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A plan of the minicourse
Lecture 1: Moduli spaces, the Kahler cone and the mapping class group
Lecture 2: Multiplier ideal sheaves

Lecture 3: Hyperkaehler SYZ conjecture
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Hyperkahler manifolds

Definition: A hyperkahler manifold is a compact, Kahler, holomorphically
symplectic manifold.

Definition: A hyperkdhler manifold M is called simple if H1(M) = 0,
H29(M) = C.

Bogomolov’s decomposition: Any hyperkahler manifold admits a finite cov-
ering, which is a product of a torus and several simple hyperkahler manifolds.

Further on, all hyperkahler manifolds are assumed to be simple.

Calabi-Yau theorem gives a unique Ricci-flat Kahler metric on M, in any
Kahler class, if c;(M) = 1. If M is also holomorphically symplectic, this met-
ric is hyperkahler (Kahler with respect to anCP! of complex structures). It
follows from Bochner’s vanishing, Berger's classification of irreducible holon-
omy groups, and de Rham’s decomposition theorem.
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The Teichmuller space and the mapping class group

Definition: Let M be a compact complex manifold, and Diffg(M) a con-
nected component of its diffeomorphism group (the group of isotopies).
Denote by Teich the space of complex structures on M, and Teich =
Teich/ Diffg(M) the “framed, coarse moduli space” of complex structures.
We call it the Teichmuller space.

Remark: Teich is finite-dimensional (Kodaira), but often non-HausdorffF.

Definition: Let Diff4 (M) be the group of oriented diffeomorphisms of M.
We call A := Diff;.(M)/Diffg(M) the mapping class group. The coarse
moduli space of complex structures on M is a connected component of
Teich /A.

Remark: This terminology is standard for curves.
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T he Bogomolov-Beauville-Fujiki form

THEOREM: (Fujiki). Let n € H2(M), and dimM = 2n, where M is hy-
perkdhler. Then [, n°" = q(n,n)", for some integer quadratic form ¢ on
H?2(M).

Definition: This form is called Bogomolov-Beauville-Fujiki form. It is
defined by this relation uniquely, up to a sign. The sign is determined
from the following formula (Bogomolov, Beauville)

5 1, 51
?2177,—12(](77777) — (n/2) /Xn/\n/\Qn 1 AL

—(1—-n) (/XnAQ”_1A§”> (/XnAQ”/\ﬁ’”’_l)

where €2 is the holomorphic symplectic form.

Remark: ¢ has signature (b, — 3,3). It is negative definite on primitive
forms, and positive definite on (Q,Q, w) where w is a Kahler form.

5



The moduli and mapping class group M. Verbitsky, version 1.1

The period map

Definition: Let (M,I) be a simple hyperkaehler manifold, and Teich a con-
nected component of the set of Kahler points on its Teichmuller space.

Remark: For any J € Teich, (M, J) is also a simple hyperkahler manifold,
hence H29(M,J) is one-dimensional.

Definition: Let P : Teich — PH2(M,C) map J to a line H20(M,J) €
PH2(M,C). The map P: Teich — PH?(M,C) is called the period map.

Remark: P maps Teich into an open subset of a quadric, defined by

W= {l e PH’(M,C) | q¢(,1) =0,q(,1) > 0.

THEOREM: Let M be a simple hyperkaehler manifold, and Teich its Teich-
muller space. Then

(i) (Bogomolov) The period map P : Teich — W is etale.

(ii) (Huybrechts) It is surjective.

Remark: Bogomolov's theorem implies that Teich is smooth.
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Computation of the mapping class group

Theorem: (Sullivan) Let M be a compact simply connected (or nilpotent)
Kaehler manifold, dimg M > 3. Denote by ' the group of automorphisms
of an algebra H*(M,Z) preserving the Pontryagin classes p;(M). Then the
natural map Diff  (M)/Diffp — I' has finite kernel, and its image has
finite index in [.

Theorem: Let M be a simple hyperkaehler manifold, and I as above. Then
(i) F‘HQ(M Q) is an arithmetic subgroup of O(H2(M,Q), q).
(i) The map T — O(H?(M, Q), q) has finite kernel.

Proof. Step 1: Fujiki formula v2" = ¢(v,v)™ implies that " preserves the
Bogomolov-Beauville-Fujiki up to a sign.

Step 2: The sign is fixed, because I preserves pi(M), and (as Fujiki has
shown) v2"=2 A p1(M) = q(v,v)"1l¢, for some ¢ € R. The constant ¢ is
positive, because the degree of ¢»(B) is positive for any Yang-Mills bundle
with Cl(B) = 0.
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Computation of the mapping class group (cont.)

Step 3: O(H?(M,Q),q) acts on H*(M,Q) by automorphisms preserving Pon-
tryagin classes (Looijenga-Lunts, V.). Therefore I_‘HQ(M Q) is arithmetic.

Step 4: The kernel K of the map |‘—>|“H2(M@) Is finite, because it
commutes with the Hodge decomposition and Lefschetz si(2)-action, hence
preserves the Riemann-Hodge form, which is positive definite. =

Remark: The same argument also proves that the group of automorphisms
of H*(M, Q) preserving p1 is projected to O(H?2(M,Q), q) or Pin(H?(M,Q), q)

with finite kernel.

