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The Kähler cone and its faces

This is joint work with Ekaterina Amerik.

DEFINITION: Let M be a compact, Kähler manifold, Kah ⊂ H1,1(M,R) is

Kähler cone, and Kah its closure in H1,1(M,R), called the nef cone. A face

of a Kähler cone is an intersection of the boundary of Kah and a hyperplane

V ⊂ H1,1(M,R) which has non-empry interior.

CONJECTURE: (Morrison-Kawamata cone conjecture)

Let M be a Calabi-Yau manifold. Then the group Aut(M) of biholomorphic

automorphisms of M acts on the set of faces of Kah with finite number of

orbits.

THEOREM: Morrison-Kawamata cone conjecture is true when M is

holomorphically symplectic.
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Hyperkähler manifolds

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian

structure g and a triple of complex structures I, J,K, satisfying quaternionic

relations I ◦ J = −J ◦ I = K, such that g is Kähler for I, J,K.

REMARK: A hyperkähler manifold has three symplectic forms

ωI := g(I·, ·), ωJ := g(J ·, ·), ωK := g(K·, ·).

REMARK: This is equivalent to ∇I = ∇J = ∇K = 0: the parallel translation

along the connection preserves I, J,K.

DEFINITION: Let M be a Riemannian manifold, x ∈ M a point. The

subgroup of GL(TxM) generated by parallel translations (along all paths) is

called the holonomy group of M .

REMARK: A hyperkähler manifold can be defined as a manifold which

has holonomy in Sp(n) (the group of all endomorphisms preserving I, J,K).
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Holomorphically symplectic manifolds

DEFINITION: A holomorphically symplectic manifold is a complex manifold

equipped with non-degenerate, holomorphic (2,0)-form.

REMARK: Hyperkähler manifolds are holomorphically symplectic. Indeed,

Ω := ωJ +
√
−1 ωK is a holomorphic symplectic form on (M, I).

THEOREM: (Calabi-Yau) A compact, Kähler, holomorphically symplectic

manifold admits a unique hyperkähler metric in any Kähler class.

DEFINITION: For the rest of this talk, a hyperkähler manifold is a com-

pact, Kähler, holomorphically symplectic manifold.

DEFINITION: A hyperkähler manifold M is called simple if π1(M) = 0,

H2,0(M) = C.

Bogomolov’s decomposition: Any hyperkähler manifold admits a finite cov-

ering which is a product of a torus and several simple hyperkähler manifolds.

Further on, all hyperkähler manifolds are assumed to be simple.
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The Bogomolov-Beauville-Fujiki form

THEOREM: (Fujiki). Let η ∈ H2(M), and dimM = 2n, where M is hy-

perkähler. Then
∫
M η2n = cq(η, η)n, for some primitive integer quadratic form

q on H2(M,Z), and c > 0 a rational number.

Definition: This form is called Bogomolov-Beauville-Fujiki form. It is

defined by the Fujiki’s relation uniquely, up to a sign. The sign is

determined from the following formula (Bogomolov, Beauville)

λq(η, η) =
∫
X
η ∧ η ∧Ωn−1 ∧Ωn−1−

−
n− 1

n

(∫
X
η ∧Ωn−1 ∧Ωn

)(∫
X
η ∧Ωn ∧Ωn−1

)
where Ω is the holomorphic symplectic form, and λ > 0.

Remark: q has signature (3, b2 − 3). It is negative definite on primitive

forms, and positive definite on 〈Ω,Ω, ω〉, where ω is a Kähler form.
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Monodromy group

The following results are consequences of global Torelli, described in E. Markman’s “A survey

of Torelli and monodromy results for holomorphic-symplectic varieties”, arXiv:math/1101.4606.

DEFINITION: Monodromy group Mon(M) of a hyperkähler manifold (M, I)
is a subgroup of O(H2(M,Z), q) generated by monodromy of Gauss-Manin
connections for all families of deformations of (M, I). The Hodge mon-
odromy group Mon(M, I) is a subgroup of Mon(M) preserving the Hodge
decomposition.

REMARK: Define pseudo-isomorphism M −→M ′ as a birational map which
is an isomorphism outside of codimension > 2 subsets of M,M ′.

For any pseudo-isomorphic manifolds M,M ′, one has H2(M) = H2(M ′).

DEFINITION: Let (M, I ′) be a holomorphic symplectic manifold pseudo-
isomorphic to (M, I). A Kähler chamber of (M, I) is an image of the Kähler
cone of (M, I ′) under the action of Mon(M, I).

CLAIM: Mon(M, I) acts on H1,1(M, I) mapping Kähler chambers to Kähler
chambers.

CLAIM: The group of automorphisms Aut(M, I) is a group of all ele-
ments of Mon(M, I) preserving the Kähler cone.
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Ample cone and Morrison-Kawamata cone conjecture

DEFINITION: Let P be the set of all real vectors in H1,1(M, I) satisfying
q(v, v) > 0, where q is the Bogomolov-Beauville-Fujiki form on H2(M). The
positive cone Pos(M, I) as a connected component of P containing a Kähler
form. Then PPos(M, I) is a hyperbolic space, and Aut(M, I) acts on PPos(M, I)
by hyperbolic isometries.

