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Sub-Riemannian structures

DEFINITION: Let M be a Riemannian manifold and B ⊂ TM a sub-bundle.

A horizontal path is a piecewise smooth path γ : [b, a]−→M tangent to B

everywhere. A sub-Riemannian, or Carno-Carathéodory metric M is

dB(x, y) := inf
γ horizontal

L(γ) :

the infimum of the length L(γ) for all horizontal paths connecting x to y.

THEOREM: (Chow-Rashevskii theorem; 1938, 1939)

Consider the Frobenius form Φ : Λ2B −→ TM/B mapping vector fields

X,Y ∈ B to an image of [X,Y ] modulo B. Suppose that Φ is surjective.

Then any two points can be connected by a horizontal path, and the

sub-Riemannian metric dB is finite.
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Properties of sub-Riemannian metrics

Let (M,B, g) be a sub-Riemannian manifold.

CLAIM: Every two points x, y ∈ M are connected by a smooth, hor-

izontal path γ. Moreover, dB(x, y) = infγ horizontal, smoothL(γ): the sub-

Riemannian distance can be taken as infimum of the length for smooth hori-

zontal paths connecting x to y.

THEOREM: (ball-box theorem) An ε-ball in dB is asymptotically equiv-

alent to a product of ε-ball in direction of B and ε2-ball in orthogonal

direction.

COROLLARY: The sub-Riemannian metric induces the standard topol-

ogy on M.

COROLLARY: The Hausdorff dimension of a sub-Riemannian manifold is

integer, and strictly bigger than dimM.
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Subtwistor metric

Throughout this talk, H is a real vector space with non-degenerate scalar
product of signature (3, b−3), and Gr++(H) – Grassmannian of 2-dimensional
positive oriented planes in H. The space Gr++(H) is in fact a complex
manifold, and it is called the period space of weight 2 Hodge structures
on H.

DEFINITION: Let W ⊂ V be a positive 3-dimensional subspace, and SW =
Gr++(W ) ⊂ Gr++(H) a 2-dimensional sphere consisting all 2-dimensional
oriented planes in W . Then Sw is called a twistor line.

CLAIM: Each pair x, y ∈ Gr++(H) can be connected by an intersecting
chain SW1

, SW2
, ..., SWn of twistor lines; moreover, n 6 3.

DEFINITION: A twistor path on Gr++(H) is a piecewise smooth path
γ : [a, b]−→ Gr++(H) with each smooth component sitting on a twistor line.

DEFINITION: Fix a Euclidean structure on H, and let g be the corresponding
Riemannian metric on Gr++(H). Subtwistor metric dtw(x, y) on Gr++(H)
is defined as dtw(x, y) := infγ L(γ) where L(γ) is a length of the path γ taken
with respect to g, and infimum is taken over all subtwistor paths connecting
x to y.
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Properties of subtwistor metric

QUESTION: Can we connect any pair x, y ∈ Gr++(H) with a smooth path

tangent to twistor line at each point? Would the infimum of its length give

the same metric?

QUESTION: What about the ball-box theorem? What is a shape of a small

ε-ball in dtw?

QUESTION: What us the Hausdorff dimension (Gr++(H), dtw)?

QUESTION: The definition I gave obviously can be generalized. What is

an appropriate generality?

THEOREM: The subtwistor metric dtw induces the standard topology

on Gr++(H).

REMARK: Its proof is highly non-trivial; uses a solution of Hilbert’s fifth

problem on continuous groups.
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Hilbert’s 5 problem

QUESTION: (Hilbert, 1900)

“How is Lie’s concept of continuous groups of transformations of man-

ifolds approachable in our investigation without the assumption of dif-

ferentiability?”

Answered affirmative by von Neumann, Gleason, Montgomery-Zippin.

THEOREM: Let M be a topological manifold equipped with a continuous

group structure. Then M admits a smooth structure compatible with

the group action.

I will state the Gleason-Palais refinement of this theorem.
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Gleason-Palais theorem

DEFINITION: Let M be a topological space. We say that M has Lebesgue

covering dimension 6 n if every open covering of M has a refinement {Ui}
such that each point of M belongs to at most n + 1 element of {Ui}. A

Lebesgue covering dimension of M (denoted by dimM) is an infimum of

all such n.

EXAMPLE: If M is an n-manifold, dimM = n.

CLAIM: If X ⊂M is a subset of a topological space, with induced topology,

one has dimX 6 dimM .

