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Sub-Riemannian structures

DEFINITION: Let M be a Riemannian manifold and B C T'M a sub-bundle.
A horizontal path is a piecewise smooth path v : [b,a] — M tangent to B
everywhere. A sub-Riemannian, or Carno-Carathéodory metric M is

dp(z,y) == inf  L(y):
~ horizontal

the infimum of the length L(v) for all horizontal paths connecting x to .

THEOREM: (Chow-Rashevskii theorem; 1938, 1939)

Consider the Frobenius form & : A2B — TM/B mapping vector fields
X,Y € B to an image of [X,Y] modulo B. Suppose that @ is surjective.
Then any two points can be connected by a horizontal path, and the
sub-Riemannian metric dg is finite.
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Properties of sub-Riemannian metrics
Let (M, B,g) be a sub-Riemannian manifold.

CLAIM: Every two points x,y € M are connected by a smooth, hor-
izontal path ~. Moreover, dg(z,y) = inf, norizontal, smooth L(7): the sub-
Riemannian distance can be taken as infimum of the length for smooth hori-
zontal paths connecting x to y.

THEOREM: (ball-box theorem) An e-ball in dg is asymptotically equiv-
alent to a product of =-ball in direction of B and =2-ball in orthogonal
direction.

COROLLARY: The sub-Riemannian metric induces the standard topol-
ogy on M.

COROLLARY: The Hausdorff dimension of a sub-Riemannian manifold is
integer, and strictly bigger than dim M.
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Subtwistor metric

Throughout this talk, H is a real vector space with non-degenerate scalar
product of signature (3,b—3), and Gr 4 (H) — Grassmannian of 2-dimensional
positive oriented planes in H. The space Gr_|_+(H) is in fact a complex
manifold, and it is called the period space of weight 2 Hodge structures
on H.

DEFINITION: Let W C V be a positive 3-dimensional subspace, and Sy =
Gry4 (W) C Gry4 (H) a 2-dimensional sphere consisting all 2-dimensional
oriented planes in W. Then Sy is called a twistor line.

CLAIM: Each pair z,y € Gry 4 (H) can be connected by an intersecting
chain Sy, Sy, ..., Sy, Of twistor lines; moreover, n < 3.

DEFINITION: A twistor path on Gry 4 (H) is a piecewise smooth path
v : la,b] — Gry 4 (H) with each smooth component sitting on a twistor line.

DEFINITION: Fix a Euclidean structure on H, and let g be the corresponding
Riemannian metric on Gry 4 (H). Subtwistor metric dy,(z,y) on Gryp4 (H)
is defined as di,(x,y) ;= infy L(y) where L(v) is a length of the path ~ taken
with respect to g, and infimum is taken over all subtwistor paths connecting
x to v.
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Properties of subtwistor metric

QUESTION: Can we connect any pair xz,y € Gr 4 (H) with a smooth path
tangent to twistor line at each point? Would the infimum of its length give
the same metric?

QUESTION: What about the ball-box theorem? WAhat is a shape of a small
e-ball in dg,?

QUESTION: What us the Hausdorff dimension (Gri 4 (H),dtqy)?

QUESTION: The definition I gave obviously can be generalized. What is
an appropriate generality?

THEOREM: The subtwistor metric d;,, induces the standard topology
on GI’_|__|_(H)

REMARK: Its proof is highly non-trivial; uses a solution of Hilbert’s fifth
problem on continuous groups.
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Hilbert’s 5 problem

QUESTION: (Hilbert, 1900)

“How is Lie’s concept of continuous groups of transformations of man-
ifolds approachable in our investigation without the assumption of dif-
ferentiability?”

Answered affirmative by von Neumann, Gleason, Montgomery-Zippin.

THEOREM: Let M be a topological manifold equipped with a continuous
group structure. Then M admits a smooth structure compatible with
the group action.

I will state the Gleason-Palais refinement of this theorem.
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Gleason-Palais theorem

DEFINITION: Let M be a topological space. We say that M has Lebesgue
covering dimension < n if every open covering of M has a refinement {U;}
such that each point of M belongs to at most n 4+ 1 element of {U;}. A
Lebesgue covering dimension of M (denoted by dim M) is an infimum of
all such n.

EXAMPLE: If M is an n-manifold, dim M = n.

