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Plan.

1. Motivation: classification of 2-dimensional solvmanifolds, Inoue surfaces,

Bogomolov’s theorem.

2. Number theory: global and local fields, absolute value function, complex

and real embeddings, the Dirichlet’s unit theorem.

3. Inoue surfaces of class S0. Curves on Inoue surfaces.

4. Oeljeklaus-Toma manifolds. Subvarieties in Oeljeklaus-Toma manifolds.

5. The adele ring and the strong approximation theorem.
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Solvmanifolds

DEFINITION: Let M be a smooth manifold equipped with a transitive action

of solvable Lie group. Then M is called a solvmanifold.

REMARK: All solvmanifolds are obtained as quotient spaces, M = G/H.

DEFINITION: An integrable complex structure on a real Lie algebra g is

a subalgebra g1,0 ⊂ g⊗R C such that g1,0 ⊕ g1,0 = g⊗R C

REMARK: Right-invariant complex structures on a connected real Lie group

are in 1 to 1 correspondence with integrable complex structures on its

Lie algebra.

DEFINITION: A complex solvmanifold is a solvmanifold M = G/H equipped

with a complex structure, in such a way that G has a right-invariant complex

structure, and the projection G−→M is holomorphic.

REMARK: Solvmanifolds are usually non-homogeneous (as complex

manifolds).
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Examples of 2-dimensional solvmanifolds

REMARK: “A surface” here would always mean “a compact complex

manifold of complex dimension 2”.

DEFINITION: Let T , T ′ be elliptic curves. Kodaira surface is a locally

trivial holomorphic fibration over T with fiber T ′ and non-trivial Chern class.

A remark on terminology: These are “primary” Kodaira surfaces. “Sec-

ondary” ones are obtained by taking finite unramified quotients.

REMARK: The Kodaira surface is diffeomorphic to a quotient S1 × (G/GZ)

where G is a 3-dimensional Heisenberg group. In particular, Kodaira surface

is a complex nilmanifold.
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Inoue surfaces

DEFINITION: (”Bogomolov’s theorem”) Inoue surface is a complex sur-

face without curves and with b2 = 0.

REMARK: Original definiton of Inoue was constructive, in terms of explicit

action by matrices, and the above result is a theorem proven by Bogomolov

in 1976.

Bogomolov, F. A. Classification of surfaces of class VII0 with b2 = 0. Izv.

Akad. Nauk SSSR Ser. Mat. 40 (1976), no. 2, 273-288, 469.

Math. Reviews: ...This unreadable paper contains several new ideas and claims two im-

portant results; unfortunately many of the arguments in the proof are subject to doubt. It

would seem highly desirable to know whether proofs along the lines given here can be made

to work. ... Without going into detailed criticism of the author’s written style, the reviewer

would like to comment that in the parts of the paper which he has been able to understand

the author’s disorganised shorthand and bestial notation put a burden on the reader which

he considers unacceptable in a published paper. – Miles Reid

Bogomolov’s proof uses the action of the Galois group [C : Q].
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History of Inoue surfaces

In 1991, a new proof appeared, based on Yang-Mills theory:

Li, J.; Yau, S.-T.; Zheng, F. A simple proof of Bogomolov’s theorem on class

VII0 surfaces with b2 = 0. Illinois J. Math. 34 (1990), no. 2, 217-220.

This proof was wrong.

Finally, correct proofs were obtained.

Teleman, Andrei Dumitru Projectively flat surfaces and Bogomolov’s theorem

on class VII0 surfaces. Internat. J. Math. 5 (1994), no. 2, 253-264.

Li, Jun; Yau, Shing-Tung; Zheng, Fangyang On projectively flat Hermitian

manifolds. Comm. Anal. Geom. 2 (1994), no. 1, 103-109.

6



Oeljeklaus-Toma manifolds Misha Verbitsky

Complex solvmanifolds of dimension 2

THEOREM: (Hasegawa) Let M be a complex surface which is diffeomorphic

to a solvmanifold. Then M is (up to a finite unramified quotient) isomorpic

to one the following.

1. Compact complex torus

2. Kodaira surface

3. Inoue surface.

This theorem directly follows from Bogomolov’s theorem, Hasegawa’s

result on Kähler solvmanifolds, and Kodaira’s classification.