Remark: The center of Spin(H2(M,Q),q) acts on H*(M) as (—1)".
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Non-separate points in the Teichmuller space

THEOREM: (D. Huybrechts) If I, I» € Teich are non-separate points, then
P(I1) = P(I»), and (M, I1) is birationally equivalent to (M, I»)

Remark: Whenever hyperkaehler manifolds (M,I7) and (M, 1I>) are bira-
tionally equivalent, both of these varieties contain a rational curve (Bouck-
som). A general hyperkaehler manifold has no curves. Therefore the period

map P is locally bijective for general I € Teich.
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The Mumford-Tate group

Definition: Let (M,I) be a Kahler manifold, and Z € End(H*(M,R)) the
Hodge decomposition operator acting on (p,qg)-forms as a multiplication
by (p — g¢)v/—1 . Consider the smallest rational Lie subalgebra containing Z,
and let Gy C GL(H*(M,R) be the corresponding Lie group. It is called the
Mumford-Tate group of (M, 1),

Remark: The Mumford-Tate group acts on the ring H*(M) by auto-
morphisms. Indeed, the Lie algebra of derivations of H*(M) is rational and
contains 1.

CLAIM: The Mumford-Tate group G ;7 is a connected component of a group
G C Aut(H*(M)) stabilizing all rational (p,p)-vectors in the tensor algebra
T®(H*(M)).

Proof: Follows from Chevalley's theorem which claims that an algebraic
group is determined by its ring of invariants.
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The Mumford-Tate generic complex structures

Definition: Let S be a holomorphic family of complex structures of Kaehler
type on a compact manifold M. For any rational tensor v € TO(H*(M,Q)),
denote by Z, C S the set of all I € S for which v has type (p,p). Let Z be the
union of all Z, of positive codimension. We say that I € S is Mumford-Tate
generic if I ¢ Z.

Remark: (Lower semicontinuity of Mumford-Tate group) Gy (M, I) is the
same for all Mumford-Tate generic I and, moreover, Gy7(I') C G (M, 1)
for all I’ € S.

Remark: For a simple hyperkaehler manifold, the Lie group of automorphisms
of H*(M) preserving p1 is O(H?(M),q), or Spin(H?(M),q) as shown above.
It is known that the set of all Z associated with complex structures generates
so(H2(M), q).

Definition: A simple hyperkahler manifold is called Mumford-Tate generic
if the corresponding Mumford-Tate Lie group is maximal, that is, coincides
with O(H2(M), q) or Spin(H2(M),q).
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Geometry of Mumford-Tate generic complex structures

THEOREM: (V.) Let I be a Mumford-Tate generic complex structure on a
simple hyperkaehler manifold, and Z C (M,I) a complex subvariety. Then Z
is symplectic outside of its singularities. Moreover, a normalization Z of
Z is holomorphically symplectic.

Corollary: The Mumford-Tate generic hyperkahler manifolds have no curves,
and no divisors.

Remark: Actually, Z is trianalytic (complex with respect to a sphere of
complex structures).
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The Kahler cone and the Mumford-Tate group

THEOREM (Demailly, Paun) Let M be a compact Kaehler manifold, and
W the set of real (1,1)-classes n € HL1(M,R) which satisfy [,n9™MZ > 0 for
any complex analytic subvariety Z C M. Then one of connected components
of W is a Kaehler cone of M.

Corollary: The Kahler cone of a compact Kaehler manifold, is invariant
under the centralizer of 7 in the Mumford-Tate group.

Proof: All integer homology (p,p)-cycles are Mumford-Tate invariant, hence
Jzn9MZ = [;~(m)9MZ for any 5 € Gyr.

Corollary: The Kaehler cone of a Mumford-Tate generic hyperkaehler man-
ifold is one of two components of a set {v ¢ HL1 (M, R) | q¢(v,v) > 0}.

Proof: It is O(H1:1(M)) invariant and invariant under multiplication by
positive numbers. The group O(H2(M,R)) x R>9 acts on HLI(M) with 5
orbits, which can be listed explicitly.
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Nef classes and pseudoeffective classes

Definition: A class n € HL1(M) is called pseudoeffective if it can be rep-
resented by a positive current, and nef if it lies in a closure of a Kahler
cone.

The divisorial Zariski decomposition theorem: (S. Boucksom) Let M be
a simple hyperkahler manifold. Then every pseudoeffective class can be
decomposed as a sum

77=1/—|—Za,,;EZ-
()

where v is nef, a; positive numbers, and E; exceptional divisors satisfying
q(E;, E;) < 0. Conversely, every such sum is pseudoeffective.
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T he birational nef cone

Remark: Let My, M> be holomorphic symplectic manifolds, bimeromorphi-
cally equivalent. Then H?(M;) is naturally isomorphic to H2(M>), and
this isomorphism is compatible with Bogomolov-Beauville-Fujiki form.

Definition: A modified nef cone (also “birational nef cone” and “movable
nef cone”) is a closure of a union of all nef cones for all bimeromorphic models
of a holomorphically symplectic manifold M.

THEOREM: (D. Huybrechts, S. Boucksom)
T he modified nef cone is dual to the pseudoeffective cone under the
Bogomolov-Beauville-Fujiki pairing.

Corollary: Let M be a simple hyperkahler manifold such that all integer
(1,1)-classes satisfy ¢(rv,v) > 0. Then its Kahler cone is one of two
components K, of a set K := {v € HV1(M,R) | q(v,v) > 0}.

Proof: The pseudoeffective cone of M is contained in K_ by divisorial Zariski
decomposition. Therefore, the modified nef cone K,y contains K. This
means that KMN = K—I-' [ |
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