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Geometric structures

DEFINITION: “Geometric structure” on a manifold is a collection of

tensors satisfying a certain set of differential equations.

Let me give some examples.

DEFINITION: Let M be a smooth manifold. An almost complex structure

is an operator I : TM −→ TM which satisfies I2 = − IdTM .

The eigenvalues of this operator are ±
√
−1 . The corresponding eigenvalue

decomposition is denoted TM ⊗ C = T0,1M ⊕ T1,0(M).

DEFINITION: An almost complex structure is integrable if ∀X,Y ∈ T1,0M ,

one has [X,Y ] ∈ T1,0M . In this case I is called a complex structure op-

erator. A manifold with an integrable almost complex structure is called a

complex manifold.

DEFINITION: Symplectic form on a manifold is a non-degenerate differ-

ential 2-form ω satisfying dω = 0.
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Teichmüller space of geometric structures

Let C be the set of all geometric structures of a given type, say, complex, or

symplectic. We put topology of uniform convergence with all derivatives on

C. Let Diff0(M) be the connected component of its diffeomorphism group

Diff(M) (the group of isotopies).

DEFINITION: The quotient C/Diff0 is called Teichmüller space of geo-

metric strictures of this type.

DEFINITION: The group Γ := Diff(M)/Diff0(M) is called the mapping

class group of M . It acts on Teich by homeomorphisms.

DEFINITION: The orbit space C/Diff = Teich /Γ is called the moduli space

of geometric structure of this type.

Today I will describe Teich and Γ in some interesting cases and explain some

important concepts, such as ergodicity of Γ-action.

3



Ergodic actions and symplectic packing M. Verbitsky

Teichmüller space for symplectic structures

DEFINITION: Let Γ(Λ2M) be the space of all 2-forms on a manifold M ,
and Symp ⊂ Γ(Λ2M) the space of all symplectic 2-forms. We equip Γ(Λ2M)
with C∞-topology of uniform convergence on compacts with all derivatives.
Then Γ(Λ2M) is a Frechet vector space, and Symp a Frechet manifold.

DEFINITION: Consider the group of diffeomorphisms, denoted Diff or Diff(M)
as a Frechet Lie group, and denote its connected component (“group of iso-
topies”) by Diff0. The quotient group Γ := Diff /Diff0 is called the mapping
class group of M .

DEFINITION: Teichmüller space of symplectic structures on M is de-
fined as a quotient Teichs := Symp /Diff0. The quotient Teichs /Γ = Symp /Diff,
is called the moduli space of symplectic structures.

REMARK: In many cases Γ acts on Teichs with dense orbits, hence the
moduli space is not always well defined.

DEFINITION: Two symplectic structures are called isotopic if they lie in
the same orbit of Diff0, and diffeomorphic is they lie in the same orbit of
Diff.
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Moser’s theorem

DEFINITION: Define the period map Per : Teichs −→H2(M,R) mapping

a symplectic structure to its cohomology class.

THEOREM: (Moser, 1965)

The Teichmüler space Teichs is a manifold (possibly, non-Hausdorff), and

the period map Per : Teichs −→H2(M,R) is locally a diffeomorphism.

The proof is based on another theorem of Moser.

Theorem 1: (Moser)

Let ωt, t ∈ S be a smooth family of symplectic structures, parametrized by

a connected manifold S. Assume that the cohomology class [ωt] ∈ H2(M) is

constant in t. Then all ωt are diffeomorphic.
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The proof of Moser’s theorem

THEOREM: (Moser)

The Teichmüler space Teichs is a manifold (possibly, non-Hausdorff), and

the period map Per : Teichs −→H2(M,R) is locally a diffeomorphism.

Proof. Step 1: We can locally find a section S for the Diff0-action on Symp,

producing a local decomposition Symp = O×S, where O is a Diff0-orbit. Here

O and S are both Frechet manifolds.

Step 2: The period map P : S −→H2(M,R) is a smooth submersion. Its

fibers are submanifolds, hence locally path connected. By Theorem 1, the

fibers of P are 0-dimensional. Therefore, P is locally a diffeomorphism.
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Non-Hausdorff points on symplectic Teichmüller space

Example of D. McDuff found in Salamon, Dietmar, Uniqueness of symplectic

structures, Acta Math. Vietnam. 38 (2013), no. 1, 123-144.

