Subtwistor metric on the moduli of hyperkähler manifolds

Misha Verbitsky

International conference
"Geometry and analysis on metric structrures"
Geometric control theory laboratory

December 4-7, 2013.

Sub-Riemannian structures

DEFINITION: Let M be a Riemannian manifold and $B \subset TM$ a sub-bundle. A **horizontal path** is a piecewise smooth path $\gamma: [b,a] \longrightarrow M$ tangent to B everywhere. A **sub-Riemannian**, or **Carno-Carathéodory** metric M is

$$d_B(x,y) := \inf_{\gamma \text{ horizontal}} L(\gamma)$$
:

the infimum of the length $L(\gamma)$ for all horizontal paths connecting x to y.

THEOREM: (Chow-Rashevskii theorem; 1938, 1939)

Consider the Frobenius form $\Phi: \Lambda^2 B \longrightarrow TM/B$ mapping vector fields $X,Y \in B$ to an image of [X,Y] modulo B. Suppose that Φ is surjective. Then any two points can be connected by a horizontal path, and the sub-Riemannian metric d_B is finite.

Properties of sub-Riemannian metrics

Let (M, B, g) be a sub-Riemannian manifold.

CLAIM: Every two points $x,y \in M$ are connected by a smooth, horizontal path γ . Moreover, $d_B(x,y) = \inf_{\gamma \text{ horizontal, smooth}} L(\gamma)$: the sub-Riemannian distance can be taken as infimum of the length for smooth horizontal paths connecting x to y.

THEOREM: (ball-box theorem) An ε -ball in d_B is asymptotically equivalent to a product of ε -ball in direction of B and ε^2 -ball in orthogonal direction.

COROLLARY: The sub-Riemannian metric induces the standard topology on M.

COROLLARY: The Hausdorff dimension of a sub-Riemannian manifold is integer, and strictly bigger than $\dim M$.

Subtwistor metric

Throughout this talk, H is a real vector space with non-degenerate scalar product of signature (3,b-3), and $Gr_{++}(H)$ – Grassmannian of 2-dimensional positive oriented planes in H. The space $Gr_{++}(H)$ is in fact a complex manifold, and it is called **the period space of weight 2 Hodge structures** on H.

DEFINITION: Let $W \subset V$ be a positive 3-dimensional subspace, and $S_W = \operatorname{Gr}_{++}(W) \subset \operatorname{Gr}_{++}(H)$ a 2-dimensional sphere consisting all 2-dimensional oriented planes in W. Then S_W is called a twistor line.

CLAIM: Each pair $x, y \in Gr_{++}(H)$ can be connected by an intersecting chain $S_{W_1}, S_{W_2}, ..., S_{W_n}$ of twistor lines; moreover, $n \leq 3$.

DEFINITION: A twistor path on $Gr_{++}(H)$ is a piecewise smooth path $\gamma: [a,b] \longrightarrow Gr_{++}(H)$ with each smooth component sitting on a twistor line.

DEFINITION: Fix a Euclidean structure on H, and let g be the corresponding Riemannian metric on $\text{Gr}_{++}(H)$. Subtwistor metric $d_{tw}(x,y)$ on $\text{Gr}_{++}(H)$ is defined as $d_{tw}(x,y) := \inf_{\gamma} L(\gamma)$ where $L(\gamma)$ is a length of the path γ taken with respect to g, and infimum is taken over all subtwistor paths connecting x to y.

Properties of subtwistor metric

QUESTION: Can we connect any pair $x, y \in Gr_{++}(H)$ with a smooth path tangent to twistor line at each point? Would the infimum of its length give the same metric?

QUESTION: What about the ball-box theorem? What is a shape of a small ε -ball in d_{tw} ?

QUESTION: What us the Hausdorff dimension $(Gr_{++}(H), d_{tw})$?

QUESTION: The definition I gave obviously can be generalized. What is an appropriate generality?

