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Almost complex manifolds with non-degenerate Nijenhuis tensor

DEFINITION: Let (M,I) be an almost complex manifold. The Nijenhuis
tensor maps two (1,0)-vector fields to the (0, 1)-part of their commutator.

REMARK: This map is C'°°-linear, and vanishes precisely when [ is inte-
grable (Newlander-Nirenberg). We write the Nijenhuis tensor as

N : A2TH0a) — 791 ().

REMARK: The dual map
N*: A%y — AZ0 ()

Is also called the Nijenhuis tensor. Cartan's formula implies that N* acts
on ALY(M) as the (2,—1)-part of the de Rham differential.

DEFINITION: Let (M,I) be an almost complex manifold of real dimension 6.
We say that N is everywhere non-degenerate if N*: A%l (M) — AZ0(M)
IS an isomorphism of vector bundles.



Nearly Kahler manifolds M. Verbitsky

Canonical volume on complex manifolds
with non-degenerate Nijenhuis tensor

REMARK: The determinant det N* gives a section
det N* € A3O(a)®2 @ A3 ()™,
Taking
det N* @ det N* € A30 (M) @ AP3 (M) = AO(wm)

we obtain a nowhere degenerate real volume form Voly on M.

REMARK: This gives a functional [ Y, Jas Vol on the space of almost
complex structures.

We are interested in its extrema, which, as it turns out, correspond to
“nearly Kahler almost complex structures’.
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Holonomy group

DEFINITION: (Cartan, 1923) Let (B, V) be a vector bundle with connec-
tion over M. For each loop ~ based in x € M, let V%v . Bl|z — Blz be
the corresponding parallel transport along the connection. The holonomy
group of (B,V) is a group generated by V, v, for all loops ~. If one takes
all contractible loops instead, V%v generates the local holonomy, or the
restricted holonomy group.

REMARK: A bundle is flat (has vanishing curvature) if and only if its
restricted holonomy vanishes.

REMARK: If V(¢) = 0 for some tensor ¢ € B®¥ g (B*)®J, the holonomy
group preserves o.

DEFINITION: Holonomy of a Riemannian manifold is holonomy of its
evi-Civita connection.

EXAMPLE: Holonomy of a Riemannian manifold lies in O(T;:M, g|z) = O(n).
EXAMPLE: Holonomy of a Kahler manifold lies in U(TxM, glz, I|z) = U(n).

REMARK: The holonomy group does not depend on the choice of a
point x € M.
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Classification of holonomies.

THEOREM: (de Rham) A complete, simply connected Riemannian manifold
with non-irreducible holonomy splits as a Riemannian product.

THEOREM: (Berger, 1955) Let GG be an irreducible holonomy group of a
Riemannian manifold which is not locally symmetric. Then G belongs to

the Berger’s list:

Berger’s list
Holonomy Geometry
SO(n) acting on R" Riemannian manifolds
U(n) acting on R" Kahler manifolds
SU(n) acting on R4, n > 2 | Calabi-Yau manifolds
Sp(n) acting on R*" hyperkdhler manifolds
Sp(n) x Sp(1)/{£1} quaternionic-Kahler
acting on R4", n > 1 manifolds
G- acting on R’ G>-manifolds
Spin(7) acting on RS Spin(7)-manifolds
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Holonomy of Riemannian cones

DEFINITION: Let (M,g) be a Riemannian manifold.

M. Verbitsky

The Riemannian

cone of M is C(M) := (M x R>9 ¢2g + dt?), where ¢t denotes the coordinate

on the half-line R>0,

Theorem: Suppose C(M) has special holonomy. Then M has the following

geometric structures.

Riemannian cones with special holonomy

Holonomy of C(M)

Geometry of C(M)

Geometry of M

SO(n) Riemannian —

U(n) Kahler Sasakian

SU(n) Calabi-Yau Sasaki-Einstein
Sp(n) hyperkahler 3-Sasakian
Sp(n)Sp(1) quaternionic-Kahler | —

Go Go-manifolds nearly Kahler
Spin(7) Spin(7)-manifolds nearly G>-manifolds
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Killing spinors and parallel spinors

Not essential for understanding of today’s talk, because the spinor interpretation will
not be used

Recall that we have a “Clifford multiplication map”" TM S — &, where T'M
is a bundle of tangent vectors on a manifold M, and & the bundle of spinors.

DEFINITION: A Killing spinor on M is W € & which satisfies Vx (W) =
AXW for all tangent fields X € T'M.

DEFINITION: A parallel spinor is one which satisfies V(W) = 0.

DEFINITION: An Einstein manifold is a Riemannian manifold (M, g) which
satisfies Ric(M) = Ag, where Ric(M) is its Ricci curvature.

Fact 1: Killing spinors on M correspong uniquely to parallel spinors on C'(M).

Fact 2: Killing spinors on M exist only if M is an Einstein manifold, with
Einstein constant |A\|2 > O.

REMARK: Similarly, if M admits a parallel spinor, M is Ricci-Flat (follows
from Weitzenbdck formula).
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Killing spinors and Riemannian cones

Not essential for understanding of today’s talk, because the spinor interpretation will

not be used

Remark: In Berger’s list, the following holonomies correspond to Ricci-flat
manifolds: SU(n), Sp(n), Go, Spin(7).

Fact 3: SU(n), Sp(n), Go, Spin(7) admit parallel spinors.

COROLLARY: Sasaki-Einstein, 3-Sasakian, nearly Kahler and nearly G»-
manifolds admit Killing spinors; hence they are Einstein.

