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Hyperkähler manifolds.

Definition: A hyperkähler manifold is a compact, Kähler, holomorphically

symplectic manifold.

Definition: A hyperkähler manifold M is called simple if

π1(M) = 0, H2,0(M) = C.

THEOREM: (Fujiki). Let η ∈ H2(M), and dimM = 2n, where M is hy-

perkähler. Then
∫
M η2n = q(η, η)n, for some integer quadratic form q on

H2(M).

Definition: This form is called Bogomolov-Beauville-Fujiki form. It is

defined by this relation uniquely, up to a sign. The sign is determined

from the following formula (Bogomolov, Beauville)

Cn−1
2n−2q(η, η) = (n/2)

∫
X

η ∧ η ∧Ωn−1 ∧Ωn−1−

− (1− n)
(∫

X
η ∧Ωn−1 ∧Ωn

) (∫
X

η ∧Ωn ∧Ωn−1
)
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Holomorphic Lagrangian fibrations

THEOREM: (Matsushita, 1997)
Let π : M −→X be a surjective holomorphic map from a hyperkähler manifold
M to X, whith 0 < dimX < dimM . Then dimX = 1/2dimM, and the
fibers of π are holomorphic Lagrangian (this means that the symplectic
form vanishes on π−1(x)).

DEFINITION: Such a map is called holomorphic Lagrangian fibration.

REMARK: The base of π is conjectured to be rational. Hwang (2007) proved
that X ∼= CPn, if it is smooth. Matsushita (2000) proved that it has the same
rational cohomology as CPn.

REMARK: The base of π has a natural flat connection on the smooth locus
of π. The combinatorics of this connection can be used to determine the
topology of M (Strominger-Yau-Zaslow, Kontsevich-Soibelman).

If we want to learn something about M, it’s reasonable to start from
a holomorphic Lagrangian fibration (if it exists).
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The SYZ conjecture

DEFINITION: Let (M, ω) be a Calabi-Yau manifold, Ω the holomorphic
volume form, and Z ⊂ M a real analytic subvariety, Lagrangian with respect
to ω. If Ω|Z is proportional to the Riemannian volume form, Z is called
special Lagrangian (SpLag).

(Harvey-Lawson): SpLag subvarieties minimize Riemannian volume in
their cohomology class. This implies that their moduli are finite-dimensional.

A trivial remark: A holomorphic Lagrangian subvariety of a hyperkähler man-
ifold (M, I) is special Lagrangian on (M, J), where (I, J, K) is a quaternionic
structure associated with the hyperkähler structure.

Another trivial remark: A smooth fiber of a Lagrangian fibration has trivial
tangent bundle. In particular, a smooth fiber of a holomorphic Lagrangian
fibration is a torus.

Strominger-Yau-Zaslow, “Mirror symmetry as T-duality” (1997). Any
Calabi-Yau manifold admits a Lagrangian fibration with special Lagrangian
fibers. Taking its dual fibration, one obtains “the mirror dual” Calabi-Yau
manifold.

4



SYZ conjecture M. Verbitsky

Nef classes and semiample bundles

DEFINITION: A cohomology class η is called nef if it belongs to the closure

of the Kähler cone. A holomorphic line bundle L is nef if c1(L) is nef.

DEFINITION: A line bundle is called semiample if LN is generated by its

holomorphic sections, which have no common zeros.

REMARK: From semiampleness it obviously follows that L is nef. In-

deed, let π : M −→ PH0(LN)∗ the the standard map. Since sections of L have

no common zeros, π is holomorphic. Then L ∼= π∗O(1), and the curvature of

L is a pullback of the Kähler form on CPn.

REMARK: The converse is false:

a nef bundle is not necessarily semiample.
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The hyperkähler SYZ conjecture

CONJECTURE: (Tyurin, Bogomolov, Hassett-Tschinkel, Huybrechts, Sawon).

Any hyperkähler manifold can be deformed to a manifold admitting a holo-

morphic Lagrangian fibration.

REMARK: This is the only known source of SpLag fibrations.

Definition: A nef class η is called parabolic if q(η, η) = 0.

