Комплексные многообразия

Миша Вербицкий

Институт математики им. С. Л. Соболева СО РАН 3 мая 2012, Новоссибирск

Пучки функций

ОПРЕДЕЛЕНИЕ: Пучок функций на топологическом пространстве M задается следующими данными. Для каждого открытого подмножества $U \subset M$, задано подкольцо $\mathcal{F}(U) \subset F(U)$ в кольце F(U) функций на U, причем ограничение функции $\gamma \in \mathcal{F}(U)$ с открытого множества U на подмножество $U_1 \subset U$ принадлежит $\mathcal{F}(U_1)$. Кольца $\mathcal{F}(U)$ должны удовлетворять следующим условиям. Пусть $\{U_i\}$ — набор открытых множеств, $U := \bigcup U_i$, а $f_i \in \mathcal{F}(U_i)$ — а $f_i \in \mathcal{F}(U_i)$ набор функций, заданных для каждого элемента покрытия, и удовлетворяющих условию

$$f_i\big|_{U_i\cap U_j}=f_j\big|_{U_i\cap U_j},$$

для любой пары элементов покрытия. Тогда существует $f \in \mathcal{F}(U)$ такой, что ограничения f на U_i дает f_i .

Окольцованные пространства

ОПРЕДЕЛЕНИЕ: Окольцованное пространство (M,\mathcal{F}) есть топологическое пространство с заданным на нем пучком функций. Морфизм $(M,\mathcal{F}) \stackrel{\Psi}{\to} (N,\mathcal{F}')$ окольцованных пространств есть непрерывное отображение $M \stackrel{\Psi}{\to} N$ такое, что для каждого открытого множества $U \subset N$ и функции $f \in \mathcal{F}(U)$, функция $\Psi \circ f$ лежит в кольце $\mathcal{F}'(\Psi^{-1}(U))$. Изоморфизм окольцованных пространств есть гомеоморфизм Ψ такой, что Ψ и Ψ^{-1} удовлетворяет этому условию (то есть является морфизмом окольцованных пространств).

ПРИМЕР: Пусть (M, \mathcal{F}) — топологическое многообразие с заданным на нем пучком функций. Оно называется **гладким многообразием класса** C^i или C^∞ , если у каждой точки (M, \mathcal{F}) есть окрестность, изоморфная окольцованному пространству $(\mathbb{R}^n, \mathcal{F}')$, где \mathcal{F}' — функции той же гладкости на \mathbb{R}^n .

ОПРЕДЕЛЕНИЕ: Изоморфизм гладких многообразий называется диффеоморфизмом. Это гомеоморфизм, который переводит гладкие функции в гладкие.

Алгебра де Рама

ОПРЕДЕЛЕНИЕ: Пусть M — гладкое многообразие. Обозначим за $\Lambda^i M$ расслоение дифференциальных i-форм на M, то есть антисимметричных i-форм на TM. Определим умножение $\Lambda^i M \times \Lambda^j M \to \Lambda^{i+j} M$ как $\alpha \wedge \beta \to \Pi(\alpha \otimes \beta)$, где $\alpha \otimes \beta$ — сечение $\Lambda^i M \otimes \Lambda^j M \subset \bigotimes_{i+j} T^* M$, полученное перемножением α и β .

УТВЕРЖДЕНИЕ: Это умножение ассоциативно, и удовлетворяет $\alpha \wedge \beta = (-1)^{ij}\beta \wedge \alpha$.

ОПРЕДЕЛЕНИЕ: Алгебра $\Lambda^*M := \oplus_i \Lambda^i M$ с определенной выше алгебраической структурой называется **алгеброй де Рама** многообразия.

ЗАМЕЧАНИЕ: Пусть $\varphi: M_1 \to M_2$ — гладкое отображение многообразий. Тогда задано отображение $\varphi^*: \Lambda^*M_2 \to \Lambda^*M_1$, переводящее дифференциальную форму $\eta \in \Lambda^k M_2$ в форму $(v_1,...,v_k) \in TM_1 \to \eta(D_\varphi v_1,...,D_\varphi(v_k))$.

Дифференциал де Рама

ОПРЕДЕЛЕНИЕ: Дифференциал де Рама $d: \Lambda^*M \to \Lambda^{*+1}M$ есть \mathbb{R} -линейное отображение, которое удовлетворяет следующим условиям.

- (i) Для любого $f \in \Lambda^0 = C^\infty M$, df есть элемент $\Lambda^1 M$, который равен дифференциалу $df \in \Omega^1 M$.
- (ii) (Правило Лейбница) $d(a \wedge b) = da \wedge b + (-1)^j a \wedge db$, для любых $a \in \Lambda^i M, b \in \Lambda^j M$.
 - (iii) $d^2 = 0$.

