Hyperkahler SYZ conjecture and multiplier ideal sheaves

Misha Verbitsky

HOLOMORPHICALLY SYMPLECTIC VARIETIES AND MODULI SPACES

June 2, 2009, Lille

A plan of the minicourse

- Lecture 1: Moduli spaces, the Kähler cone and the mapping class group
- Lecture 2: Multiplier ideal sheaves
- Lecture 3: Hyperkaehler SYZ conjecture

Hyperkähler manifolds

Definition: A hyperkähler manifold is a compact, Kähler, holomorphically symplectic manifold.

Definition: A hyperkähler manifold M is called simple if $H^1(M) = 0$, $H^{2,0}(M) = \mathbb{C}$.

Bogomolov's decomposition: Any hyperkähler manifold admits a finite covering, which is a product of a torus and several simple hyperkähler manifolds.

Further on, all hyperkähler manifolds are assumed to be simple.

Calabi-Yau theorem gives a unique Ricci-flat Kähler metric on M, in any Kähler class, if $c_1(M) = 1$. If M is also holomorphically symplectic, this metric is **hyperkähler** (Kähler with respect to an $\mathbb{C}P^1$ of complex structures). It follows from Bochner's vanishing, Berger's classification of irreducible holonomy groups, and de Rham's decomposition theorem.

The Teichmuller space and the mapping class group

Definition: Let M be a compact complex manifold, and $\text{Diff}_0(M)$ a connected component of its diffeomorphism group (the group of isotopies). Denote by Teich the space of complex structures on M, and Teich := Teich/Diff_0(M) the "framed, coarse moduli space" of complex structures. We call it the Teichmuller space.

Remark: Teich is **finite-dimensional** (Kodaira), but often **non-Hausdorff**.

Definition: Let $\text{Diff}_+(M)$ be the group of oriented diffeomorphisms of M. We call $\Lambda := \text{Diff}_+(M)/\text{Diff}_0(M)$ the mapping class group. The coarse moduli space of complex structures on M is a connected component of Teich $/\Lambda$.

Remark: This terminology is **standard for curves.**

The Bogomolov-Beauville-Fujiki form

THEOREM: (Fujiki). Let $\eta \in H^2(M)$, and dim M = 2n, where M is hyperkähler. Then $\int_M \eta^{2n} = q(\eta, \eta)^n$, for some integer quadratic form q on $H^2(M)$.

Definition: This form is called **Bogomolov-Beauville-Fujiki form**. **It is defined by this relation uniquely, up to a sign**. The sign is determined from the following formula (Bogomolov, Beauville)

$$C_{2n-2}^{n-1}q(\eta,\eta) = (n/2) \int_X \eta \wedge \eta \wedge \Omega^{n-1} \wedge \overline{\Omega}^{n-1} - (1-n) \left(\int_X \eta \wedge \Omega^{n-1} \wedge \overline{\Omega}^n \right) \left(\int_X \eta \wedge \Omega^n \wedge \overline{\Omega}^{n-1} \right)$$

where Ω is the holomorphic symplectic form.

Remark: *q* has signature $(b_2 - 3, 3)$. It is negative definite on primitive forms, and positive definite on $\langle \Omega, \overline{\Omega}, \omega \rangle$ where ω is a Kähler form.

The period map

Definition: Let (M, I) be a simple hyperkaehler manifold, and Teich a connected component of the set of Kähler points on its Teichmuller space.

Remark: For any $J \in \text{Teich}$, (M, J) is also a simple hyperkähler manifold, hence $H^{2,0}(M, J)$ is one-dimensional.

Definition: Let P: Teich $\longrightarrow \mathbb{P}H^2(M,\mathbb{C})$ map J to a line $H^{2,0}(M,J) \in \mathbb{P}H^2(M,\mathbb{C})$. The map P: Teich $\longrightarrow \mathbb{P}H^2(M,\mathbb{C})$ is called **the period map**.

Remark: *P* maps Teich into an open subset of a quadric, defined by

 $W := \{l \in \mathbb{P}H^2(M, \mathbb{C}) \mid q(l, l) = 0, q(l, \bar{l}) > 0.$

THEOREM: Let M be a simple hyperkaehler manifold, and Teich its Teichmuller space. Then (i) (Bogomolov) **The period map** P: Teich $\longrightarrow W$ is etale. (ii) (Huybrechts) It is surjective.

Remark: Bogomolov's theorem implies that Teich is smooth.