THEOREM: The subtwistor metric d_{tw} induces the standard topology on $Gr_{++}(H)$.

REMARK: Its proof is highly non-trivial; uses a solution of Hilbert's fifth problem on continuous groups.

Hilbert's 5 problem

QUESTION: (Hilbert, 1900)

"How is Lie's concept of continuous groups of transformations of manifolds approachable in our investigation without the assumption of differentiability?"

Answered affirmative by von Neumann, Gleason, Montgomery-Zippin.

THEOREM: Let M be a topological manifold equipped with a continuous group structure. Then M admits a smooth structure compatible with the group action.

I will state the Gleason-Palais refinement of this theorem.

Gleason-Palais theorem

DEFINITION: Let M be a topological space. We say that M has Lebesgue covering dimension $\leq n$ if every open covering of M has a refinement $\{U_i\}$ such that each point of M belongs to at most n+1 element of $\{U_i\}$. A Lebesgue covering dimension of M (denoted by dim M) is an infimum of all such n.

EXAMPLE: If M is an n-manifold, dim M = n.

CLAIM: If $X \subset M$ is a subset of a topological space, with induced topology, one has dim $X \leq \dim M$.

THEOREM: (Gleason-Palais)

Let G be a topological group, which is locally path connected, and has $\dim K < \infty$ for each compact, metrizable subset $K \subset G$. Then G is homeomorphic to a Lie group.

Subtwistor norm on a Lie group

REMARK: We define a norm on the group SO(H) compatible with the subtwistor metric on $Gr_{++}(H)$.

DEFINITION: Let G be a connected component of SO(H) acting on $Gr_{++}(H)$ in a susual way. We define **subtwistor norm** on G in such a way that **the bijective map** $(G/G_0, \|\cdot\|_{tw}) \longrightarrow (Gr_{++}(H), d_{tw})$ **is continuous**, where $G_0 \subset G$ is a stabilizer of a point $V \in Gr_{++}(H)$.

DEFINITION: An **elementary transform** is an element $h \in G$ fixing a codimension 2 subspace $V_1 \subset V$ of signature (1, n-3). **An elementary decomposition** of $h \in G$ is a decomposition $h = h_1h_2...h_n$, where h_i are elementary transforms. Define the **subtwistor norm** on G as $||h||_{tw} := \inf(||h_1|| + ||h_2|| + ... + ||h_n||)$, where the infinum is taken over all elementary decompositions $h = h_1h_2...h_n$.

CLAIM: The action of $(G, \|\cdot\|_{tw})$ on $(Gr_{++}(H), d_{tw})$ is continuous, and induces a homeomorphism $(G/G_0, \|\cdot\|_{tw}) \longrightarrow (Gr_{++}(H), d_{tw})$.

Transformation groups and subtwistor metrics

THEOREM: The subtwistor metric d_{tw} induces the standard topology on $Gr_{++}(H)$.

Step 1: Since $Gr_{++}(H) \cong (G/G_0, \|\cdot\|_{tw})$, it suffices to show that the subtwistor norm defines the usual topology on G.

Step 2: Let $\|\cdot\|$ be the usual norm on G. Since $\|\cdot\|_{tw} \ge \|\cdot\|$, the identity map $(G, \|\cdot\|_{tw}) \longrightarrow (G, \|\cdot\|)$ is continuous.

Step 3: (Brouwer's invariance of domain theorem):

Let $X \stackrel{f}{\longrightarrow} Y$ be a continuous, bijective map of Hausdorff manifolds. Then f is a homeomorphism. Apply this to the identity map $(G, \|\cdot\|_{tw}) \longrightarrow G$. To prove that it is a homeomorphism, it remains to show that $(G, \|\cdot\|_{tw})$ is a manifold.