УТВЕРЖДЕНИЕ:

Дифференциал де Рама однозначно задается этими условиями.

Однозначность определения: Алгебра де Рама порождена $C^{\infty}M$ и 1-формами вида df, а на таких формах дифференциал де Рама уже задан.

Существование, для $M=\mathbb{R}^n$: Пусть $t_1,...,t_n$ – координатные функции на \mathbb{R}^n , а $\alpha\in \Lambda^*\mathbb{R}^n$ – какой-то моном, полученный произведением нескольких dt_i . Дифференциал де Рама переводит $f\alpha$ в $\sum_i \frac{df}{dt_i} dt_i \wedge \alpha$, для любой функции $f\in C^\infty\mathbb{R}^n$.

Существование, для любого многообразия: Зададим d локально по формуле, указанной выше. Это определение согласовано с заменой координат в силу единственности d, значит, d согласован с переклейкой карт. \blacksquare

Голоморфные функции

ОПРЕДЕЛЕНИЕ: Функция $f: M \to \mathbb{C}$ на почти комплексном многообразии называется голоморфной, если $df \in \Lambda^{1,0}(M)$.

ЗАМЕЧАНИЕ: Легко привести пример почти комплексного многообразия, на котором вовсе нет голоморфных функций. Например, S^6 со стандартной G_2 -инвариантной почти комплексной структурой.

Голоморфные функции на \mathbb{C}^n

TEOPEMA: Пусть $f: M \to \mathbb{C}$ — дифференцируемая функция на открытом подмножестве $M \subset \mathbb{C}^n$, с естественной комплексной структурой. Тогда следующие свойства f равносильны.

- (1) f голоморфна (в смысле вышеприведенного определения)
- (2) Дифференциал $Df \in TM^* \otimes_{\mathbb{R}} \mathbb{C}$ рассматриваемый как \mathbb{C} -значная функция на $T_xM = T_x\mathbb{C}^n$, является \mathbb{C} -линейным.
- (3) Для каждой комплексной аффинной прямой $L \subset \mathbb{C}^n$, ограничение $f|_L$ голоморфно как функция одного переменного
- (4) f разлагается в ряд Тэйлора по комплексным координатам в окрестности каждой точки $x \in M$.

Доказательство: (1) и (2) равносильны (тавтологически).

Равносильность (1) и (3) тоже очевидна, потому что для каждой форма $\theta \in \Lambda^{1,0}(M)$, ограничение на 1-мерные подпространства имеет тип (1,0), и наоборот - если оно имеет тип (1,0) на таких подпространствах, это (1,0)-форма.

Наконец, разложение в ряд Тэйлора следует из формулы Коши для голоморфной функции одного переменного с остаточным членом. ■

Голоморфные отображения

ОПРЕДЕЛЕНИЕ: Пусть (M, I_M) и (N, I_N) – почти комплексные многообразия, а $f: M \to N$ – гладкое отображение. Оно называется голоморфным, если $f^*(\Lambda^{1,0}(N)) \subset \Lambda^{0,1}(M)$.

ЗАМЕЧАНИЕ: Это эквивалентно тому, что $df: T_xM \to T_{f(x)}N$ комплексно-линейно.

ЗАМЕЧАНИЕ: Композиция голоморфных отображений голоморфна.

Комплексные многообразия

ОПРЕДЕЛЕНИЕ: Пучок колец есть пучок $U \to \mathcal{F}(U)$ такой, что на каждом $\mathcal{F}(U)$ задана структура кольца, а отображения ограничения являются гомоморфизмами.

ОПРЕДЕЛЕНИЕ: Окольцованное пространство есть топологическое пространство с заданным на нем пучком колец.

ПРИМЕР: Открытый шар $B \subset \mathbb{C}^n$ с пучком \mathcal{O}_B голоморфных функций является окольцованным пространством.

ОПРЕДЕЛЕНИЕ: Комплексное многообразие (M, \mathcal{O}_M) есть окольцованное пространство, которое локально изоморфно (как окольцованное пространство) открытому шару (B, \mathcal{O}_B)

Другие определения комплексных многообразий

ЗАМЕЧАНИЕ: Пусть U_1, U_2 — два открытых подмножества в комплексном многообразии, а f_1, f_2 — изоморфизмы U_1, U_2 с открытым шаром. Композиция $f_1f_2^{-1}$ задает изоморфизм окольцованных пространств $f_1(U_1 \cap U_2) \to f_2(U_1 \cap U_2)$. В силу Следствия (*), этот изоморфизм голоморфен.

СЛЕДСТВИЕ: Мы получаем, что комплексное многообразие имеет атлас из открытых подмножеств, которые гомеоморфны открытым шарам в \mathbb{C}^n , а функции перехода голоморфны. Это еще одно определение комплексного многообразия.