CLAIM: If X C M is a subset of a topological space, with induced topology,
one has dimX < dim M.

THEOREM: (Gleason-Palais)

Let G be a topological group, which is locally path connected, and has
dim K < oo for each compact, metrizable subset K C ¢G. Then G is homeo-
morphic to a Lie group.
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Subtwistor norm on a Lie group

REMARK: We define a norm on the group SO(H) compatible with the
subtwistor metric on Gry 4 (H).

DEFINITION: Let G be a connected component of SO(H) acting on Gry 4 (H)
in a susual way. We define subtwistor norm on & in such a way that the bi-

jective map (G/Go, || - ||tw) — (Grp4(H),dy) is continuous, where Gg C G
is a stabilizer of a point V € Gry 4 (H).

DEFINITION: An elementary transform is an element h € G fixing a
codimension 2 subspace V7 C V of signature (1,n — 3). An elementary
decomposition of h € G is a decomposition h = hih»s...hp, Where h; are
elementary transforms. Define the subtwistor norm on G as [|h|ltw =

inf(||h1|| + ||h2]| + --- + ||hn]|), where the infinum is taken over all elementary
decompositions h = hiho...hy.

CLAIM: The action of (G, || - ||tw) on (Gryy4 (H),dy,) is continuous, and
induces a homeomorphism (G/Go, || - |ltw) — (Gro4 4 (H), diw).
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Transformation groups and subtwistor metrics

THEOREM: The subtwistor metric d;,, induces the standard topology
on Gr++(H)

Step 1: Since Grp4(H) = (G/Go, || - ||ltw), it suffices to show that the sub-
twistor norm defines the usual topology on G.

Step 2: Let ||- || be the usual norm on G. Since || |lww = || - ||, the identity
map (G,|  |lww) — (G,]| - ||) is continuous.

Step 3: (Brouwer’s invariance of domain theorem):

Let X i> Y be a continuous, bijective map of Hausdorff manifolds.

Then f is a homeomorphism. Apply this to the identity map (G, || ||tw) — G.
To prove that it is a homeomorphism, it remains to show that (G, || - ||+w)
IS a manifold.

Step 4: Since a bijective continuous map from a compact is a homeo-
morphism, the identity map (G, | - ||ltw) — (G, ]| - ||) is @ homeomorphism on
compacts. Therefore, the Lebesgue covering dimension of any compact is
the same in (G, || - |[+w) and in (G,] - ||), hence finite. Path connectedness of
(G, || - lltw) is clear from its construction. Then Gleason-Palais implies that
G, | - |ltw 1S @ manifold. =
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Teichmuller space

Definition: Let M be a compact complex manifold, and Diffg(M) a con-
nected component of its diffeomorphism group (the group of isotopies).
Denote by Comp the space of complex structures on M, and let Teich =
Comp / Diffg(M). We call it the Teichmiuller space.

REMARK: Teich is a finite-dimensional complex space (Kodaira-Spencer-
Kuranishi-Douady), but often non-Hausdorff¥.

DEFINITION: Let Diff { (M) be the group of oriented diffeomorphisms of M.
We call I' := Diff . (M)/ Diffg(M) the mapping class group. The moduli
space of complex structures on M is a connected component of Teich /T.

REMARK: This terminology is standard for curves.
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Hyperkahler manifolds

DEFINITION: A hyperkahler structure on a manifold M is a Riemannian
structure g and a triple of complex structures I, J, K, satisfying quaternionic
relations ToJ = —J ol = K, such that g is Kahler for I, J, K.

REMARK: A hyperkahler manifold is holomorphically symplectic: wj+
vV—1wpg is a holomorphic symplectic form on (M, 1I).

THEOREM: (Calabi-Yau) A compact, Kahler, holomorphically symplectic
manifold admits a unique hyperkahler metric in any Kahler class.

EXAMPLE: Take a 2-dimensional complex torus/]i/then the singular locus

of T/+1 is of form (C2/4+1) x T. Its resolution T/+1 is called a Kummer
surface. It is holomorphically symplectic.

DEFINITION: A complex surface is called a K3 surface if it a deformation
of a Kummer surface. K3 surface is also hyperkahler.
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Holomorphically symplectic manifolds

DEFINITION: A holomorphically symplectic manifold is a complex man-
ifold equipped with non-degenerate, holomorphic 2-form.