Step 4: Since a bijective continuous map from a compact is a homeomorphism, the identity map $(G, \|\cdot\|_{tw}) \longrightarrow (G, \|\cdot\|)$ is a homeomorphism on compacts. Therefore, the Lebesgue covering dimension of any compact is the same in $(G, \|\cdot\|_{tw})$ and in $(G, \|\cdot\|)$, hence finite. Path connectedness of $(G, \|\cdot\|_{tw})$ is clear from its construction. Then **Gleason-Palais implies that** $G, \|\cdot\|_{tw}$ is a manifold.

Teichmüller space

Definition: Let M be a compact complex manifold, and $Diff_0(M)$ a connected component of its diffeomorphism group (the group of isotopies). Denote by Comp the space of complex structures on M, and let Teich := $Comp/Diff_0(M)$. We call it the Teichmüller space.

REMARK: Teich is a finite-dimensional complex space (Kodaira-Spencer-Kuranishi-Douady), but often non-Hausdorff.

DEFINITION: Let $Diff_{+}(M)$ be the group of oriented diffeomorphisms of M. We call $\Gamma := Diff_{+}(M)/Diff_{0}(M)$ the mapping class group. The moduli space of complex structures on M is a connected component of Teich $/\Gamma$.

REMARK: This terminology is **standard for curves.**

Hyperkähler manifolds

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian structure g and a triple of complex structures I, J, K, satisfying quaternionic relations $I \circ J = -J \circ I = K$, such that g is Kähler for I, J, K.

REMARK: A hyperkähler manifold is holomorphically symplectic: $\omega_J + \sqrt{-1} \omega_K$ is a holomorphic symplectic form on (M, I).

THEOREM: (Calabi-Yau) A compact, Kähler, holomorphically symplectic manifold admits a unique hyperkähler metric in any Kähler class.

EXAMPLE: Take a 2-dimensional complex torus T, then the singular locus of $T/\pm 1$ is of form $(\mathbb{C}^2/\pm 1) \times T$. Its resolution $T/\pm 1$ is called a Kummer surface. It is holomorphically symplectic.

DEFINITION: A complex surface is called **a K3 surface** if it a deformation of a Kummer surface. K3 surface is also hyperkähler.

Holomorphically symplectic manifolds

DEFINITION: A holomorphically symplectic manifold is a complex manifold equipped with non-degenerate, holomorphic 2-form.

THEOREM: (Calabi-Yau) A compact, Kähler, holomorphically symplectic manifold admits a unique hyperkähler metric in any Kähler class.

REMARK: Usually, one says "hyperkähler manifold" meaning "a compact, Kähler, holomorphically symplectic manifold".

DEFINITION: A hyperkähler manifold M is called **simple** if $\pi_1(M) = 0$, $H^{2,0}(M) = \mathbb{C}$.

Bogomolov's decomposition: Any hyperkähler manifold admits a finite covering which is a product of a torus and several simple hyperkähler manifolds.

THEOREM: (Fujiki). Let $\eta \in H^2(M)$, and dim M=2n, where M is simple and hyperkähler. Then $C \int_M \eta^{2n} = q(\eta, \eta)^n$, for some primitive integer quadratic form q on $H^2(M, \mathbb{Z})$ and C>0.

Definition: This form is called Bogomolov-Beauville-Fujiki form. It is defined by this relation uniquely, up to a sign.

The period map

Remark: For any $J \in \text{Teich}$, (M, J) is also a simple hyperkähler manifold, hence $H^{2,0}(M, J)$ is one-dimensional.

Definition: Let P: Teich $\longrightarrow \mathbb{P}H^2(M,\mathbb{C})$ map J to a line $H^{2,0}(M,J) \in \mathbb{P}H^2(M,\mathbb{C})$. The map P: Teich $\longrightarrow \mathbb{P}H^2(M,\mathbb{C})$ is called **the period map**.

REMARK: P maps Teich into an open subset of a quadric, defined by

$$\mathbb{P}er := \{l \in \mathbb{P}H^2(M, \mathbb{C}) \mid q(l, l) = 0, q(l, \bar{l}) > 0.$$

It is called **the period space** of M.