Let M = S1 × S1 × S2 × S2 with coordinates θ1, θ2 ∈ S1 ⊂ C∗ and z1, z2 ∈ S2.

Let ϕθ,z CP1 −→ CP1 be a rotation around the axis z ∈ CP1 by the angle

θ. Consider the diffeomorphism Ψ : M −→M mapping (θ1, θ2, z1, z2) to

(θ1, θ2, z1, ϕθ1,z1
(z2)).

THEOREM: Let ωλ be the product symplectic form on M = T2×CP1×CP1

obtained as a product of symplectic forms of volume 1, 1, λ on T2, CP1, CP1.

The form Ψ∗(ω1) is homologous, but not diffeomorphic to ω1. However,

the form Ψ∗(ωλ) is diffeomorphic to ωλ for any λ 6= 1.

(D. McDuff, Examples of symplectic structures, Invent. Math. 89 (1987), 13-36.)
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Ergodic group action

DEFINITION: Let (M,µ) be a space with finite measure, and G a group

acting on M preserving µ. This action is ergodic if all G-invariant measurable

subsets M ′ ⊂M satisfy µ(M ′) = 0 or µ(M\M ′) = 0.

CLAIM: Let M be a manifold, µ a Lebesgue measure, and G a group acting

on M ergodically. Then the set of non-dense orbits has measure 0.

Proof. Step 1: Consider a non-empty open subset U ⊂M . Then µ(U) > 0,

hence M ′ := G · U satisfies µ(M\M ′) = 0. For any orbit G · x not intersecting

U , x ∈M\M ′. Therefore the set ZU of such orbits has measure 0.

Proof. Step 2: Choose a countable base {Ui} of topology on M . Then the

set of points in dense orbits is M\
⋃
iZUi.

CLAIM: A group G acts on M ergodically if and only if any L2-integrable

G-invariant function on M is constant almost everywhere.
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Mapping class group action on Teichs(A)

DEFINITION: Symplectic volume of a symplectic manifold (M,ω), dimRM =

2n, is
∫
M ωn. Fix a positive number A, and let Teichs(A) be the Teichmüller

space of symplectic forms with symplectic volume A.

REMARK: The mapping class group Diff
Diff0

acts on H2(M) and on Teichs(A)

Quite often, this group is arithmetic, and this action is ergodic.

In this case, all semicontinuous symplectic invariants, evaluated on dense

orbits, depend only on the symplectic volume.

Known cases: K3 surface, hyperkähler manifolds, tori R2n/Z2n, n > 1.

9



Ergodic actions and symplectic packing M. Verbitsky

Kähler manifolds

DEFINITION: A Riemannian metric g on a complex manifold (M, I) is called

Hermitian if g(Ix, Iy) = g(x, y). In this case, g(x, Iy) = g(Ix, I2y) = −g(y, Ix),

hence ω(x, y) := g(x, Iy) is skew-symmetric.

DEFINITION: The differential form ω ∈ Λ1,1(M) is called the Hermitian

form of (M, I, g).

DEFINITION: A complex Hermitian manifold (M, I, ω) is called Kähler if

dω = 0. The cohomology class [ω] ∈ H2(M) of a form ω is called the Kähler

class of M , and ω the Kähler form.

REMARK: This is equivalent to ∇ω = 0, where ∇ is Levi-Civita connection.
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Hyperkähler manifolds

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian
structure g and a triple of complex structures I, J,K, satisfying quaternionic
relations I ◦ J = −J ◦ I = K, such that g is Kähler for I, J,K.

DEFINITION: Let M be a Riemannian manifold, x ∈ M a point. The
subgroup of GL(TxM) generated by parallel translations (along all paths) is
called the holonomy group of M .

REMARK: A hyperkähler manifold can be defined as a manifold which
has holonomy in Sp(n) (the group of all endomorphisms preserving I, J,K).

CLAIM: A compact hyperkähler manifold M has maximal holonomy of
Levi-Civita connection Sp(n) if and only if π1(M) = 0, h2,0(M) = 1.

THEOREM: (Bogomolov decomposition)
Any compact hyperkähler manifold has a finite covering isometric to
a product of a torus and several maximal holonomy hyperkähler mani-
folds.