To define the Inoue surfaces explicitly, we use the number theory.
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Normed fields

DEFINITION: An absolute value on a field k is a function | · | : k −→ R>0,

satisfying the following

1. Zero: |x| = 0 ⇔ x = 0.

2. Multiplicativity: |xy| = |x||y|.

3. There exists c > 0 such that | · |c satisfies the triangle inequality.

EXAMPLE: The usual absolute value on Q, R, C.

EXAMPLE: Let p – be a prime number, and m,n ∈ Z coprime with p. Define

p-adic absolute value on Q via |mn p
k| := p−k.

REMARK: p-adic absolute value satisfies an additional “non-archimedean ax-

iom”: |x+y| 6 max(|x|, |y|). Such absolute values are called non-archimedean.

REMARK: Any power of non-archimedean absolute value is again non-

archimedean, and satisfies the triangle inequality.
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Normed fields and topology

DEFINITION: Let | · | be an absolute value on a field F . Consider topology
on F with open sets generated by

Bε(x) := {y ∈ k | |x− y| < ε}.

Absolute values are called equivalent if they induce the same topology.

THEOREM: Absolute values | · |1, | · |2 are equivalent if and only if

| · |1 = | · |c2 for some c > 0.

THEOREM: (Ostrowski) Every absolute value on Q is equivalent to the

usual (”archimedean”) one or to p-adic one.

DEFINITION: A completion of a field k under an absolute value | · | is a
completion of k in a metric | · |c, where c > 0 is a constant such that | · |c
satisfies the triangle inequality.

REMARK: A completion of a field is again a field.

EXAMPLE: A completion of Q under the p-adic absolute value is called a

field of p-adic numbers, denoted Qp.
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Local fields

DEFINITION: A finite extension K : k of fields is a field K ⊃ k which
is finite-dimensional as a vector space over k. A number field is a finite
extension of Q. Functional field is a finite extension of Fp(t). Global field
is a number or functional field. Local field is a completion of a global field
under a non-trivial absolute value.

THEOREM: Let k be a field which is complete and locally compact under
some absolute value. Then k is a local field.

DEFINITION: Let K:k be a finite extension, and x ∈ K. Consider the mul-
tiplication by x as a k-linear endomorphism of K. Define the norm NK/k(x)
as a determinant of this operator.

REMARK: Norm defines a homomorphism of multiplicative groups K∗ −→ k∗.

REMARK: For Galois extensions, the norm NK/k(x) is a product of all
elements conjugate to x.

THEOREM: Let K :k be a finite extension of local fields, degree n. Then an
absolute value on k is uniquely extended to K. Moreover, this extension

is expressed as |x| :=
∣∣∣NK/k(x)

∣∣∣1n.
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Absolute values and extensions of global fields

CLAIM: Let A,B be extensions of a field k, char k = 0, where A:k is finite.

Consider A ⊗k B as an k-algebra. Then A ⊗k B is a direct sum of fields,

containing A and B.

THEOREM: Let k be a number field, | · | an absolute value, K :k a finite

extension, and k – its completion. Consider a decomposition K ⊗k k into a

direct sum of fields K ⊗k k :=
⊕
iKi. Then each extension of an absolute

value | · | from k to K is induced from some Ki, and all such extensions

are non-equivalent.

REMARK: When k = Q, and | · | is the usual (archimedean) absolute value,

we obtain that all Ki are extensions of R, that is, isomorphic to R or C. This

gives

COROLLARY: For each number field K of degree n over Q, there

exists only a finite number of different homomorphisms K ↪→ C, all of

them injective. Denote by s the number of embeddings whose image lies in

R ⊂ C (such an embedding is called real), and 2t the number of embedding,

whose image does not lie in R (“complex embeddings). Then s+ 2t = n.
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Dirichlet unit theorem

DEFINITION: Let K :Q be a number field of degree n. The ring of integers
OK ⊂ K is an integral closure of Z in K, that is, the set of all roots in K

of monic polynomials P (t) = tn + an−1t
n−1 + an−2t

n−2 + ...+ a0 with integer
coefficients ai ∈ Z.

CLAIM: An additive group O+
K is a finitely generated abelian group of

rank n.

DEFINITION: A unit of a ring OK is an element u ∈ OK, such that u−1

also belongs to OK.

REMARK: u ∈ OK is a unit if and only if the norm NK/Q(x) ∈ Z is invertible,
that is, NK/Q(x) = ±1.

Dirichlet’s unit theorem: Let K be a number field which has s real em-
beddings and 2t complex ones. Then the group of units O∗K is isomorphic
to G × Zt+s−1, where G is a finite group of roots of unity contained in K.
Moreover, if s > 0, one has G = ±1.