THEOREM: (Gleason-Palais)

Let G be a topological group, which is locally path connected, and has

dimK <∞ for each compact, metrizable subset K ⊂ G. Then G is homeo-

morphic to a Lie group.
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Subtwistor norm on a Lie group

REMARK: We define a norm on the group SO(H) compatible with the

subtwistor metric on Gr++(H).

DEFINITION: Let G be a connected component of SO(H) acting on Gr++(H)

in a susual way. We define subtwistor norm on G in such a way that the bi-

jective map (G/G0, ‖ · ‖tw)−→ (Gr++(H), dtw) is continuous, where G0 ⊂ G
is a stabilizer of a point V ∈ Gr++(H).

DEFINITION: An elementary transform is an element h ∈ G fixing a

codimension 2 subspace V1 ⊂ V of signature (1, n − 3). An elementary

decomposition of h ∈ G is a decomposition h = h1h2...hn, where hi are

elementary transforms. Define the subtwistor norm on G as ‖h‖tw :=

inf(‖h1‖+ ‖h2‖+ ... + ‖hn‖), where the infinum is taken over all elementary

decompositions h = h1h2...hn.

CLAIM: The action of (G, ‖ · ‖tw) on (Gr++(H), dtw) is continuous, and

induces a homeomorphism (G/G0, ‖ · ‖tw)−→ (Gr++(H), dtw).
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Transformation groups and subtwistor metrics

THEOREM: The subtwistor metric dtw induces the standard topology
on Gr++(H).

Step 1: Since Gr++(H) ∼= (G/G0, ‖ · ‖tw), it suffices to show that the sub-
twistor norm defines the usual topology on G.

Step 2: Let ‖ · ‖ be the usual norm on G. Since ‖ · ‖tw > ‖ · ‖, the identity
map (G, ‖ · ‖tw)−→ (G, ‖ · ‖) is continuous.

Step 3: (Brouwer’s invariance of domain theorem):

Let X
f−→ Y be a continuous, bijective map of Hausdorff manifolds.

Then f is a homeomorphism. Apply this to the identity map (G, ‖ · ‖tw)−→G.
To prove that it is a homeomorphism, it remains to show that (G, ‖ · ‖tw)
is a manifold.

Step 4: Since a bijective continuous map from a compact is a homeo-
morphism, the identity map (G, ‖ · ‖tw)−→ (G, ‖ · ‖) is a homeomorphism on
compacts. Therefore, the Lebesgue covering dimension of any compact is
the same in (G, ‖ · ‖tw) and in (G, ‖ · ‖), hence finite. Path connectedness of
(G, ‖ · ‖tw) is clear from its construction. Then Gleason-Palais implies that
G, ‖ · ‖tw is a manifold.
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Teichmüller space

Definition: Let M be a compact complex manifold, and Diff0(M) a con-

nected component of its diffeomorphism group (the group of isotopies).

Denote by Comp the space of complex structures on M , and let Teich :=

Comp /Diff0(M). We call it the Teichmüller space.

REMARK: Teich is a finite-dimensional complex space (Kodaira-Spencer-

Kuranishi-Douady), but often non-Hausdorff.

DEFINITION: Let Diff+(M) be the group of oriented diffeomorphisms of M .

We call Γ := Diff+(M)/Diff0(M) the mapping class group. The moduli

space of complex structures on M is a connected component of Teich /Γ.

REMARK: This terminology is standard for curves.
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Hyperkähler manifolds

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian

structure g and a triple of complex structures I, J,K, satisfying quaternionic

relations I ◦ J = −J ◦ I = K, such that g is Kähler for I, J,K.

REMARK: A hyperkähler manifold is holomorphically symplectic: ωJ +√
−1 ωK is a holomorphic symplectic form on (M, I).

THEOREM: (Calabi-Yau) A compact, Kähler, holomorphically symplectic

manifold admits a unique hyperkähler metric in any Kähler class.

EXAMPLE: Take a 2-dimensional complex torus T , then the singular locus

of T/±1 is of form (C2/±1) × T . Its resolution T̃/±1 is called a Kummer

surface. It is holomorphically symplectic.

DEFINITION: A complex surface is called a K3 surface if it a deformation

of a Kummer surface. K3 surface is also hyperkähler.
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Holomorphically symplectic manifolds

DEFINITION: A holomorphically symplectic manifold is a complex man-
ifold equipped with non-degenerate, holomorphic 2-form.

