: Consider the Hodge decomposition $T_{\mathbb{C}}M = T^{1,0}M \oplus T^{0,1}M$ (decomposition according to eigenvalues of *I*). Since $\Omega(IX,Y) = \sqrt{-1} \Omega(X,Y)$ and $I(Z) = -\sqrt{-1} Z$ for any $Z \in T^{0,1}(M)$, we have $\ker(\Omega) \supset T^{0,1}(M)$. Since $\ker \Omega \cap T_{\mathbb{R}}M = 0$, real dimension of its kernel is at most $\dim_{\mathbb{R}}M$, giving $\dim_{\mathbb{R}} \ker \Omega = \dim M$. **Therefore,** $\ker(\Omega) = T^{0,1}M$.

COROLLARY: Let Ω be a holomorphically symplectic form on a complex manifold (M, I). Then I is determined by Ω uniquely.

C-symplectic structures

DEFINITION: (Bogomolov, Deev, V.) Let M be a smooth 4n-dimensional manifold. A complex-valued form Ω on M is called **almost C-symplectic** if $\Omega^{n+1} = 0$ and $\Omega^n \wedge \overline{\Omega}^n$ is a non-degenerate volume form. It is called **C-symplectic** when it is also closed.

THEOREM: Let $\Omega \in \Lambda^2(M, \mathbb{C})$ be a C-symplectic form, and $T_{\Omega}^{0,1}(M)$ be equal to ker Ω , where ker $\Omega := \{v \in TM \otimes \mathbb{C} \mid \Omega \lrcorner v = 0\}$. Then $T_{\Omega}^{0,1}(M) \oplus \overline{T_{\Omega}^{0,1}(M)} = TM \otimes_{\mathbb{R}} \mathbb{C}$, hence **the sub-bundle** $T_{\Omega}^{0,1}(M)$ **defines an almost** complex structure I_{Ω} on M. If, in addition, Ω is closed, I_{Ω} is integrable, and Ω is holomorphically symplectic on (M, I_{Ω}) .

Proof: Rank of Ω is 2n because $\Omega^{n+1} = 0$ and Re Ω is non-degenerate. Then ker $\Omega \oplus \overline{\ker \Omega} = T_{\mathbb{C}}M$. The relation $[T_{\Omega}^{0,1}(M), T_{\Omega}^{0,1}(M)] \subset T_{\Omega}^{0,1}(M)$ follows from Cartan's formula

$$d\Omega(X_1, X_2, X_3) = \frac{1}{6} \sum_{\sigma \in \Sigma_3} (-1)^{\tilde{\sigma}} \operatorname{Lie}_{X_{\sigma_1}} \Omega(X_{\sigma_2}, X_{\sigma_3}) + (-1)^{\tilde{\sigma}} \Omega([X_{\sigma_1}, X_{\sigma_2}], X_{\sigma_3})$$

which gives, for all $X, Y \in T^{0,1}M$, and any $Z \in TM$,

$$d\Omega(X,Y,Z) = \Omega([X,Y],Z),$$

implying that $[X, Y] \in T^{0,1}M$.

Local Torelli theorem

DEFINITION: Let (M, I, Ω) be a holomorphically symplectic manifold, and CSymp the space of all C-symplectic forms. The quotient CTeich := $\frac{CSymp}{Diff_0}$ is called **the holomorphically symplectic Teichmüller space**, and the map CTeich $\longrightarrow H^2(M, \mathbb{C})$ taking (M, I, Ω) to the cohomology class $[\Omega] \in H^2(M, \mathbb{C})$ **the holomorphically symplectic period map**.

DEFINITION: Let M be a compact complex manifold. We say that M**satisfies** $\partial \overline{\partial}$ -lemma in term $\Lambda^{p,q}(M)$ if any ∂ -closed, $\overline{\partial}$ -exact (p,q)-form belongs to the image of $\partial \overline{\partial}$.

THEOREM: ("Local Torelli theorem")

Let (M, Ω) be a C-symplectic manifold. Assume that $H^{0,1}(M) = 0$, $H^{2,0}(M) = \mathbb{C}$. Assume also that M satisfies $\partial \overline{\partial}$ -lemma in $\Lambda^{1,2}(M)$ and has Hodge decomposition in $H^2(M)$. Let $W := \frac{H^2(M,\mathbb{C})}{\langle \overline{\Omega} \rangle}$. Then the period map composed with the natural projection $H^2(M,\mathbb{C}) \mapsto W$ defines a local difeomorphism from CTeich to a neighbourhood of 0 in W.

Proof: Surjectivity is Kurnosov-V., injectivity: Soldatenkov-V. ("holomorphic Moser lemma").

Holomorphically symplectic Moser's lemma

DEFINITION: Let (M, I, Ω) be a holomorphically symplectic manifold, and CSymp the space of all C-symplectic forms. The quotient CTeich := $\frac{CSymp}{Diff_0}$ is called **the holomorphically symplectic Teichmüller space**, and the map CTeich $\longrightarrow H^2(M, \mathbb{C})$ taking (M, I, Ω) to the cohomology class $[\Omega] \in H^2(M, \mathbb{C})$ **the holomorphically symplectic period map**.

The period map is locally an embedding. This is immediately implied by the following version of Moser's lemma.

THEOREM: (Soldatenkov, V.)