REMARK: For a quadratic field, the group of units is a group of solutions
of Pell’s equation.
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Cubic fields and complex surfaces

Let K :Q be a cubic extension of Q which has 2 complex embeddings τ , τ and

one real one σ (such an extension is obtained by adding all roots of a cubic

polynomial which has exactly one real root).

REMARK: Due to Dirichlet theorem, O∗K is isomorphic to Z × {±1}. Let

O∗,+K := σ−1(R>0) ∩ O∗K. Then the group O∗,+K is isomorphic to Z.

Consider the action of O+
K
∼= Z3 on R3 = C× R

ρ+(x)(z, t) := (z + τ(x), t+ σ(x)).

Let Γ be a semidirect product O+
K o O∗,+K , defined from the natural action

of O∗,+K on O+
K . Define an action of Γ on C × H, where H is an upper

halfplane, as follows.

The subgroup O+
K ⊂ Γ acts on C×H = C×R×R>0 by translations as above

(trivially on the last argument), and O∗,+K acts multiplicatively as

ρ∗(ξ)(z, z′) := (τ(ξ)z, σ(ξ)z′).
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Inue surfaces of type S0

DEFINITION: The Inoue surface of type S0 is a quotient (C×H)/Γ.

Its properties: 1. It is a compact, complex solvmanifold

2. Inoue surface admits a flat connection preserving the complex struc-
ture (by construction).

3. Its cohomology are the same as of S3 × S1.

THEOREM: The Inoue surface M := (C×H)/Γ has no complex curves

Proof. Step 1: Consider on C × H a function ϕ(z, z′) := log Im(z′). Since
Γ multiplies Im(z′) by a number, the form dϕ is Γ-invariant. Let θ be the
corresponding 1-form on M .

Step 2: The 2-form ω0 := d(Iθ) has Hodge type (1,1) and is positive
definite on the leaves of the foliation {z} ×H ⊂ C×H. Indeed,

ω0 =
√
−1 ∂∂ logϕ =

√
−1

dz′ ∧ dz′

| im z′|2
,

where ω0 is the Poincare metric on H.
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Curves on Inoue surfaces

Step 3: Let Σ ⊂ TM be the null-space of the form ω0. It is a holomorphic,

involutive foliation, whose leaves are obtained from C× {z′} ⊂ C×H

Step 4: For any complex curve C on M ,
∫
C ω0 = 0, because ω0 is exact.

Therefore, C is tangent to a leaf of Σ. It remains to show that Σ has no

compact leaves.

Step 5: Let Σ0 be a leaf of Σ. Its preimage in C×H contains the set

Σ̃0 :=
⋃

z∈C,ζ∈O+
K

(
z, (z′+ σ(ζ))

)

where z′ ∈ H is a fixed point. Since the image of σ is dense in R, the closure

Σ̃0 contains C× R× Im(z′).

Step 6: Therefore, the closure Σ0 ⊂ M is at least 3-dimensional, hence

Σ has no compact leaves.
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Oeljeklaus-Toma manifolds

Let K be a number field which has 2t complex embedding denoted τi, τ i and
s real ones denoted σi, s > 0, t > 0.

Let O∗,+K := O∗K ∩
⋂
i σ
−1
i (R>0). Choose in O∗,+K a free abelian subgroup O∗,UK

of rank s such that the quotient Rs/O∗,UK is compact, where O∗,UK is mapped

to Rt as ξ −→
(

log(σ1(ξ)), ..., log(σt(ξ))
)
. Let Γ := O+

K oO∗,UK .

DEFINITION: An Oeljeklaus-Toma manifold is a quotient Ct × Hs/Γ,
where O+

K acts on Ct ×Ht as

ζ(x1, ..., xt, y1, ..., ys) =

(
x1 + τ1(ζ), ..., xt + τt(ζ), y1 + σ1(ζ), ..., ys + σs(ζ)

)
,

and O∗,UK as

ξ(x1, ..., xt, y1, ..., ys) =

(
x1, ..., xt, σ1(ξ)y1, ..., σt(ξ)yt

)

THEOREM: (Oeljeklaus-Toma) The OT-manifold M := Ct × Hs/Γ is a
compact complex manifold, without any non-constant meromorphic func-
tions. When t = 1, it is locally conformally Kähler. When s = 1, t = 1, it is
an Inoue surface of class S0.
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Complex geometry of Oeljeklaus-Toma manifolds

THEOREM: (Ornea-V.) Let K be a number field which has s real em-

beddings and 2t complex ones, t = 1, s > 0. Then the corresponding

Oeljeklaus-Toma manifold has no non-trivial complex subvarieties.