A trivial observation: Let π : M −→X be a holomorphic Lagrangian fibra-

tion, and ωX a Kähler class on X. Then η := π∗ωX is nef and parabolic.

The hyperkähler SYZ conjecture: Let L be a parabolic nef line bundle

on a hyperkähler manifold. Then L is semiample.
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Recollection (lecture 1). Generic manifolds.

Definition: Let (M, I) be a Kähler manifold, and I ∈ End(H∗(M, R)) the
Hodge decomposition operator acting on (p, q)-forms as a multiplication
by (p − q)

√
−1 . Consider the smallest rational Lie subalgebra containing I,

and let GMT ⊂ GL(H∗(M, R) be the corresponding Lie group. It is called the
Mumford-Tate group of (M, I),

Remark: (Lower semicontinuity of Mumford-Tate group) Let S be a holo-
morphic family of complex structures of Kaehler type on a compact manifold
M . Then GMT (M, I) is the same for all I outside of a union Z of proper
Zariski closed subsets, and, moreover, GMT (I ′) ⊂ GMT (M, I) for all I ′ ∈ S.

Definition: Complex structures outside of Z are called Mumford-Tate
generic.

THEOREM: Let I be a Mumford-Tate generic complex structure on a simple
hyperkaehler manifold, and Z ⊂ (M, I) a complex subvariety. Then Z is
symplectic outside of its singularities. Moreover, a normalization Z̃ of Z

is holomorphically symplectic.
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Recollection (Lecture 1). The Kähler cone.

Theorem: Let M be a simple hyperkähler manifold such that all integer

(1,1)-classes satisfy q(ν, ν) > 0. Then its Kähler cone is one of two

components K+ of a set K := {ν ∈ H1,1(M, R) | q(ν, ν) > 0}.

Corollary: Let η ∈ H1,1(M), q(η, η) > 0 be an integer class in a simple

hyperkähler manifold with NS(M) = Z. Then η is nef .

Remark: Such classes are easy to construct using surjectivity of the

period map.
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Recollection (Lecture 2). Positive currents.

Definition: A current on a manifold is a differential form with coefficients

in generalized functions.

Definition: A cone of strongly positive (p, p)-forms is a closed, convex

cone generated by η1 ∧ η2 ∧ ... ∧ ηp, for all semipositive Hermitian (1,1)-forms

η1, ..., ηp.

Definition: A weakly positive current is a current Θ which satisfies∫
M Θ ∧ α > 0 for any positive form with compact support.

Theorem: The space of positive currents with
∫
M η ∧ ωn−p 6 C is com-

pact.

Corollary: A nef cohomology class is represented by a positive, closed

current.

9



SYZ conjecture M. Verbitsky

Recollection (Lecture 2): Lelong numbers and multiplier ideals

Definition: Let h be a singular metric on a holomorphic line bundle L, with its

curvature Θ a positive, closed current. The corresponding multiplier sheaf

I(η) is a sheaf of L2-integrable sections of L.

THEOREM: (Nadel) It is a coherent sheaf.

Definition: A Lelong number νx(η) of a closed, positive (1,1)-current η

at x ∈ M is defined as a supremum of all λ > 0 such that I(λη) = OM in a

neighbourhood of x.

Definition: For a positive number c > 0, the Lelong set Fc is a support of

the coherent sheaf OM/I(c−1η).

THEOREM: (Nadel’s vanishing) Let (M, ω) be a Kaehler manifold, η a

closed, integer current, η > εω, and L a holomorphic line bundle with [c1(L) =

[η]. Consider a singular metric on L associated with η, and let I(L) be the

sheaf of L2-integrable sections. Then Hi(I(L)⊗KM) = 0 for all i > 0.
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Recollection (Lecture 2): Lelong sets for parabolic nef classes.

THEOREM: Any component of a Lelong set of a parabolic nef class

on a hyperkähler manifold is coisotropic.

THEOREM: For a generic hyperkähler manifold, all Lelong sets of

parabolic nef classes are empty.