Let (M, I_t, Ω_t) , $t \in [0, 1]$ be a family of C-symplectic forms on a compact manifold. Assume that the cohomology class $[\Omega_t] \in H^2(M, \mathbb{C})$ is constant, and $H^{0,1}(M, I_t) = 0$, where $H^{0,1}(M, I_t) = H^1(M, \mathcal{O}_{(M, I_t)})$ is cohomology of the sheaf of holomorphic functions. Then **there exists a smooth family of diffeomorphisms** $V_t \in \text{Diff}_0(M)$, such that $V_t^*\Omega_0 = \Omega_t$.

Local Torelli theorem for a K3 surface

REMARK: In real dimension 4, C-symplectic form is a pair ω_1, ω_2 of symplectic forms which satisfy $\omega_1^2 = \omega_2^2$ and $\omega_1 \wedge \omega_2 = 0$.

THEOREM: Let (M, I, Ω) be a complex holomorphically symplectic surface with $H^{0,1}(M) = 0$, that is, a K3 surface. Then for any sufficiently small cohomology class $[\eta] \in H^{1,1}(M)$, there exists a C-symplectic form $\Omega + \rho$, where $\rho \in \Lambda^{1,1}M + \Lambda^{0,2}M$ is a closed form which satisfies $\rho^{1,1} \wedge \rho^{1,1} =$ $-\Omega \wedge \rho^{0,2}$, and $\rho^{1,1}$ is ∂ -cohomologous to $[\eta]$. Moreover, the cohomology class of ρ is uniquely determined by $[\eta]$.

Proof: Next slide

REMARK: This theorem locally identifies $H^{1,1}(M)$ with the neighbourhood Ω in the C-symplectic Teichmüller space, proving that it is smooth and b_2-2 -dimensional. This proves the local Torelli theorem for K3.

REMARK: The proof of this theorem is done using the same argument as used to prove the Maurer-Cartan equation, central to Kuranishi theory. Indeed, the equation (*) we are going to solve below is a version of Maurer-Cartan, adopted and simplified for the C-symplectic structures.

Local Torelli theorem for K3 (2)

THEOREM: Let (M, I, Ω) be a complex holomorphically symplectic surface with $H^{0,1}(M) = 0$, that is, a K3 surface. Then for any sufficiently small cohomology class $[\eta] \in H^{1,1}(M)$, there exists a C-symplectic form $\Omega + \rho$, where $\rho \in \Lambda^{1,1}M + \Lambda^{0,2}M$ is a closed form which satisfies $\rho^{1,1} \wedge \rho^{1,1} =$ $-\Omega \wedge \rho^{0,2}$, and $\rho^{1,1}$ is ∂ -cohomologous to $[\eta]$. Moreover, the cohomology class of ρ is uniquely determined by $[\eta]$.

Proof. Step 1: Since $(\Omega + \rho)^2 = \rho^{1,1} \wedge \rho^{1,1} = -\Omega \wedge \rho^{0,2}$, this form is (almost) C-symplectic. **To prove that it is C-symplectic, we need to find** ρ **such that that** $d\rho = 0$.

Step 2: From Hodge to de Rham isomorphism, we obtain that the cohomology class [u] of $\Omega + \rho$ is equal to $[\Omega + \eta + u^{0,2}]$. Since M is K3, we have $H^{0,2}(M) = \mathbb{C}[\overline{\Omega}]$, which gives $[u^{0,2}] = \lambda[\overline{\Omega}]$, for some $\lambda \in \mathbb{C}$. since $(\Omega + \rho)^2 = 0$, this gives $[\Omega \wedge u^{0,2}] = [\eta]$. Then $\lambda = -\frac{[\eta^2]}{[\Omega \wedge \overline{\Omega}]}$. We proved that the cohomology class of $\Omega + \rho$ is uniquely determined by η .

Local Torelli theorem for K3 (3)

Below, we need the following version of $\partial \overline{\partial}$ -lemma: for any (1,2)-form α , which is ∂ -exact and $\overline{\partial}$ -closed, $\alpha = \overline{\partial}\beta$, where β is ∂ -exact.

Step 3: Let Λ_{Ω} be contraction with the (2,0)-bivector associated with Ω . This operation clearly commutes with $\overline{\partial}$. Then $\rho^{1,1} \wedge \rho^{1,1} = -\Omega \wedge \rho^{0,2}$ is equivalent to $\Lambda_{\Omega}(\rho^{1,1} \wedge \rho^{1,1}) = -\rho^{0,2}$. To solve the equation $d\rho = 0$, we solve the equivalent equation, which is a version of Maurer-Cartan

$$\partial \Lambda_{\Omega}(\rho^{1,1} \wedge \rho^{1,1}) = -\overline{\partial}\rho^{1,1}, \qquad \partial \rho^{1,1} = 0. \qquad (*)$$

Let γ_0 be the harmonic (1,1)-form representing $[\eta]$. We solve the equation (*) inductively by taking

$$\overline{\partial}\gamma_n = \partial \Lambda_\Omega \left(\sum_{i+j=n-1} \gamma_i \wedge \gamma_j \right). \quad (**)$$

Such γ_n is found using $\partial \overline{\partial}$ -lemma, because the RHS of (**) is ∂ -exact and $\overline{\partial}$ -closed, which is clear because $\overline{\partial}$ commutes with Λ_{Ω} . Since $\overline{\partial} \sum_i \gamma_i = \partial \Lambda_{\Omega} \left(\sum_{i,j} \gamma_i \wedge \gamma_j \right)$, the sum $\rho^{1,1} := \sum \gamma_i$ is a solution of (*).

Step 4: Since γ_i , i > 0 are ∂ -exact, the ∂ -cohomology class of γ is $[\gamma_0] = [\eta]$.