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Currents and generalized functions

Definition: Let F be a Hermitian bundle with connection ∇, on a Riemannian

manifold M with Levi-Civita connection, and

‖f‖Ck := sup
x∈M

(
|f |+ |∇f |+ ... + |∇kf |

)
the corresponding Ck-norm defined on smooth sections with compact sup-

port. The Ck-topology is independent from the choice of connection

and metrics.

Definition: A generalized function is a functional on top forms with com-

pact support, which is continuous in one of Ci-topologies.

Definition: A k-current is a functional on (dimM − k)-forms with compact

support, which is continuous in one of Ci-topologies.

Remark: Currents are forms with coefficients in generalized functions.
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Currents on complex manifolds

Definition: The space of currents is equipped with weak topology (a se-

quence of currents converges if it converges on all forms with compact sup-

port). The space of currents with this topology is a Montel space (barrelled,

locally convex, all bounded subsets are precompact). Montel spaces are re-

flexive (the map to its double dual with strong topology is an isomorphism).

Claim: De Rham differential is continuous on currents, and the Poincare

lemma holds. Hence, the cohomology of currents are the same as coho-

mology of smooth forms.

Definition: On an complex manifold, (p, q)-currents are (p, q)-forms with

coefficients in generalized functions

Remark: In the literature, this is sometimes called (n−p, n−q)-currents.

Claim: The Dolbeault lemma holds on (p, q)-currents, and the ∂-cohomology

are the same as for forms.
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Positive forms and currents

Definition: A weakly positive (p, p)-form onis a real (p, p)-form η which
satisfies η(x1, Ix1, x2, Ix2, ...xp, Ixp) > 0 for all x1, ...np ∈ TM . The set of
weakly positive (p, p)-forms is a convex cone.

Definition: A cone of strongly positive (p, p)-forms is a convex cone
generated by η1 ∧ η2 ∧ ... ∧ ηp, for all poisitve (1,1)-forms η1, ..., ηp.

Claim: For (n− 1, n− 1)-forms, strong positivity is the same as weak.

Claim: The cones of strongly and weakly positive forms are dual.

Remark: The 0 form is weakly positive and strongly positive.

Definition: A strongly/weakly positive (p, p)-current is a current taking
non-negative values on weakly/strongly positive compactly supported (n −
p, n− p)-forms.

Remark: A positive (p, p)-current is C0-continuous.
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Positive currents and measures

Definition: A positive generalized function is a generalized function taking
non-negative values on all positive volume forms.

Remark: Positive generalized functions are C0-continuous. A positive gen-
eralized function multiplied by a positive volume form gives a measure on
a manifold, and all measures are obtained this way.

Definition: A mass measure of a positive (p, p)-current η on a Hermitian
n-manifold (M, ω) is a measure η ∧ ωn−p. It is non-negative, and positive,
if η 6= 0.

Theorem: The space of positive currents with bounded measure is
(weakly) compact.

Proof: Follows from precompactness of bounded sets in weak-*-topology.

Remark: Since the space of currents is Montel, all bounded subsets are
precompact.
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Closed positive currents and psh functions

Definition: Let Z ⊂ M be a complex analytic subvariety. The current of
integration [Z] is the current α−→

∫
Z α. It is closed and positive (Lelong).

Remark: (Poincare-Lelong formula)
√
−1
π ddc log |ϕ| = [Zϕ], where Zϕ is a

divisor of a holomorphic function ϕ.

Definition: A locally integrable function f : M −→ [∞,∞[ is called plurisub-
harmonic (psh) if ddcf is a positive current.

Claim: (a local ddc-lemma) Locally, every positive, closed (1,1)-current
is obtained as ddcf, for some psh function f .

Definition: Let f be a real locally integrable function on a complex manifold,
such that ddcf +α is a positive current, for some smooth (1,1)-form α. Then
f is called almost plurisubharmonic.

Definition: Let L be a line bundle and h a smooth Hermitian metric on L.
For any almost plurisubharmonic function f , we call he−f a singular metric
on L. Its curvature is equal to Θh + ddcf .
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Lelong numbers and multiplier ideals

Definition: Let f be an almost plurisubharmonic function, and e−f the cor-
responding singular metric on a trivial line bundle OM . The multiplier ideal
of f is a sheaf of L2-integrable holomorphic sections of OM .

THEOREM: (Nadel) It is a coherent sheaf.

Remark: The multiplier ideal of f is determined uniquely by the correspond-
ing current ddcf .

Definition: A Lelong number νx(η) of a closed, positive (1,1)-current η at
x ∈ M is defined as a supremum of all λ > 0 such that e−2λϕ is integrable in
a neighbourhood of x, for some η = ddcϕ.

