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A plan of the minicourse

Lecture 1: Moduli spaces, the Kähler cone and the mapping class group

Lecture 2: Multiplier ideal sheaves

Lecture 3: Hyperkaehler SYZ conjecture
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Hyperkähler manifolds

Definition: A hyperkähler manifold is a compact, Kähler, holomorphically

symplectic manifold.

Definition: A hyperkähler manifold M is called simple if H1(M) = 0,

H2,0(M) = C.

Bogomolov’s decomposition: Any hyperkähler manifold admits a finite cov-

ering, which is a product of a torus and several simple hyperkähler manifolds.

Further on, all hyperkähler manifolds are assumed to be simple.

Calabi-Yau theorem gives a unique Ricci-flat Kähler metric on M , in any

Kähler class, if c1(M) = 1. If M is also holomorphically symplectic, this met-

ric is hyperkähler (Kähler with respect to anCP1 of complex structures). It

follows from Bochner’s vanishing, Berger’s classification of irreducible holon-

omy groups, and de Rham’s decomposition theorem.
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The Teichmuller space and the mapping class group

Definition: Let M be a compact complex manifold, and Diff0(M) a con-

nected component of its diffeomorphism group (the group of isotopies).

Denote by T̃eich the space of complex structures on M , and Teich :=

T̃eich/Diff0(M) the “framed, coarse moduli space” of complex structures.

We call it the Teichmuller space.

Remark: Teich is finite-dimensional (Kodaira), but often non-Hausdorff.

Definition: Let Diff+(M) be the group of oriented diffeomorphisms of M .

We call Λ := Diff+(M)/Diff0(M) the mapping class group. The coarse

moduli space of complex structures on M is a connected component of

Teich /Λ.

Remark: This terminology is standard for curves.
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The Bogomolov-Beauville-Fujiki form

THEOREM: (Fujiki). Let η ∈ H2(M), and dimM = 2n, where M is hy-

perkähler. Then
∫
M η2n = q(η, η)n, for some integer quadratic form q on

H2(M).

Definition: This form is called Bogomolov-Beauville-Fujiki form. It is

defined by this relation uniquely, up to a sign. The sign is determined

from the following formula (Bogomolov, Beauville)

Cn−1
2n−2q(η, η) = (n/2)

∫
X

η ∧ η ∧Ωn−1 ∧Ωn−1−

− (1− n)
(∫

X
η ∧Ωn−1 ∧Ωn

) (∫
X

η ∧Ωn ∧Ωn−1
)

where Ω is the holomorphic symplectic form.

Remark: q has signature (b2 − 3,3). It is negative definite on primitive

forms, and positive definite on 〈Ω,Ω, ω〉 where ω is a Kähler form.
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The period map

Definition: Let (M, I) be a simple hyperkaehler manifold, and Teich a con-
nected component of the set of Kähler points on its Teichmuller space.

Remark: For any J ∈ Teich, (M, J) is also a simple hyperkähler manifold,
hence H2,0(M, J) is one-dimensional.

Definition: Let P : Teich −→ PH2(M, C) map J to a line H2,0(M, J) ∈
PH2(M, C). The map P : Teich −→ PH2(M, C) is called the period map.

Remark: P maps Teich into an open subset of a quadric, defined by

W := {l ∈ PH2(M, C) | q(l, l) = 0, q(l, l) > 0.

THEOREM: Let M be a simple hyperkaehler manifold, and Teich its Teich-
muller space. Then
(i) (Bogomolov) The period map P : Teich −→W is etale.
(ii) (Huybrechts) It is surjective.

Remark: Bogomolov’s theorem implies that Teich is smooth.
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Computation of the mapping class group

Theorem: (Sullivan) Let M be a compact simply connected (or nilpotent)

Kaehler manifold, dimC M > 3. Denote by Γ the group of automorphisms

of an algebra H∗(M, Z) preserving the Pontryagin classes pi(M). Then the

natural map Diff+(M)/Diff0 −→ Γ has finite kernel, and its image has

finite index in Γ.

Theorem: Let M be a simple hyperkaehler manifold, and Γ as above. Then

(i) Γ
∣∣∣H2(M,Q) is an arithmetic subgroup of O(H2(M, Q), q).

(ii) The map Γ−→O(H2(M, Q), q) has finite kernel.

Proof. Step 1: Fujiki formula v2n = q(v, v)n implies that Γ preserves the

Bogomolov-Beauville-Fujiki up to a sign.

Step 2: The sign is fixed, because Γ preserves p1(M), and (as Fujiki has

shown) v2n−2 ∧ p1(M) = q(v, v)n−1c, for some c ∈ R. The constant c is

positive, because the degree of c2(B) is positive for any Yang-Mills bundle

with c1(B) = 0.
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Computation of the mapping class group (cont.)

Step 3: O(H2(M, Q), q) acts on H∗(M, Q) by automorphisms preserving Pon-

tryagin classes (Looijenga-Lunts, V.). Therefore Γ
∣∣∣H2(M,Q) is arithmetic.

Step 4: The kernel K of the map Γ−→ Γ
∣∣∣H2(M,Q) is finite, because it

commutes with the Hodge decomposition and Lefschetz sl(2)-action, hence

preserves the Riemann-Hodge form, which is positive definite.

Remark: The same argument also proves that the group of automorphisms

of H∗(M, Q) preserving p1 is projected to O(H2(M, Q), q) or Pin(H2(M, Q), q)

with finite kernel.

