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Currents and generalized functions

Definition: Let F be a Hermitian bundle with connection V, on a Riemannian
manifold M with Levi-Civita connection, and

. k
I £l = sup (IF+ VI 4.+ V57)

the corresponding C*-norm defined on smooth sections with compact sup-
port. The Ck—topology IS independent from the choice of connection
and metrics.

Definition: A generalized function is a functional on top forms with com-
pact support, which is continuous in one of C*-topologies.

Definition: A k-current is a functional on (dim M — k)-forms with compact
support, which is continuous in one of C’%topologies.

Remark: Currents are forms with coefficients in generalized functions.
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Currents on complex manifolds

Definition: The space of currents is equipped with weak topology (a se-
quence of currents converges if it converges on all forms with compact sup-
port). The space of currents with this topology is a Montel space (barrelled,
locally convex, all bounded subsets are precompact). Montel spaces are re-
flexive (the map to its double dual with strong topology is an isomorphism).

Claim: De Rham differential is continuous on currents, and the Poincare
lemma holds. Hence, the cohomology of currents are the same as coho-
mology of smooth forms.

Definition: On an complex manifold, (p,q)-currents are (p,q)-forms with
coefficients in generalized functions

Remark: In the literature, this is sometimes called (n—p,n—qg)-currents.

Claim: The Dolbeault lemma holds on (p, g)-currents, and the 6-cohomology

are the same as for forms.
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Positive forms and currents
Definition: A weakly positive (p,p)-form onis a real (p,p)-form n which
satisfies n(x1,lz1,z0, [2o,...xp, [xp) = O for all z1,..mp € TM. The set of

weakly positive (p,p)-forms is a convex cone.

Definition: A cone of strongly positive (p,p)-forms is a convex cone
generated by n1 Amp A ... Anp, for all poisitve (1,1)-forms nq,...,np.

Claim: For (n—1,n — 1)-forms, strong positivity is the same as weak.
Claim: The cones of strongly and weakly positive forms are dual.

Remark: The O form is weakly positive and strongly positive.

Definition: A strongly/weakly positive (p,p)-current is a current taking
non-negative values on weakly/strongly positive compactly supported (n —

p,n — p)-forms.

Remark: A positive (p,p)-current is C%-continuous.
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Positive currents and measures

Definition: A positive generalized function is a generalized function taking
non-negative values on all positive volume forms.

Remark: Positive generalized functions are C9-continuous. A positive gen-
eralized function multiplied by a positive volume form gives a measure on
a manifold, and all measures are obtained this way.

Definition: A mass measure of a positive (p,p)-current n on a Hermitian
n-manifold (M,w) is a measure n Aw" P, It Is non-negative, and positive,

if n %= 0.

Theorem: The space of positive currents with bounded measure is
(weakly) compact.

Proof: Follows from precompactness of bounded sets in weak-*-topology.

Remark: Since the space of currents is Montel, all bounded subsets are
precompact.
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Closed positive currents and psh functions

Definition: Let Z C M be a complex analytic subvariety. The current of
integration [Z] is the current a — [, a. It is closed and positive (Lelong).

Remark: (Poincare-Lelong formula) —V;lddclog|g0| = [Zy], where Z, is a
divisor of a holomorphic function .

Definition: A locally integrable function f: M — [oo, oo[ is called plurisub-
harmonic (psh) if dd°f is a positive current.

Claim: (a local dd°-lemma) Locally, every positive, closed (1,1)-current
Is obtained as dd°f, for some psh function f.

Definition: Let f be a real locally integrable function on a complex manifold,
such that dd°f 4+ « is a positive current, for some smooth (1,1)-form «. Then
f is called almost plurisubharmonic.

Definition: Let L be a line bundle and A a smooth Hermitian metric on L.
For any almost plurisubharmonic function f, we call he=/ a singular metric
on L. Its curvature is equal to ©y 4 dd°f.
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Lelong numbers and multiplier ideals

Definition: Let f be an almost plurisubharmonic function, and e~/ the cor-
responding singular metric on a trivial line bundle O,,;. The multiplier ideal
of f is a sheaf of L2—integrable holomorphic sections of O,.

THEOREM: (Nadel) It is a coherent sheaf.

Remark: The multiplier ideal of f is determined uniquely by the correspond-
ing current dd¢f.

Definition: A Lelong number v;(n) of a closed, positive (1,1)-current n at
x € M is defined as a supremum of all A > 0 such that e~ 2AP s integrable in
a neighbourhood of x, for some n = ddp.