DEFINITION: Let H1,1(M,Q) be the set of all rational (1,1)-classes on
(M, I), and KahQ(M, I) the set of all Kähler classes in H1,1(M,Q)⊗Q R. Then
KahQ(M, I) is called ample cone of M .

REMARK: From global Torelli theorem it follows that Mon(M, I) is a finite in-
dex subgroup in O(H2(M,Z), q). Therefore, Mon(M, I) acts on PPosQ(M, I) :=
P(Pos(M, I)∩H1,1(M,Q)⊗QR) with finite covolume; in other words, the quo-
tient PPosQ(M, I)/Mon(M, I) is a finite volume hyperbolic orbifold.

THEOREM: (cone conjecture for hyperkähler manifolds)
The quotient KahQ(M, I)/Mon(M, I) is a finite hyperbolic polyhedron in
PPosQ(M, I)/Mon(M, I).

REMARK: In other words, the action of Aut(M, I) on KahQ(M, I) has a
finite polyhedral fundamental domain.
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MBM classes

DEFINITION: Negative class on a hyperkähler manifold is η ∈ H2(M,R)
satisfying q(η, η) < 0.

DEFINITION: Let (M, I) be a hyperkähler manifold. A rational homology
class z ∈ H1,1(M, I) is called minimal if for any Q-effective homology classes
z1, z2 ∈ H1,1(M, I) satisfying z1 + z2 = z, the classes z1, z2 are proportional.
A negative rational homology class z ∈ H1,1(M, I) is called monodromy bi-
rationally minimal (MBM) if γ(z) is minimal and Q-effective for one of
birational models (M, I ′) of (M, I), where γ ∈ O(H2(M)) is an element of the
monodromy group of (M, I).

This property is deformationally invariant.

THEOREM: Let z ∈ H2(M,Z) be negative, and I, I ′ complex structures in
the same deformation class, such that η is of type (1,1) with respect to I and
I ′. Then η is MBM in (M, I) ⇔ it is MBM in (M, I ′).

DEFINITION: Let z ∈ H2(M,Z) be a negative class on a hyperkähler mani-
fold (M, I). It is called an MBM class if for any complex structure I ′ in the
same deformation class satisfying z ∈ H1,1(M, I ′), z is an MBM class.
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MBM classes and the Kähler cone

THEOREM: Let (M, I) be a hyperkähler manifold, and S ⊂ H1,1(M, I) the

set of all MBM classes in H1,1(M, I). Consider the corresponding set of

hyperplanes S⊥ := {W = z⊥ | z ∈ S} in H1,1(M, I). Then the Kähler cone

of (M, I) is a connected component of Pos(M, I)\ ∪ S⊥, where Pos(M, I)

is a positive cone of (M, I). Moreover, for any connected component K of

Pos(M, I)\ ∪ S⊥, there exists γ ∈ O(H2(M)) in a monodromy group of M ,

and a hyperkähler manifold (M, I ′) birationally equivalent to (M, I), such that

γ(K) is a Kähler cone of (M, I ′).

REMARK: This implies that MBM classes correspond to faces of the

Kähler cone.
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MBM classes and the Kähler cone: the picture

REMARK: This implies that z⊥ ∩ Pos(M, I) either has dense intersection

with the interior of the Kähler chambers (if z is not MBM), or is a union

of walls of those (if z is MBM); that is, there are no “barycentric partitions”

in the decomposition of the positive cone into the Kähler chambers.

Allowed partition Prohibited partition
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MBM classes and cone conjecture

PROPOSITION: Suppose that Mon(M, I) acts on the set of MBM classes
in H1,1(M, I) with finitely many orbits. Then cone conjecture is true for
(M, I).

Proof: MBM classes are the faces of the Kähler cone, hence this statement
is essentially a tautology.

THEOREM: (Kneser)
Let q be an integer-valued, non-degenerate (not necessarily unimodular) quadratic
form on Λ = Zn, and Sd := {x ∈ Λ | q(x, x) = d}. Then O(Λ, q) acts on Sd
with finitely many orbits.

COROLLARY: Suppose that (M, I) is a hyperkähler manifold, and there
exists a number −C < 0 such that for any minimal curve l on any deforma-
tion of (M, I), the homology class [l] satisfies q([l], [l]) > −C. Then cone
conjecture is true for M.

Proof: Let Λ := H
1,1
I (M,Z). Global Torelli implies that Mon(M, I) has finite

index in O(Λ, q). By Kneser’s theorem, Mon(M, I) acts with finitely many orbits
on the set of negative homology classes satisfying q([l], [l]) > −C. Therefore,
it has finitely many orbits on the set of faces of the Kähler cone, identified
with orthogonal complements to MBM classes.
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Cone conjecture for Hilbert scheme of K3

THEOREM: Bayer, A., Hassett, B., Tschinkel, Y. Mori cones of holomor-

phic symplectic varieties of K3 type, Proposition 2 (independently proven by

Mongardi): for any minimal curve l on a deformation of n-th Hilbert

scheme of K3, the homology class [l] satisfies q([l], [l]) > −n+3
2 .