Proof: Their cones admit a parallel spinor. m
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Nearly Kahler manifolds

REMARK: The name is confusing, because the nearly Kahler condition, in
its strict sense, is much more restrictive than the Kahler condition.

The original definition: (Alfred Gray). Let (M,g,1) be a Hermitian almost
complex manifold, w € ALL(M) its Hermitian form, V the Levi-Civita con-
nection. Then Vw lies in AL(M) @ A2(M). Gray defined “nearly Kahler
manifolds” (NK-manifolds) as those that satisfy

Vw e A3(M) c AN (M) @ A2(M)

(Vw is skew-symmetric).

Trivial remark: In this case dw = Vw, because V is torsion-free.

Examples

1. 6-manifolds with parallel G, cones.

2. Twistor spaces of positive quaternionic-Kahler manifolds with non-standard

complex structure due to Eels and Salamon.
O
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Splitting theorem of P.-A. Nagy

DEFINITION: A strictly nearly Kahler manifold is an NK-manifold for
which the 3-form p = dw is non-degenerate, that is, the map TM -5 A2M,
defined as X — p(X,-,-), is injective.

REMARK: It is much more restrictive condition than the Kahler condition
dw = 0.

THEOREM: (“Splitting theorem”, P.-A. Nagy, 2002)

Let M be a nearly Kahler manifold, in the sense of Gray. Then M is locally
a product of the following nearly Kahler types.

1. Homogeneous (symmetric; classified by J.B. Butruille in 2004)

2. Twistor spaces of positive quaternionic-Kahler manifolds

3. 6-dimensional nearly Kahler

REMARK: From this theorem it follows that strictly nearly Kahler mani-
folds are products of Einstein ones.
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Some equivalent definitions of NK-manifolds

“A well-known theorem:” (probably due to Friedrich et al)
Let (M,I,w) be a Hermitian almost complex 6-manifold. Then the following
conditions are equivalent.

1. The form Vw € AL(M) @ A2(M) is non-zero and totally skew-symmetric
(that is, Vw is a 3-form). This means that (M, I,w) is nearly Kahler in the
sense of Gray, but not Kahler.

2. The structure group of M admits a reduction to SU(3), that is, there is
(3,0)-form 2 with |2 = 1. Moreover, one has

dv=3\ReQ, dImQ = -2)\w?

where )\ is a non-zero real constant.
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More equivalent definitions of NK-manifolds (2)

A theorem of H. Baum, T. Friedrich, R. Grunewald, I. Kath :

Let M be a Riemannian 6-manifold. Then the following conditions are equiv-
alent.

1. M admits a nearly Kahler Hermitian structure.

2. M admits a Killing spinor.

3. The Riemannian cone C(M) has holonomy G»5.

REMARK: Let M be nearly Kahler. Unless C(M) is flat, and M is S°,
the almost complex structure is uniquely determined by the metric

(Friedrich). Conversely, the metric is uniquely determined by the almost
complex structure (M. V.).
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6-dimensional NK-manifolds

REMARK: Compact positive quaternionic-Kahler manifolds and their twistors
are (conjecturally) symmetric. Hence the only interesting example of “nearly
Kahler” is 6-dimensional nearly Kahler manifolds.

In modern literature, “nearly Kahler” usually denotes a 6-dimensional
Hermitian manifold with Vw antisymmetric. We shall always assume
“6-dimensional’”.

A trivial remark: An NK-manifold is never integrable. Indeed, dwll =
3ARe 39, In fact, the Nijenhuis tensor

N ASTan) — AZ0(D)
is invertible (unless A = 0).

Another trivial remark: If A = 0, the NK-equations degenerate to equa-
tions defining Calabi-Yau.

13



Nearly Kahler manifolds M. Verbitsky

Examples of nearly Kahler manifolds
(all four of them)

1. The sphere S°. Its cone is R”.

2 and 3.

CP3 and the flag variety F(2,1). These are twistor spaces for self-dual Ein-
stein manifolds S4 and CCPQ; we take the Eels-Salamon almost complex struc-
ture.

4. S3 x S3.

THEOREM: (Butruille)
Any compact homogeneous NK-manifold belongs to this list.

No non-homogeneous compact examples (so far).
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Almost complex manifold with totally antisymmetric torsion

THEOREM: (Bismut)
Let (M,I) be a complex manifold, and g a Hermitian metric. Then M admits
a unique connection with totally skew-symmetric torsion preserving I and

g.

THEOREM: (Friedrich-Ivanov)
Let (M, I,w) be an almost complex Hermitian manifold, and

N : A2THO) — 791 ()
its Nijenhuis tensor. Consider the 3-linear form p : THO(M) x T1.O(M) x
Tl’O(M) — C,
p(x,y,2) = w(N(z,y),2)

Then M admits a connection V with totally skew-symmetric torsion preserving
(w, I) if and only if p is skew-symmetric. Moreover, such a connection is
unique.
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Extrema of the volume functional

THEOREM: Let (M,I,w) be an almost complex Hermitian 6-manifold with
nowhere degenerate Nijenhuis tensor, and let W(I) = [,; Vol; be the volume
funcional. Then I is an extremum of WV if and only if dw lies in A39(M) @
A3 (M.

THEOREM: Let (M,I) be a compact almost complex 6-manifold with
nowhere degenerate Nijenhuis tensor admitting a Hermitian connection with

totally antisymmetric torsion. I is an extremum of W if and only if (M, )
admits a nearly Kahler metric.

REMARK: Such a metric is unique (M. V.).
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