THEOREM: (Calabi-Yau) A compact, Kahler, holomorphically symplectic
manifold admits a unique hyperkahler metric in any Kahler class.

REMARK: Usually, one says “hyperkahler manifold’ meaning ‘“a compact,
Kahler, holomorphically symplectic manifold” .

DEFINITION: A hyperkdahler manifold M is called simple if 7{(M) = O,
H29(M) =C.

Bogomolov’s decomposition: Any hyperkahler manifold admits a finite
covering which is a product of a torus and several simple hyperkahler
manifolds.

THEOREM: (Fujiki). Let n € H2(M), and dim M = 2n, where M is sim-
ple and hyperkdhler. Then C [y;7°" = q(n,n)", for some primitive integer
quadratic form ¢ on H2(M,Z) and C > 0.

Definition: This form is called Bogomolov-Beauville-Fujiki form. It is
defined by this relation uniquely, up to a sign.
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The period map

Remark: For any J € Teich, (M, J) is also a simple hyperkahler manifold,
hence H29(M, J) is one-dimensional.

Definition: Let P : Teich — PH?2(M,C) map J to a line H%9(M,J) €
PH2(M,C). The map P: Teich — PH?2(M,C) is called the period map.

REMARK: P maps Teich into an open subset of a quadric, defined by

Per := {l € PH?(M,C) | q(l,1) =0, q(,1) > 0.
It is called the period space of M.

REMARK: Per = Gry 4 (H?(M,R),q)

THEOREM: (Bogomolov) Let M be a simple hyperkahler manifold, and
Teich its Teichmuller space. Then the period map P : Teich — Per iIs
locally a diffeomorphism.
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Global Torelli theorem

DEFINITION: Let M be a topological space. We say that =,y € M are non-
separable (denoted by =z ~ y) if for any open sets V >z, U3y, UNV # 0.

THEOREM: Let M be a hyperkahler manifold, Teich its Teichmuller space,
and Teichy the quotient of Teich by ~. Then the period map P : Teichy, — Per
iInduces a diffeomorphism on each connected component.

REMARK: The period space

Per := {l € PH?(M,C) | q(l,1) =0, q(,1)>0.}

is identified with Gr . (H?(M,R)) = SO(by — 3,3)/SO(2) x SO(bs — 3,1),
which is a Grassmannian of positive oriented 2-planes in HQ(M, R).
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Proof of Global Torelli theorem

DEFINITION: Let (M, I, J, K) be a hyperkahler manifold. A hyperkahler 3-
plane in HQ(M, R) is a positive oriented 3-dimensional subspace W, generated

by wr,wy, wg .

REMARK: The set of oriented 2-dimensional planes in W is identified with
S2 = CPl. It is called the twistor family of a hyperkahler structure. A point
in the twistor family corresponds to a complex structure al + bJ + cK € H,
with a2 + b2 4+ ¢2 = 1. We call the corresponding CPl ¢ Teich the twistor
lines.

DEFINITION: We call a subspace R C H2(M,R) irrational if R-NH?2(M, Q)
IS empty.

THEOREM: Let S C Per be a twistor line corresponding to an irrational
plane Gry 4 (H?(M,R). Then it can be lifted to Teich with each of the
irrational point in its preimage.

COROLLARY: The period map Teichy, — Per is an isometry with respect
to the subtwistor metrics.

REMARK: Now the global Torelli follows, because (being an isometry) it is
also a covering.
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Period space as a Grassmannian of positive 2-planes

PROPOSITION: The period space

Per := {l € PH?(M,C) | q¢(l,1) =0,q(l,1) > 0.

Is identified with SO(b,—3,3)/S0O(2) xSO(bo—3,1), which is a Grassmannian
of positive oriented 2-planes in H2(M,R).

Proof. Step 1: Given | € PH2(M,C), the space generated by Im!, Rel is
2-dimensional, because ¢(I,1) = 0, ¢(1,1) implies that N H2(M,R) = 0.

Step 2: This 2-dimensional plane is positive, because g(Rel,Rel) = q(I+
LL+1) =21 > 0.

Step 3: Conversely, for any 2-dimensional positive plane V & HQ(M, R), the
quadric {{ e V®rC | q(,I) = 0} consists of two lines; a choice of a line
IS determined by orientation. =
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