Remark: e 2¢ is integrable in z if and only if the multiplier ideal of ©
Is trivial In z.

Definition: For a positive number ¢ > 0, the Lelong set F. of a (1,1)-
current n is a set of all points x € M with v(n,z) > ¢. From its definition, it
is immediate that F. is the support for the coherent sheaf O,;/Z(c 1n),
hence the Lelong sets are complex analytic (Siu, 1974).
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Regularized maximum

Claim: Let x : R"®™ — R be a smooth function, monotonous in all argu-
ments and convex, and ¢4, ..., on @ set of plurisubfarmonic functions. Then
uw(p1,...,0n) is also plurisubharmonic.

Definition: (Demailly) Let ¢ : R2— R be a smooth, convex function,
increasing in both arguments. Suppose that for all |x — y| > ¢, one has

p(x,y) = max(z,y), and also u(z,y) = u(y,z), u(y+ o,z +a) = p(z,y). Then
1 is called a regularized maximum and denoted as max:(x,vy).

Remark: A regularized maximum of smooth plurisubharmonic functions
IS smooth and psh.

Definition: A nef current is a weak limit of closed, positive forms.

Remark: Let x € M be a point on a Kahler manifold, and dist; the corre-
sponding distance function. It is easy to see that around =z, dd€logdist, is
plurisubharmonic. Sincelogdist,; = limgs_, _,, maxs(logdisty, C'), dd€log dist,
IS a nef current.
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Lelong numbers for (p,p)-currents

Definition: Let o be a positive, closed current, and n a nef current, n = limn;,
with n;, smooth, positive and closed. Define the product a An = Ilima A n;.
This limit exists by compactness, is closed and positive.

A caution: The limit may be non-unique.

Definition: (Demailly) Choose n = ddflogdist; and n; its approximation
constructed using the regularized maximum. For a closed, positive (p,p)-
current ©, define the Lelong number v,(©) as a mass of a measure © A
(dd€log dist;)™ P carried at =x.

Remark: The Lelong sets are complex analytic (Siu, 1974).

Siu’s decomposition formula: Let © be a positive (p,p)-current, and Z;
the p-dimensional components of its Lelong sets, with Lelong numbers ¢; (at
generic point). Then © =Y ,¢;[Z;] + R, where R is closed, positive, and
all Lelong sets or R are less than p-dimensional.
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Algebraic multiplier ideals

Let Z41,...Z,, C M be a set of irreducible subvarieties, and c1, ..., cn, positive real
numbers. Consider a blow-up M; P, M with simple normal crossings, such
that a proper preimage D; of each Z; is a divisor.

Definition: An algebraic multiplier ideal Z associated with Z;, ¢c; is
D (KMl/M(g)O(Zz’[CiDi]))v where [¢;D;] is the integer part of the real divisor
c;D; (rounded down).

Remark: It is independent from the choice of resolution.

Remark: Since p*(KMl/M) = Oy, for ¢; very small, T = Oy,

Claim: Let ¢ be an almost psh function on M; with dd¢p = a 4+ > [¢;D;],
where o is smooth, and m«p its pushforward. Then 7 is the multiplier ideal

associated with m.p.

Proof: For any weight ¢, mZ(¢) ® K), = Z(v) ® Ky, hence it suffices to
check that Z(¢) = O ;[¢; D;]). This is a 1-dimensional computation.m
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Real b-divisors

Definition: Let M be a complex manifold. A b-divisor on M is a choice
of a divisor DM1 on each blow-up M1 — M, defined in such a way that
p*(DMQ) = Dyy,, for any sequence of blow-ups My — M1 — M.

Definition: A b-divisor is called finite if there is a blow-up M; — M such
that for all blow-ups My — M1 — M, DM2 IS a proper pre-image of DMl.

Remark: One can define real b-divisors and their integer parts [D] as usual.

Definition: We call a b-divisor D admissible if [kD] is finite for all k > 0.

Remark: Given a finite real b-divisor D on M; L, M, we define a multi-
plier ideal of D as px (KMl/M® O([D])). For any admissible b-divisor D, the

multiplier ideal Z(kD) is well defined for all k > 0.
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Demailly’s regularization and multiplier ideals

Remark: A b-divisor on a blow-up gives a valuation on the field of rational
functions on M, with its center the image of this divisor. A b-divisor is
uniquely determined by its image in M, which is a formal sum of irreducible
subvarieties. The corresponding multiplier ideal is the one defined above.