COROLLARY: Cone conjecture is true for Hilbert schemes of K3 and

their deformations.

REMARK: Markman and Yoshioka used this approach to prove cone con-

jecture for generalized Kummers.

REMARK: Our proof of cone conjecture goes in entirely different direction,

and implies a lower bound on q([l], [l]) a posteriori.
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Cone conjecture and hyperbolic geometry

THEOREM: Let X be a complete Riemannian orbifold of dimension at least

three, constant negative curvature and finite volume, and {Si} an infinite set

of complete, locally geodesic hypersurfaces. Then the union of Si is dense

in X.

COROLLARY: Let M be a simple hyperkähler manifold with b2(M) > 6.

Then the group of automorphisms Aut(M) acts with finitely many orbits

on the set of faces of the Kähler cone Kah(M).

Proof: Consider a hyperbolic orbifold X := PosQ(M, I)/Mon(M, I), let S̃i ⊂
PosQ(M, I) the hyperplanes s⊥i , for all MBM classes si ∈ H1,1(M, I), and

Si their images in X. Since the ample cone is a connected component of

PosQ(M, I)\
⋃
S̃i, the union of Si cannot be dense in X. Therefore, Mon(M, I)

acts on the faces {S̃i} with finitely many orbits.

13



Proof of Morrison-Kawamata cone conjecture M. Verbitsky

Ratner’s orbit closure theorem

DEFINITION: Let G be a Lie group, and Γ ⊂ G a discrete subgroup. We

say that Γ has finite covolume if the Haar measure of G/Γ is finite. In this

case Γ is called a lattice subgroup.

REMARK: Borel and Harish-Chandra proved that an arithmetic subgroup

of a reductive group G is a lattice whenever G has no non-trivial characters

over Q. In particular, all arithmetic subgroups of a semi-simple group are

lattices.

DEFINITION: Let G be a Lie group, and g ∈ G any element. We say that g

is unipotent if g = eh for a nilpotent element h in its Lie algebra. A group G

is generated by unipotents if G is multiplicatively generated by unipotent

one-parameter subgroups.

THEOREM: (Ratner orbit closure theorem)

Let H ⊂ G be a Lie subroup generated by unipotents, and Γ ⊂ G a lattice.

Then the closure of any H-orbit Hx in G/Γ is an orbit of a closed,

connected subgroup S ⊂ G, such that S ∩ xΓx−1 ⊂ S is a lattice in S.
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Ratner’s measure classification theorem

DEFINITION: Let (M,µ) be a space with a measure, and G a group acting
on M preserving µ. This action is ergodic if all G-invariant measurable subsets
M ′ ⊂M satisfy µ(M ′) = 0 or µ(M\M ′) = 0.

REMARK: Ergodic measures are extremal rays in the cone of all G-invariant
measures.

REMARK: By Choquet’s theorem, any G-invariant measure on M is ex-
pressed as an average of a certain set of ergodic measures.

DEFINITION: Let G be a Lie group, Γ a lattice, and G/Γ the quotient
space, considered as a space with Haar measure. Consider an orbit S · x ⊂ G
of a closed subgroup S ⊂ G, put the Haar measure on S · x, and assume that
its image in G/Γ is closed. A measure on G/Γ is called algebraic if it is
proportional to the pushforward of the Haar measure on S · x/Γ to G/Γ.

THEOREM: (Ratner’s measure classification theorem)
Let G be a connected Lie group, Γ a lattice, and G/Γ the quotient space,
considered as a space with Haar measure. Consider a finite measure µ on
G/Γ. Assume that µ is invariant and ergodic with respect to an action of a
subgroup H ⊂ G generated by unipotents. Then µ is algebraic.
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Mozes-Shah and Dani-Margulis

THEOREM: (Mozes-Shah)
A limit of algebraic measures is again an algebraic measure.

Proof: Follows from Ratner’s measure classification theorem.

THEOREM: (a corollary of Mozes-Shah and Dani-Margulis theorem)
Let G be a connected Lie group, Γ a lattice, P(X) be the space of all finite
measures on X = G/Γ, and Q(X) ⊂ P(X) the space of all algebraic measures
associated with subgroups H ⊂ G generated by unipotents (as in Ratner
theorems). Then Q(X) is closed in P.

THEOREM: Let X be a complete Riemannian orbifold of dimension at
least three, constant negative curvature and finite volume, and {Si} a set of
complete, locally geodesic hypersurfaces. Then the union of Si is dense in
X, unless there are only finitely many of Si.

Proof: Denote by µi the algebraic measure supported in Si. Since the space
of probabilistic measures is compact, µi converge to an algebraic measure on
X. However, any orbit of a subgroup strictly containing Si must coincide with
X. Therefore, there is either finitely many of Si or their union is dense.
.
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