Remark: Fujiki’s formula was used in a proof. Let η1, ..., η2n ∈ H2(M). Then

η1 ∧ η2 ∧ ... = const
∑
σ

q(ησ1ησ2)q(ησ3ησ3)q(ησ2n−1ησ2n)

(the sum is taken over all permutations σ ∈ S2n.)
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Semipositive line bundles

MAIN THEOREM: Let L be a parabolic line bundle on a hyperkähler
manifold, dimC M = 2n with all Lelong sets FC empty for c > 2−22n−1.
Then L is Q-effective, for some k > 0.

Remark: This implies that any simple hk manifold with a parabolic nef
class admits a coisotropic subvariety.

Plan of a proof:

Step 1. Show that H∗(LN) is non-zero, for all N .
For N < 222n+1, one has LN = I(LN).

Step 2. Construct an embedding

Hi(I(LN)) ↪→ H0(Ω2n−i(M)⊗ I(LN)).

Step 3. THEOREM: Let L be a nef bundle on a hyperkähler manifold,
with q(L, L) = 0. Assume that H0(Ω∗(M)⊗ LN) 6= 0, for all 0 < N < 222n+1.
Then Lk is effective, for some k > 0.
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Step 1. Show that H∗(LN) is non-zero, for all N.

This is actually clear, because χ(L) = P (q(L, L)), where P is a polynomial
with coefficients depending on Chern classes of M only (Fujiki). Then

χ(L) = χ(OM) = n + 1

(Bochner’s vanishing).

Step 2. Construct an embedding

Hi(I(LN)⊗K) ↪→ H0(Ω2n−i(M)⊗ I(LN)).

This is called “Hard Lefschetz theorem with coefficients in L” (Demailly-
Peternell-Schneider).

Idea of a proof: The proof is the same as Nadel’s vanishing theorem.

Let B := L∗. Then

∆∇′ −∆∂ = [ΘB,Λ] 6 0,

therefore Hi(BN) = ker∆∂ ⊂ ker∆∇′, and the last space is identified with
B∗-valued holomorphic differential forms.
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Kobayashi-Hitchin correspondence

DEFINITION: Let F be a coherent sheaf over an n-dimensional compact

Kähler manifold M . Let

slope(F ) :=
1

rank(F )

∫
M

c1(F ) ∧ ωn−1

vol(M)
.

A torsion-free sheaf F is called (Mumford-Takemoto) stable if for all sub-

sheaves F ′ ⊂ F one has slope(F ′) < slope(F ). If F is a direct sum of stable

sheaves of the same slope, F is called polystable.

DEFINITION: A Hermitian metric on a holomorphic vector bundle B is

called Yang-Mills (Hermitian-Einstein) if the curvature of its Chern connec-

tion satisfies ΘB ∧ ωn−1 = slope(F ) · IdB ·ωn. A Yang-Mills connection is a

Chern connection induced by the Yang-Mills metric.

REMARK: Yang-Mills connections minimize the integral∫
M
|ΘB|2 VolM
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Kobayashi-Hitchin correspondence (part 2)

Kobayashi-Hitchin correspondence (Donaldson, Uhlenbeck-Yau) Let B be

a holomorphic vector bundle. Then B admits Yang-Mills metric if and

only if B is polystable.

COROLLARY: Any tensor product of polystable bundles is polystable.

EXAMPLE: Let M be a Kähler-Einstein manifold. Then TM is polystable.

REMARK: Let M be a Calabi-Yau (e.g., hyperkähler) manifold. Then TM

admits a Hermitian-Einstein metric for any Kähler class (Calabi-Yau theorem).

Therefore, TM is stable for all Kähler structures.
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Recollection (Lecture 1): The modified nef cone.

Definition: A class η ∈ H1,1(M) is called pseudoeffective if it can be rep-

resented by a positive current.

The divisorial Zariski decomposition theorem: (S. Boucksom) Let M be

a simple hyperkähler manifold. Then every pseudoeffective class can be

decomposed as a sum η = ν +
∑

i aiEi, where ν is nef, ai positive numbers,

and Ei exceptional divisors satisfying q(Ei, Ei) < 0.

Definition: A modified nef cone (also “birational nef cone” and “movable

nef cone”) is a closure of a union of all nef cones for all bimeromorphic models

of a holomorphically symplectic manifold M .