Remark: e−2ϕ is integrable in x if and only if the multiplier ideal of ϕ
is trivial in x.

Definition: For a positive number c > 0, the Lelong set Fc of a (1,1)-
current η is a set of all points x ∈ M with ν(η, x) > c. From its definition, it
is immediate that Fc is the support for the coherent sheaf OM/I(c−1η),
hence the Lelong sets are complex analytic (Siu, 1974).
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Regularized maximum

Claim: Let µ : Rn −→ R be a smooth function, monotonous in all argu-
ments and convex, and ϕ1, ..., ϕn a set of plurisubfarmonic functions. Then
µ(ϕ1, ..., ϕn) is also plurisubharmonic.

Definition: (Demailly) Let µ : R2 −→ R be a smooth, convex function,
increasing in both arguments. Suppose that for all |x − y| > ε, one has
µ(x, y) = max(x, y), and also µ(x, y) = µ(y, x), µ(y +α, x+α) = µ(x, y). Then
µ is called a regularized maximum and denoted as maxε(x, y).

Remark: A regularized maximum of smooth plurisubharmonic functions
is smooth and psh.

Definition: A nef current is a weak limit of closed, positive forms.

Remark: Let x ∈ M be a point on a Kähler manifold, and distx the corre-
sponding distance function. It is easy to see that around x, ddc log distx is
plurisubharmonic. Since logdistx = limC −→−∞maxε(logdistx, C), ddc log distx

is a nef current.
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Lelong numbers for (p, p)-currents

Definition: Let α be a positive, closed current, and η a nef current, η = lim ηi,

with ηi smooth, positive and closed. Define the product α ∧ η := limα ∧ ηi.

This limit exists by compactness, is closed and positive.

A caution: The limit may be non-unique.

Definition: (Demailly) Choose η = ddc log distx and ηi its approximation

constructed using the regularized maximum. For a closed, positive (p, p)-

current Θ, define the Lelong number νx(Θ) as a mass of a measure Θ ∧
(ddc log distx)n−p carried at x.

Remark: The Lelong sets are complex analytic (Siu, 1974).

Siu’s decomposition formula: Let Θ be a positive (p, p)-current, and Zi

the p-dimensional components of its Lelong sets, with Lelong numbers ci (at

generic point). Then Θ =
∑

i ci[Zi] + R, where R is closed, positive, and

all Lelong sets or R are less than p-dimensional.
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Algebraic multiplier ideals

Let Z1, ...Zn ⊂ M be a set of irreducible subvarieties, and c1, ..., cn positive real
numbers. Consider a blow-up M1

p−→ M with simple normal crossings, such
that a proper preimage Di of each Zi is a divisor.

Definition: An algebraic multiplier ideal I associated with Zi, ci is
p∗

(
KM1/M ⊗O(

∑
i[ciDi])

)
, where [ciDi] is the integer part of the real divisor

ciDi (rounded down).

Remark: It is independent from the choice of resolution.

Remark: Since p∗(KM1/M) = OM , for ci very small, I = OM

Claim: Let ϕ be an almost psh function on M1 with ddcϕ = α +
∑

[ciDi],
where α is smooth, and π∗ϕ its pushforward. Then I is the multiplier ideal
associated with π∗ϕ.

Proof: For any weight ϕ, π∗I(ϕ) ⊗ KM1
= I(ϕ) ⊗ KM , hence it suffices to

check that I(ϕ) = O(
∑

i[ciDi]). This is a 1-dimensional computation.
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Real b-divisors

Definition: Let M be a complex manifold. A b-divisor on M is a choice

of a divisor DM1
on each blow-up M1 −→M , defined in such a way that

p∗(DM2
) = DM1

, for any sequence of blow-ups M2 −→M1 −→M .

Definition: A b-divisor is called finite if there is a blow-up M1 −→M such

that for all blow-ups M2 −→M1 −→M , DM2
is a proper pre-image of DM1

.

Remark: One can define real b-divisors and their integer parts [D] as usual.

Definition: We call a b-divisor D admissible if [kD] is finite for all k > 0.

Remark: Given a finite real b-divisor D on M1
p−→ M , we define a multi-

plier ideal of D as p∗
(
KM1/M ⊗O([D])

)
. For any admissible b-divisor D, the

multiplier ideal I(kD) is well defined for all k > 0.

11



Positive currents and multiplier ideals M. Verbitsky

Demailly’s regularization and multiplier ideals

Remark: A b-divisor on a blow-up gives a valuation on the field of rational

functions on M , with its center the image of this divisor. A b-divisor is

uniquely determined by its image in M , which is a formal sum of irreducible

subvarieties. The corresponding multiplier ideal is the one defined above.

THEOREM: (Demailly’s regularization of positive (1,1)-currents) Let η be

a positive, closed (1,1)-current, and I(η) the corresponding multiplier ideal.