Remark: The center of Spin(H2(M, Q), q) acts on Hi(M) as (−1)i.
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Non-separate points in the Teichmuller space

THEOREM: (D. Huybrechts) If I1, I2 ∈ Teich are non-separate points, then

P (I1) = P (I2), and (M, I1) is birationally equivalent to (M, I2)

Remark: Whenever hyperkaehler manifolds (M, I1) and (M, I2) are bira-

tionally equivalent, both of these varieties contain a rational curve (Bouck-

som). A general hyperkaehler manifold has no curves. Therefore the period

map P is locally bijective for general I ∈ Teich.
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The Mumford-Tate group

Definition: Let (M, I) be a Kähler manifold, and I ∈ End(H∗(M, R)) the

Hodge decomposition operator acting on (p, q)-forms as a multiplication

by (p − q)
√
−1 . Consider the smallest rational Lie subalgebra containing I,

and let GMT ⊂ GL(H∗(M, R) be the corresponding Lie group. It is called the

Mumford-Tate group of (M, I),

Remark: The Mumford-Tate group acts on the ring H∗(M) by auto-

morphisms. Indeed, the Lie algebra of derivations of H∗(M) is rational and

contains I.

CLAIM: The Mumford-Tate group GMT is a connected component of a group

G ⊂ Aut(H∗(M)) stabilizing all rational (p, p)-vectors in the tensor algebra

T⊗(H∗(M)).

Proof: Follows from Chevalley’s theorem which claims that an algebraic

group is determined by its ring of invariants.
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The Mumford-Tate generic complex structures

Definition: Let S be a holomorphic family of complex structures of Kaehler
type on a compact manifold M . For any rational tensor v ∈ T⊗(H∗(M, Q)),
denote by Zv ⊂ S the set of all I ∈ S for which v has type (p, p). Let Z be the
union of all Zv of positive codimension. We say that I ∈ S is Mumford-Tate
generic if I /∈ Z.

Remark: (Lower semicontinuity of Mumford-Tate group) GMT (M, I) is the
same for all Mumford-Tate generic I and, moreover, GMT (I ′) ⊂ GMT (M, I)
for all I ′ ∈ S.

Remark: For a simple hyperkaehler manifold, the Lie group of automorphisms
of H∗(M) preserving p1 is O(H2(M), q), or Spin(H2(M), q) as shown above.
It is known that the set of all I associated with complex structures generates
so(H2(M), q).

Definition: A simple hyperkähler manifold is called Mumford-Tate generic
if the corresponding Mumford-Tate Lie group is maximal, that is, coincides
with O(H2(M), q) or Spin(H2(M), q).
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Geometry of Mumford-Tate generic complex structures

THEOREM: (V.) Let I be a Mumford-Tate generic complex structure on a

simple hyperkaehler manifold, and Z ⊂ (M, I) a complex subvariety. Then Z

is symplectic outside of its singularities. Moreover, a normalization Z̃ of

Z is holomorphically symplectic.

Corollary: The Mumford-Tate generic hyperkähler manifolds have no curves,

and no divisors.

Remark: Actually, Z is trianalytic (complex with respect to a sphere of

complex structures).
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The Kähler cone and the Mumford-Tate group

THEOREM (Demailly, Paun) Let M be a compact Kaehler manifold, and

W the set of real (1,1)-classes η ∈ H1,1(M, R) which satisfy
∫
Z ηdimZ > 0 for

any complex analytic subvariety Z ⊂ M . Then one of connected components

of W is a Kaehler cone of M .

Corollary: The Kähler cone of a compact Kaehler manifold, is invariant

under the centralizer of I in the Mumford-Tate group.

Proof: All integer homology (p, p)-cycles are Mumford-Tate invariant, hence∫
Z ηdimZ =

∫
Z γ(η)dimZ for any γ ∈ GMT .

Corollary: The Kaehler cone of a Mumford-Tate generic hyperkaehler man-

ifold is one of two components of a set {ν ∈ H1,1(M, R) | q(ν, ν) > 0}.

Proof: It is O(H1,1(M)) invariant and invariant under multiplication by

positive numbers. The group O(H2(M, R)) × R>0 acts on H1,1(M) with 5

orbits, which can be listed explicitly.
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Nef classes and pseudoeffective classes

Definition: A class η ∈ H1,1(M) is called pseudoeffective if it can be rep-

resented by a positive current, and nef if it lies in a closure of a Kähler

cone.

The divisorial Zariski decomposition theorem: (S. Boucksom) Let M be

a simple hyperkähler manifold. Then every pseudoeffective class can be

decomposed as a sum

η = ν +
∑
i

aiEi

where ν is nef, ai positive numbers, and Ei exceptional divisors satisfying

q(Ei, Ei) < 0. Conversely, every such sum is pseudoeffective.
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The birational nef cone

Remark: Let M1, M2 be holomorphic symplectic manifolds, bimeromorphi-
cally equivalent. Then H2(M1) is naturally isomorphic to H2(M2), and
this isomorphism is compatible with Bogomolov-Beauville-Fujiki form.

Definition: A modified nef cone (also “birational nef cone” and “movable
nef cone”) is a closure of a union of all nef cones for all bimeromorphic models
of a holomorphically symplectic manifold M .

THEOREM: (D. Huybrechts, S. Boucksom)
The modified nef cone is dual to the pseudoeffective cone under the
Bogomolov-Beauville-Fujiki pairing.

Corollary: Let M be a simple hyperkähler manifold such that all integer
(1,1)-classes satisfy q(ν, ν) > 0. Then its Kähler cone is one of two
components K+ of a set K := {ν ∈ H1,1(M, R) | q(ν, ν) > 0}.

Proof: The pseudoeffective cone of M is contained in K+ by divisorial Zariski
decomposition. Therefore, the modified nef cone KMN contains K+. This
means that KMN = K+.
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