THEOREM: (Calabi-Yau) A compact, Kähler, holomorphically symplectic
manifold admits a unique hyperkähler metric in any Kähler class.

REMARK: Usually, one says “hyperkähler manifold” meaning “a compact,
Kähler, holomorphically symplectic manifold”.

DEFINITION: A hyperkähler manifold M is called simple if π1(M) = 0,
H2,0(M) = C.

Bogomolov’s decomposition: Any hyperkähler manifold admits a finite
covering which is a product of a torus and several simple hyperkähler
manifolds.

THEOREM: (Fujiki). Let η ∈ H2(M), and dimM = 2n, where M is sim-
ple and hyperkähler. Then C

∫
M η2n = q(η, η)n, for some primitive integer

quadratic form q on H2(M,Z) and C > 0.

Definition: This form is called Bogomolov-Beauville-Fujiki form. It is
defined by this relation uniquely, up to a sign.
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The period map

Remark: For any J ∈ Teich, (M,J) is also a simple hyperkähler manifold,

hence H2,0(M,J) is one-dimensional.

Definition: Let P : Teich −→ PH2(M,C) map J to a line H2,0(M,J) ∈
PH2(M,C). The map P : Teich −→ PH2(M,C) is called the period map.

REMARK: P maps Teich into an open subset of a quadric, defined by

Per := {l ∈ PH2(M,C) | q(l, l) = 0, q(l, l) > 0.

It is called the period space of M .

REMARK: Per = Gr++(H2(M,R), q)

THEOREM: (Bogomolov) Let M be a simple hyperkähler manifold, and

Teich its Teichmüller space. Then the period map P : Teich −→ Per is

locally a diffeomorphism.
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Global Torelli theorem

DEFINITION: Let M be a topological space. We say that x, y ∈M are non-

separable (denoted by x ∼ y) if for any open sets V 3 x, U 3 y, U ∩ V 6= ∅.

THEOREM: Let M be a hyperkähler manifold, Teich its Teichmüller space,

and Teichb the quotient of Teich by ∼. Then the period map P : Teichb −→ Per
induces a diffeomorphism on each connected component.

REMARK: The period space

Per := {l ∈ PH2(M,C) | q(l, l) = 0, q(l, l) > 0.}

is identified with Gr++(H2(M,R)) = SO(b2 − 3,3)/SO(2) × SO(b2 − 3,1),

which is a Grassmannian of positive oriented 2-planes in H2(M,R).
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Proof of Global Torelli theorem

DEFINITION: Let (M, I, J,K) be a hyperkähler manifold. A hyperkähler 3-
plane in H2(M,R) is a positive oriented 3-dimensional subspace W , generated
by ωI , ωJ , ωK.

REMARK: The set of oriented 2-dimensional planes in W is identified with
S2 = CP1. It is called the twistor family of a hyperkähler structure. A point
in the twistor family corresponds to a complex structure aI + bJ + cK ∈ H,
with a2 + b2 + c2 = 1. We call the corresponding CP1 ⊂ Teich the twistor
lines.

DEFINITION: We call a subspace R ⊂ H2(M,R) irrational if R⊥∩H2(M,Q)
is empty.

THEOREM: Let S ⊂ Per be a twistor line corresponding to an irrational
plane Gr+++(H2(M,R). Then it can be lifted to Teich with each of the
irrational point in its preimage.

COROLLARY: The period map Teichb −→ Per is an isometry with respect
to the subtwistor metrics.

REMARK: Now the global Torelli follows, because (being an isometry) it is
also a covering.
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Period space as a Grassmannian of positive 2-planes

PROPOSITION: The period space

Per := {l ∈ PH2(M,C) | q(l, l) = 0, q(l, l) > 0.

is identified with SO(b2−3,3)/SO(2)×SO(b2−3,1), which is a Grassmannian

of positive oriented 2-planes in H2(M,R).

Proof. Step 1: Given l ∈ PH2(M,C), the space generated by Im l,Re l is

2-dimensional, because q(l, l) = 0, q(l, l) implies that l ∩H2(M,R) = 0.

Step 2: This 2-dimensional plane is positive, because q(Re l,Re l) = q(l+

l, l + l) = 2q(l, l) > 0.

Step 3: Conversely, for any 2-dimensional positive plane V ∈ H2(M,R), the

quadric {l ∈ V ⊗R C | q(l, l) = 0} consists of two lines; a choice of a line

is determined by orientation.
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