ОПРЕДЕЛЕНИЕ: Пусть (M,I) — почти комплексное многообразие, а \mathcal{O}_M пучок голоморфных функций на нем. Оно называется интегрируемым, если (M,\mathcal{O}_M) — комплексное многообразие.

Интегрируемость почти комплексных многообразий

ЗАМЕЧАНИЕ: Почти комплексная структура восстанавливается из комплексной структуры на M следующим образом.

- (1) Рассмотрим расслоение $\Lambda^{1,0}(M)\subset \Lambda^1(M,\mathbb{C})$, порожденное дифференциалами голоморфных функций, и пусть $\Lambda^{0,1}(M):=\overline{\Lambda^{1,0}(M)}$.
- (2) Определим $I \in \operatorname{End}(\Lambda^1 M \otimes \mathbb{C})$ таким образом, что $I|_{\Lambda}^{1,0}(M) = \sqrt{-1}$ и $I|_{\Lambda}^{0,1}(M) = -\sqrt{-1}$. Очевидно, $I^2 = -\operatorname{Id}$.
- (3) Этот эндоморфизм вещественный, поскольку $\overline{I}=I$ в силу его определения. Поэтому он переводит $\Lambda^1(M,\mathbb{R})$ в себя.

Мы получили функтор (строгий, полный) из категории комплексных многообразий в категорию почти комплексных.

Важная задача комплексной геометрии – описать его образ.

Формальная интегрируемость

ОПРЕДЕЛЕНИЕ: Векторное поле на многообразии это дифференцирование кольца функций.

ОПРЕДЕЛЕНИЕ: Голоморфным векторным полем на комплексном многообразии называется векторное поле, которое переводит голоморфные функции в голоморфные.

УПРАЖНЕНИЕ: Докажите, что в комплексных координатах $z_1,...,z_n$ на \mathbb{C}^n , голоморфные векторные поля записываются в виде $X = \sum \varphi_i \frac{d}{dz_i}$, где $\varphi_1,...,\varphi_n$ – голоморфные функции.

СЛЕДСТВИЕ: Голоморфные векторные поля на комплексном многообразии порождают $T^{1,0}M$ над $C^\infty M$

СЛЕДСТВИЕ: На комплексном многообразии, коммутатор векторных полей типа (1,0) имеет тип (1,0): $[T^{1,0}M,T^{1,0}M]\subset T^{1,0}M$.

ОПРЕДЕЛЕНИЕ: Почти комплексное многообразие называется формально интегрируемым, если $[T^{1,0}M,T^{1,0}M]\subset T^{1,0}M$

TEOPEMA: (Newlander-Nirenberg) Формально интегрируемое почти комплексное многообразие гладкости \mathbb{C}^2 интегрируемо.

Связность на расслоении

ЗАМЕЧАНИЕ: Пространство сечений расслоения B на гладком многообразии обозначается B.

ОПРЕДЕЛЕНИЕ: Связность на векторном расслоении B есть отображение $B \stackrel{\nabla}{\to} \Lambda^1 M \otimes B$ удовлетворяющее $\nabla (fb) = df \otimes b + f \nabla b$ для любых $b \in B, \ f \in C^{\infty}M$.

ЗАМЕЧАНИЕ: Если $X \in TM$ — векторное поле, $b \in B$, то $\nabla_X b$ — сечение B, полученное как $\langle \nabla b, X \rangle$.

ЗАМЕЧАНИЕ: Связность на B определяет связность на двойственном расслоении B^* , и наоборот, по формуле

$$\langle \nabla_X(b), \xi \rangle + \langle b, \nabla_X(\xi) \rangle = \operatorname{Lie}_X(\langle b, \xi \rangle).$$

ЗАМЕЧАНИЕ: Для любого тензорного расслоения $\mathcal{B}_1 := B^* \otimes B^* \otimes ... \otimes B^* \otimes B \otimes B \otimes ... \otimes B$ связность на B определяет связность на \mathcal{B}_1 по формуле Лейбница:

$$\nabla(b_1 \otimes b_2) = \nabla(b_1) \otimes b_2 + b_1 \otimes \nabla(b_2).$$

Кручение

ОПРЕДЕЛЕНИЕ: Пусть ∇ – связность на TM. Кручение ∇ есть тензор

$$T_{\nabla}(\eta)(X,Y) = \eta \bigg(\nabla_X(Y) - \nabla_Y(X) - [X,Y]\bigg).$$

УПРАЖНЕНИЕ: Проверьте, что это тензор.

ОПРЕДЕЛЕНИЕ: Связность на римановом многообразии (M,g) называется **ортогональной**, если $\nabla(g) = 0$, и **связностью Леви-Чивита**, если она ортогональна и без кручения.

TEOPEMA: ("основная теорема дифференциальной геометрии") Каждое риманово многообразие допускает связность Леви-Чивита, и она единственна.