Computation of the mapping class group

Theorem: (Sullivan) Let M be a compact simply connected (or nilpotent) Kaehler manifold, $\dim_{\mathbb{C}} M \ge 3$. Denote by Γ the group of automorphisms of an algebra $H^*(M,\mathbb{Z})$ preserving the Pontryagin classes $p_i(M)$. Then **the natural map** $\text{Diff}_+(M)/\text{Diff}_0 \longrightarrow \Gamma$ **has finite kernel, and its image has finite index in** Γ .

Theorem: Let M be a simple hyperkaehler manifold, and Γ as above. Then (i) $\Gamma|_{H^2(M,\mathbb{Q})}$ is an arithmetic subgroup of $O(H^2(M,\mathbb{Q}),q)$. (ii) The map $\Gamma \longrightarrow O(H^2(M,\mathbb{Q}),q)$ has finite kernel.

Proof. Step 1: Fujiki formula $v^{2n} = q(v, v)^n$ implies that Γ preserves the Bogomolov-Beauville-Fujiki up to a sign.

Step 2: The sign is fixed, because Γ preserves $p_1(M)$, and (as Fujiki has shown) $v^{2n-2} \wedge p_1(M) = q(v,v)^{n-1}c$, for some $c \in \mathbb{R}$. The constant c is positive, **because the degree of** $c_2(B)$ **is positive** for any Yang-Mills bundle with $c_1(B) = 0$.

Computation of the mapping class group (cont.)

Step 3: $O(H^2(M, \mathbb{Q}), q)$ acts on $H^*(M, \mathbb{Q})$ by automorphisms preserving Pontryagin classes (Looijenga-Lunts, V.). Therefore $\Gamma|_{H^2(M,\mathbb{Q})}$ is arithmetic.

Step 4: The kernel *K* of the map $\Gamma \longrightarrow \Gamma |_{H^2(M,\mathbb{Q})}$ is finite, because it commutes with the Hodge decomposition and Lefschetz $\mathfrak{sl}(2)$ -action, hence preserves the Riemann-Hodge form, which is positive definite.

Remark: The same argument also proves that the group of automorphisms of $H^*(M, \mathbb{Q})$ preserving p_1 is projected to $O(H^2(M, \mathbb{Q}), q)$ or $Pin(H^2(M, \mathbb{Q}), q)$ with finite kernel.

Remark: The center of $Spin(H^2(M, \mathbb{Q}), q)$ acts on $H^i(M)$ as $(-1)^i$.

Non-separate points in the Teichmuller space

THEOREM: (D. Huybrechts) If I_1 , $I_2 \in$ Teich are non-separate points, then $P(I_1) = P(I_2)$, and (M, I_1) is birationally equivalent to (M, I_2)

Remark: Whenever hyperkaehler manifolds (M, I_1) and (M, I_2) are birationally equivalent, both of these varieties contain a rational curve (Boucksom). A general hyperkaehler manifold has no curves. Therefore **the period map** *P* **is locally bijective for general** $I \in \text{Teich}$.

The Mumford-Tate group

Definition: Let (M, I) be a Kähler manifold, and $\mathcal{I} \in \text{End}(H^*(M, \mathbb{R}))$ the Hodge decomposition operator acting on (p,q)-forms as a multiplication by $(p-q)\sqrt{-1}$. Consider the smallest rational Lie subalgebra containing \mathcal{I} , and let $G_{MT} \subset GL(H^*(M, \mathbb{R}))$ be the corresponding Lie group. It is called the Mumford-Tate group of (M, I),

Remark: The Mumford-Tate group acts on the ring $H^*(M)$ by automorphisms. Indeed, the Lie algebra of derivations of $H^*(M)$ is rational and contains \mathcal{I} .

CLAIM: The Mumford-Tate group G_{MT} is a connected component of a group $G \subset Aut(H^*(M))$ stabilizing all rational (p, p)-vectors in the tensor algebra $T^{\otimes}(H^*(M))$.

Proof: Follows from Chevalley's theorem which claims that an algebraic group is determined by its ring of invariants.

The Mumford-Tate generic complex structures

Definition: Let S be a holomorphic family of complex structures of Kaehler type on a compact manifold M. For any rational tensor $v \in T^{\otimes}(H^*(M, \mathbb{Q}))$, denote by $Z_v \subset S$ the set of all $I \in S$ for which v has type (p, p). Let Z be the union of all Z_v of positive codimension. We say that $I \in S$ is **Mumford-Tate generic** if $I \notin Z$.