THEOREM: (Demailly’s regularization of positive (1,1)-currents) Let n be
a positive, closed (1,1)-current, and Z(n) the corresponding multiplier ideal.
Then there exists an admissible b-divisor D such that Z(kn) = Z(kD).
The corresponding centers are the Lelong sets, and their coefficients are the
Lelong numbers.

THEOREM: (Nadel's vanishing) Let (M,w) be a Kaehler manifold, n a
closed, integer current, n > ew, and L a holomorphic line bundle with [¢1(L) =
[n]. Consider a singular metric on L associated with n, and let Z(L) be the
sheaf of L2-integrable sections. Then H*(Z(L) ® K;;) = 0 for all i > 0.
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Nef classes and positive currents

Definition: A cohomology class on a Kaehler manifold is called nef if it
belongs to a closure of a Kahler cone.

Remark: Let o be a positive, closed (1,1)-form (not necessarily positive
definite). Clearly, a + sw is Kahler. Therefore, the cohomology class of «

IS nef.

Remark: Converse is not necessarily true: there are nef classes which can-
not be represented by semipositive forms (Demailly, Peternell, Schneider).

Claim: Every nef class can be represented by a positive nef current
(immediately follows from weak compactness).
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Nef classes and positive currents

Claim: Let n be a nef current, and Z a p-dimensional irreducible component
of its Lelong set F.. Denote by [Z] its integration current. Then [Z] is
dominated by n, that is, n? — ¢P[Z] is positive.

Proof. Step 1: Siu's decomposition formula gives n? = >, ¢;[Z;] + R, where
c; are Lelong numbers of nP. To prove the claim, we need vy (nP) > vz:(n)P.

Step 2: Slicing and using regularization, we reduce the problem to the case

when p = n and n has a single logarithmic pole. Here the inequality is implied
by the analytic definition of Lelong numbers.m
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Fujiki’s formula

THEOREM: (V.) Let M be a simple hyperkaehler manifold, dimg M = 2n
and H*(M) the part of cohomology generated by H2(M). Then H:(M) is
isomorphic to the symmetric algebra (up to the middle degree).

Remark: The multiplication in H¥(M) is SO(H?(M), q)-invariant. Not many
ways to write multiplication invariantly.

THEOREM: (Fujiki's formula)
Let ny,....,n0, € H2(M) be cohomology classes. Then

N1 AN A ... = const Z CI(77017702)Q(77037703)Q(7702n_17702n)
o
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Parabolic nef classes on hyperkaehler manifolds

Definition: A real cohomology class [n] € H1:1(M) on a simple hyperkahler
manifold is called parabolic if ¢([n], [7]) = 0, that is, [, nAnAQP~IAQ" !t = 0.

Definition: Let M be a simple hyperkaehler manifold, n a nef current repre-
senting a parabolic class [n] € HY1(M). We say that a subvariety Z ¢ M s
[n]-coisotropic if n» dominates the current of integration [Z].

Remark: We have proved that all Lelong sets of n are [n]-coisotropic.
Definition: Let (M, <2) be a a holomorphic symplectic manifold, dimg Z = 2n,
and Z C M a complex subvariety of codimension p < n. Then Z is called

coisotropic if the restriction Q*~P*1|, vanishes on all smooth points of Z.

Remark: This is equivalent to €2 having rank n—p on T Z.
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[n]-coisotropic subvarieties in hyperkaehler manifolds

THEOREM: Let M be a simple hyperkaehler manifold, dimg M = 2n and [n]
a parabolic nef class. Then all [n]-coisotropic subvarieties are coisotropic.

Proof. Step 1: [n]"+t! = 0 (Fujiki’'s formula). A positive, closed current
which is cohomologous to zero vanishes. Therefore, 77"“‘1 = 0. This implies
that dim Z > n.

Proof. Step 2: Since nP—c[Z] is positive, n"t1—c[Z]An" P11 is also positive.
Therefore, [Z] An"PT1 =0.

Proof. Step 3: The form A s (weakly) positive. Therefore, nP A
Qn—r+1 A Q" PTL s positive. This form is cohomologous to 0 (Fujiki's for-
mula). This gives n? A QPP+ A QP PTL — o
Proof. Step 4.

0=nP AQV PTLAGQ PTL s [z APt A GV P = 0
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Lelong numbers of nef classes

Corollary: Let n be a nef class on a generic hyperkahler manifold M . Then
all Lelong numbers of n vanish.

Proof: Indeed, all subvarieties of M are symplectic.
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