REMARK: $\mathbb{P}er = \operatorname{Gr}_{++}(H^2(M,\mathbb{R}),q)$

THEOREM: (Bogomolov) Let M be a simple hyperkähler manifold, and Teich its Teichmüller space. Then the period map P: Teich $\longrightarrow \mathbb{P}er$ is locally a diffeomorphism.

Global Torelli theorem

DEFINITION: Let M be a topological space. We say that $x, y \in M$ are non-separable (denoted by $x \sim y$) if for any open sets $V \ni x, U \ni y$, $U \cap V \neq \emptyset$.

THEOREM: Let M be a hyperkähler manifold, Teich its Teichmüller space, and Teich $_b$ the quotient of Teich by \sim . Then the period map P: Teich $_b \longrightarrow \mathbb{P}er$ induces a diffeomorphism on each connected component.

REMARK: The period space

$$\mathbb{P}er := \{l \in \mathbb{P}H^2(M, \mathbb{C}) \mid q(l, l) = 0, q(l, \bar{l}) > 0.\}$$

is identified with $Gr_{++}(H^2(M,\mathbb{R})) = SO(b_2 - 3,3)/SO(2) \times SO(b_2 - 3,1)$, which is a Grassmannian of positive oriented 2-planes in $H^2(M,\mathbb{R})$.

Proof of Global Torelli theorem

DEFINITION: Let (M, I, J, K) be a hyperkähler manifold. A hyperkähler 3-plane in $H^2(M, \mathbb{R})$ is a positive oriented 3-dimensional subspace W, generated by $\omega_I, \omega_J, \omega_K$.

REMARK: The set of oriented 2-dimensional planes in W is identified with $S^2=\mathbb{C}P^1$. It is called **the twistor family** of a hyperkähler structure. A point in the twistor family corresponds to a complex structure $aI+bJ+cK\in\mathbb{H}$, with $a^2+b^2+c^2=1$. We call the corresponding $\mathbb{C}P^1\subset \mathsf{Teich}$ the twistor lines.

DEFINITION: We call a subspace $R \subset H^2(M,\mathbb{R})$ irrational if $R^{\perp} \cap H^2(M,\mathbb{Q})$ is empty.

THEOREM: Let $S \subset \mathbb{P}$ er be a twistor line corresponding to an irrational plane $Gr_{+++}(H^2(M,\mathbb{R}))$. Then it can be lifted to Teich with each of the irrational point in its preimage.

COROLLARY: The period map Teich $_b \longrightarrow \mathbb{P}$ er is an isometry with respect to the subtwistor metrics.

REMARK: Now the global Torelli follows, because (being an isometry) it is also a covering.

Period space as a Grassmannian of positive 2-planes

PROPOSITION: The period space

$$\mathbb{P}er := \{l \in \mathbb{P}H^2(M, \mathbb{C}) \mid q(l, l) = 0, q(l, \bar{l}) > 0.$$

is identified with $SO(b_2-3,3)/SO(2)\times SO(b_2-3,1)$, which is a Grassmannian of positive oriented 2-planes in $H^2(M,\mathbb{R})$.

Proof. Step 1: Given $l \in \mathbb{P}H^2(M,\mathbb{C})$, the space generated by $\operatorname{Im} l$, $\operatorname{Re} l$ is **2-dimensional**, because $q(l,l)=0, q(l,\bar{l})$ implies that $l\cap H^2(M,\mathbb{R})=0$.

Step 2: This 2-dimensional plane is positive, because $q(\text{Re } l, \text{Re } l) = q(l + \bar{l}, l + \bar{l}) = 2q(l, \bar{l}) > 0$.

Step 3: Conversely, for any 2-dimensional positive plane $V \in H^2(M, \mathbb{R})$, the quadric $\{l \in V \otimes_{\mathbb{R}} \mathbb{C} \mid q(l,l) = 0\}$ consists of two lines; a choice of a line is determined by orientation.