Proof. Step 1: Consider on C × Ht a function ϕ(z, z1, ..., zs) :=
∏
i Im(zi).

Since Γ multiplies Im(zi) by a number, the form d logϕ is Γ-invariant. Let

θ denote the corresponding 1-form on M = C×Hs/Γ.

Step 2: The 2-form ω0 := d(Iθ) has Hodge type (1,1) and positive definite

on the leaves of the foliation {z} ×Ht ⊂ C×Ht

ω0 =
√
−1 ∂∂ logϕ =

√
−1

∑
i

dzi ∧ dzi
| im zi|2

.

Also, ω0 > 0.

Step 3: Let Σ ⊂ TM be the null-foliation of ω0 (the foliation generated by the

null eigenspace). It is a holomorphic, involutive, smooth 1-dimensional

foliation, with the leaves which are obtained from C× {(z1, ..., zs)} ⊂ C×Hs.

17



Oeljeklaus-Toma manifolds Misha Verbitsky

Step 4: For any complex k-dimensional subvariety C ⊂ M , the integral∫
C ω

k
0 = 0, because ω0 is exact. Therefore, C is at each point tangent to

a leaf of Σ. Since Σ is 1-dimensional, this means that C contains at
least one leaf of Σ.

Step 5: It remains to show that any variety which contains a leaf of Σ
coinsides with M.

Step 6: Let Σ0 be a leaf of Σ. Its preimage in C×Hs contains a set

Σ̃0(z1, ..., zs) :=
⋃

z∈C,ζ∈O+
K

(
z, (z1 + σ1(ζ), ..., zs + σs(ζ))

)

where z1, ..., zs ∈ Hs is some fixed point.

Step 7: We reduced the theorem to the following statement

CLAIM: A closure of Σ̃0(z1, ..., zs) contains a set

Zα1,...,αs := {(ζ, ζ1, ..., ζs) | im ζi = αi, i = 1, ..., s}

where αi = im zi.

Indeed, the smallest complex subspace containing TxZα1,...,αs is TxM.

18



Oeljeklaus-Toma manifolds Misha Verbitsky

The adele ring

The previous claim is immediately implied by the following statement, applied

to the set ρ1, ..., ρm of all real embedings.

Theorem 1 Let K :Q be a number field with has 2t complex embeddings

τ1, τ1, ... and s real ones, σ1, ..., σt, ρ1, ..., ρm – embeddings K to C or R,

and each of τi and σi appears once, except one. Consider the map R :

K −→ Ra × Cb, R(ξ) := ρ1(ξ), ..., ρm(ξ). Then the image of OK is dense in

Ra × Cb.

The proof is based on the strong approximation theorem (which is a “mod-

ern version” of Chinese remainders theorem).

DEFINITION: Adelic group AK is a subset of the product
∏
νKν of all

completions of K for all equivalence classes ν of absolute value functions,

consisting of sequences (xν1, ..., xνn, ...) where |xνi| 6 1 for all i except the

finite number.

REMARK: Tikhonov’s theorem implies that AK is locally compact.
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The strong approximation theorem

Strong approximation theorem: Consider the natural embedding K ⊂ AK.
Then its image is a discrete, cocompact subgroup. Moreover, the pro-

jection of AK
Pν0−→

∏
ν 6=ν0

Kν to the product of all completions except one
maps K to a dense subset of Rν0(AK).

REMARK: Further on, K is considered as a subring of AK.

Proof of Theorem 1. Step 1: Let OAK be a ring of all integer adeles,
that is, such (xν1, ..., xνn, ...) ∈ AK, that |xνi| 6 1 for each non-archimedean
absolute value. Then OK = K ∩ OAK.

Step 2: Let now P : AK −→A1 be a projection of AK to the product of
all completions except one archimedean. Since OAK is open in AK, its
projection to A1 is open in A1 (the projection is an open map).

Step 3: We obtain that the image P (K)∩P (OAK) is dense in P (OAK). From
Step 1, we obtain that P (K) ∩ P (OAK) coinsides with P (OK).

Step 4: We proved that P (OK) is dense in A1 ∩ P (OAK). Therefore, its
projection to the product of all archimedean completions except one
is also dense.
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