THEOREM: (D. Huybrechts, S. Boucksom)

The modified nef cone is dual to the pseudoeffective cone under the

Bogomolov-Beauville-Fujiki pairing.
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Subsheaves in tensor bundles have pseudoeffective −c1(E)

THEOREM 1: Let M be a compact hyperkähler manifold, T a tensor power
of a tangent bundle (such as a bundle of holomorphic forms), and E ⊂ T a
coherent subsheaf of T. Then the class −c1(E) ∈ H

1,1
R (M) is pseudoeffective.

Proof. Step 1: Polystability implies that
∫
M c1(E)∧ωn−1 6 0 for any Kähler

class ω. Equivalently, q(c1(E), ω) 6 0 (Fujiki’s formula). This means that the
class −c1(E) lies in the dual nef cone.

Step 2: Let Mα
ϕ−→ M be a hyperkähler manifold birationally equivalent to

M . Then ϕ is non-singular in codimension 1. Let Tα be the same tensor power
of TMα as T. Clearly, Tα can be obtained as a saturation of ϕ∗T. Taking a
saturation of ϕ∗E ⊂ ϕ∗T, we obtain a coherent subsheaf Eα ⊂ Tα, with
c1(Eα) = c1(E).

Step 3: We obtained that the class −c1(E) lies in the dual nef cone of
Mα, for all birational models of M. Now apply Huybrechts-Boucksom.

Remark: Another proof was obtained earlier by Campana-Peternell (for pro-
jective manifolds).

17



SYZ conjecture M. Verbitsky

L-valued holomorphic forms are non-singular in codimension 1

THEOREM 2: Let M be a compact hyperkähler manifold, L a nef line

bundle satisfying q(L, L) = 0, T some tensor power of a tangent bundle, and

γ ∈ H0(T ⊗ L). Assume L is not Q-effective. Then γ is non-singular in

codimension 1.

Proof: Follows from the previous theorem.

Remark: Also known to Campana-Peternell.

18



SYZ conjecture M. Verbitsky

From L-valued differential forms to sections of L

THEOREM 3: Let L be a nef bundle on a hyperkähler manifold, with

q(L, L) = 0. Assume that H0(Ω∗(M) ⊗ LN) 6= 0, for all N < 222n+1. Then

Lk is effective, for some k > 0.

Definition: Let S be a coherent sheaf. For a set of sections s1, s2, ..., sk,

si ∈ S⊗Lki, denote by 〈s1, s2, ..., sk〉 ⊂ S the saturation of a sheaf generated by

rank 1 subsheaves si⊗L−ki ⊂ S. We say that s1, ..., sk are linearly independent

if rk〈s1, s2, ..., sk〉 = k.

Remark: If f1, ..., fk and g1, ..., gk are independent, fi ∈ L−ki, gi ∈ L−li, and

〈f1, f2, ..., fk〉 = 〈g1, g2, ..., gk〉, the fraction f1∧f2∧...
g1∧g2∧... is a section of L

∑
ki−

∑
li.

Remark: If S = T is a tensor bundle on a hk manifold, and L is parabolic nef

and not Q-effective, then all sections and non-zero in codimension 1, hence

the fraction f1∧f2∧...
g1∧g2∧... gives a trivialization of L

∑
ki−

∑
li.
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Proof of Theorem 3.

Step 1: Let ik := 2k, k = 0,2, ...,22n. For each ip, choose fp ∈ Ω∗M ⊗ Lip.

Since dimΩ∗M = 2n, some of these sections are linearly dependent.

Step 2: Choose distinct k-tuples fp1, fp2, ...fpk, fq1, fq2, ...fqk, linearly indepen-

dent, and satisfying 〈fp1, fp2, ...fpk〉 = 〈fq1, fq2, ...fqk〉.

Step 3: By previous remark, unless L is Q-effective,
fp1∧fp2∧...
fq1∧fq2∧... gives a trivi-

alization of L
∑

ipi−
∑

iqi.

Step 4: Then
∑

ipi −
∑

iqi, hence the k-tuples fp1, fp2, ...fpk, fq1, fq2, ...fqk co-

incide. Indeed, a binary representation of an integer with 1 at position

pi is equal to
∑

ipi.
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