Then there exists an admissible b-divisor D such that I(kη) = I(kD).

The corresponding centers are the Lelong sets, and their coefficients are the

Lelong numbers.

THEOREM: (Nadel’s vanishing) Let (M, ω) be a Kaehler manifold, η a

closed, integer current, η > εω, and L a holomorphic line bundle with [c1(L) =

[η]. Consider a singular metric on L associated with η, and let I(L) be the

sheaf of L2-integrable sections. Then Hi(I(L)⊗KM) = 0 for all i > 0.
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Nef classes and positive currents

Definition: A cohomology class on a Kaehler manifold is called nef if it

belongs to a closure of a Kähler cone.

Remark: Let α be a positive, closed (1,1)-form (not necessarily positive

definite). Clearly, α + εω is Kähler. Therefore, the cohomology class of α

is nef.

Remark: Converse is not necessarily true: there are nef classes which can-

not be represented by semipositive forms (Demailly, Peternell, Schneider).

Claim: Every nef class can be represented by a positive nef current

(immediately follows from weak compactness).
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Nef classes and positive currents

Claim: Let η be a nef current, and Z a p-dimensional irreducible component

of its Lelong set Fc. Denote by [Z] its integration current. Then [Z] is

dominated by η, that is, ηp − cp[Z] is positive.

Proof. Step 1: Siu’s decomposition formula gives ηp =
∑

i ci[Zi] + R, where

ci are Lelong numbers of ηp. To prove the claim, we need νx(ηp) > νx(η)p.

Step 2: Slicing and using regularization, we reduce the problem to the case

when p = n and η has a single logarithmic pole. Here the inequality is implied

by the analytic definition of Lelong numbers.
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Fujiki’s formula

THEOREM: (V.) Let M be a simple hyperkaehler manifold, dimC M = 2n

and H∗
r(M) the part of cohomology generated by H2(M). Then H∗

r(M) is

isomorphic to the symmetric algebra (up to the middle degree).

Remark: The multiplication in H∗
r(M) is SO(H2(M), q)-invariant. Not many

ways to write multiplication invariantly.

THEOREM: (Fujiki’s formula)

Let η1, ..., η2n ∈ H2(M) be cohomology classes. Then

η1 ∧ η2 ∧ ... = const
∑
σ

q(ησ1ησ2)q(ησ3ησ3)q(ησ2n−1ησ2n)
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Parabolic nef classes on hyperkaehler manifolds

Definition: A real cohomology class [η] ∈ H1,1(M) on a simple hyperkähler

manifold is called parabolic if q([η], [η]) = 0, that is,
∫
M η∧η∧Ωn−1∧Ωn−1 = 0.

Definition: Let M be a simple hyperkaehler manifold, η a nef current repre-

senting a parabolic class [η] ∈ H1,1(M). We say that a subvariety Z ⊂ M is

[η]-coisotropic if η dominates the current of integration [Z].

Remark: We have proved that all Lelong sets of η are [η]-coisotropic.

Definition: Let (M,Ω) be a a holomorphic symplectic manifold, dimC Z = 2n,

and Z ⊂ M a complex subvariety of codimension p 6 n. Then Z is called

coisotropic if the restriction Ωn−p+1|Z vanishes on all smooth points of Z.

Remark: This is equivalent to Ω having rank n− p on TZ.
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[η]-coisotropic subvarieties in hyperkaehler manifolds

THEOREM: Let M be a simple hyperkaehler manifold, dimC M = 2n and [η]
a parabolic nef class. Then all [η]-coisotropic subvarieties are coisotropic.

Proof. Step 1: [η]n+1 = 0 (Fujiki’s formula). A positive, closed current
which is cohomologous to zero vanishes. Therefore, ηn+1 = 0. This implies
that dimZ > n.

Proof. Step 2: Since ηp−c[Z] is positive, ηn+1−c[Z]∧ηn−p+1 is also positive.
Therefore, [Z] ∧ ηn−p+1 = 0.

Proof. Step 3: The form Ωi ∧ Ωi is (weakly) positive. Therefore, ηp ∧
Ωn−p+1 ∧Ωn−p+1 is positive. This form is cohomologous to 0 (Fujiki’s for-
mula). This gives ηp ∧Ωn−p+1 ∧Ωn−p+1 = 0.

Proof. Step 4:

0 = ηp ∧Ωn−p+1 ∧Ωn−p+1 > [Z] ∧Ωn−p+1 ∧Ωn−p+1 = 0
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Lelong numbers of nef classes

Corollary: Let η be a nef class on a generic hyperkähler manifold M . Then

all Lelong numbers of η vanish.

Proof: Indeed, all subvarieties of M are symplectic.
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