Remark: (Lower semicontinuity of Mumford-Tate group) $G_{MT}(M,I)$ is the same for all Mumford-Tate generic I and, moreover, $G_{MT}(I') \subset G_{MT}(M,I)$ for all $I' \in S$.

Remark: For a simple hyperkaehler manifold, the Lie group of automorphisms of $H^*(M)$ preserving p_1 is $O(H^2(M), q)$, or $Spin(H^2(M), q)$ as shown above. It is known that the set of all \mathcal{I} associated with complex structures generates $\mathfrak{so}(H^2(M), q)$.

Definition: A simple hyperkähler manifold is called **Mumford-Tate generic** if the corresponding Mumford-Tate Lie group is maximal, that is, coincides with $O(H^2(M), q)$ or $Spin(H^2(M), q)$.

Geometry of Mumford-Tate generic complex structures

THEOREM: (V.) Let *I* be a Mumford-Tate generic complex structure on a simple hyperkaehler manifold, and $Z \subset (M, I)$ a complex subvariety. Then *Z* is symplectic outside of its singularities. Moreover, a normalization \tilde{Z} of *Z* is holomorphically symplectic.

Corollary: The Mumford-Tate generic hyperkähler manifolds have no curves, and no divisors.

Remark: Actually, Z is trianalytic (complex with respect to a sphere of complex structures).

The Kähler cone and the Mumford-Tate group

THEOREM (Demailly, Paun) Let M be a compact Kaehler manifold, and W the set of real (1,1)-classes $\eta \in H^{1,1}(M,\mathbb{R})$ which satisfy $\int_Z \eta^{\dim Z} > 0$ for any complex analytic subvariety $Z \subset M$. Then one of connected components of W is a Kaehler cone of M.

Corollary: The Kähler cone of a compact Kaehler manifold, is invariant under the centralizer of \mathcal{I} in the Mumford-Tate group.

Proof: All integer homology (p, p)-cycles are Mumford-Tate invariant, hence $\int_Z \eta^{\dim Z} = \int_Z \gamma(\eta)^{\dim Z}$ for any $\gamma \in G_{MT}$.

Corollary: The Kaehler cone of a Mumford-Tate generic hyperkaehler manifold is one of two components of a set $\{\nu \in H^{1,1}(M,\mathbb{R}) \mid q(\nu,\nu) > 0\}$.

Proof: It is $O(H^{1,1}(M))$ invariant and invariant under multiplication by positive numbers. The group $O(H^2(M,\mathbb{R})) \times \mathbb{R}^{>0}$ acts on $H^{1,1}(M)$ with 5 orbits, which can be listed explicitly.

Nef classes and pseudoeffective classes

Definition: A class $\eta \in H^{1,1}(M)$ is called **pseudoeffective** if it can be represented by a positive current, and **nef** if it lies in a closure of a Kähler cone.

The divisorial Zariski decomposition theorem: (S. Boucksom) Let M be a simple hyperkähler manifold. Then every pseudoeffective class can be decomposed as a sum

$$\eta = \nu + \sum_{i} a_i E_i$$

where ν is nef, a_i positive numbers, and E_i exceptional divisors satisfying $q(E_i, E_i) < 0$. Conversely, every such sum is pseudoeffective.

The birational nef cone

Remark: Let M_1, M_2 be holomorphic symplectic manifolds, bimeromorphically equivalent. Then $H^2(M_1)$ is naturally isomorphic to $H^2(M_2)$, and this isomorphism is compatible with Bogomolov-Beauville-Fujiki form.

Definition: A modified nef cone (also "birational nef cone" and "movable nef cone") is a closure of a union of all nef cones for all bimeromorphic models of a holomorphically symplectic manifold M.

THEOREM: (D. Huybrechts, S. Boucksom) **The modified nef cone is dual to the pseudoeffective cone** under the Bogomolov-Beauville-Fujiki pairing.

Corollary: Let M be a simple hyperkähler manifold such that all integer (1,1)-classes satisfy $q(\nu,\nu) \ge 0$. Then its Kähler cone is one of two components K_+ of a set $K := \{\nu \in H^{1,1}(M,\mathbb{R}) \mid q(\nu,\nu) > 0\}$.

Proof: The pseudoeffective cone of M is contained in K_+ by divisorial Zariski decomposition. Therefore, the modified nef cone K_{MN} contains K_+ . This means that $K_{MN} = K_+$.