Further on, we shall always assume that our hyperkähler manifolds have max-
imal holonomy.
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Teichmüller space of symplectic structures for hyperkähler manifolds

DEFINITION: A symplectic structure ω on a hyperkähler manifold is called

standard if ω is a Kähler form for some hyperkähler structure.

REMARK: Any known symplectic structure on a hyperkähler manifold or a

torus is of this type. It was conjectured that non-standard symplectic

structures don’t exist.

THEOREM: (E. Amerik, V.) Let M be a maximal holonomy hyperkähler

manifold. Then the period map Per : Teichs −→H2(M,R) is an open em-

bedding on the set of all standard symplectic structures, and its image

is the set of all cohomology classes v such that q(ω, ω) > 0, where q is a

quadratic form on cohomology defined below.

REMARK: A similar result is proven for standard symplectic structures on a

torus.
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Bogomolov-Beauville-Fujiki form

THEOREM: (Fujiki) Let η ∈ H2(M), and dimM = 2n, where M is hy-

perkähler (of maximal holonomy). Then
∫
M η2n = cq(η, η)n, for some primitive

integer quadratic form q on H2(M,Z), and c > 0 an integer number.

Definition: This form is called Bogomolov-Beauville-Fujiki form.

Remark: q has signature (b2−3,3). It is positive definite on 〈Ω,Ω, ω〉, where

ω is a Kähler form.
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Ergodic group action

DEFINITION: Let (M,µ) be a space with measure, and G a group acting on

M preserving measure. This action is ergodic if all G-invariant measurable

subsets M ′ ⊂M satisfy µ(M ′) = 0 or µ(M\M ′) = 0.

DEFINITION: A lattice in a Lie group is a discrete subgroup Γ ⊂ G such

that G/Γ has finite volume with respect to Haar measure.

THEOREM: (Calvin C. Moore, 1966) Let Γ be a lattice in a non-compact

simple Lie group G with finite center, and H ⊂ G a non-compact semisimple

Lie subgroup. Then the left action of Γ on G/H is ergodic.
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Ratner’s theorem

EXAMPLE: By Borel and Harish-Chandra theorem, an integer lattice in a
simple Lie group has finite covolume.

DEFINITION: Unipotent element in a Lie group G ⊂ GL(V ) is an exponent
of a nilpotent element in its Lie algebra.

THEOREM: Let H ⊂ G be a Lie subroup generated by unipotents, and
Γ ⊂ G an arithmetic lattice. Then the closure of any Γ-orbit in G/H is an
orbit of a Lie subgroup S ⊂ G, such that S ∩ Γ ⊂ S is a lattice.

EXAMPLE: Let V be a real vector space with integer lattice and a non-
degenerate rational bilinear symmetric form of signature (3, k), k > 0, G :=
SO+(V ) a connected component of the isometry group, H ⊂ G the stabiliser
of a positive vector v ∈ V , H ∼= SO+(2, k), and Γ ⊂ G an integer lattice.
Consider the quotient Per := G/H. Then the closure of Γ · J in G/H is an
orbit of a closed Lie subgroup S ⊂ G containing H. Moreover, S is the
smallest rational subgroup with this property.

REMARK: In this situation, either v is proportional to a rational vector,
or S = G. Indeed, there are no intermediate subgroups SO+(2, k) ( S (
SO+(3, k).
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Ergodicity of mapping class group action

THEOREM: (V., 2009)
Let M be a maximal holonomy hyperkähler manifold. Then the image of
the mapping class group Γ in O(H2(M,Z)) has finite index.

COROLLARY: Γ acts on Teichs(A) with dense orbits.

Proof: Applying Moore’s theorem to Γ inside G = SO(H2(M,R), q) and H
the stabilizer of ω ∈ H2(M,R), we obtain that the action of Γ on Teichs(A) ⊂
H2(M,R) is ergodic on forms with fixed volume, hence has dense orbits.

THEOREM: Let M be a hyperkähler manifold, Γ its mapping class group,
and Teichs the Teichmüller space of symplectic structures of hyperkähler type.
Then the dense orbits correspond to irrational symplectic classes, and
rational symplectic classes have closed orbits.

Proof: Follows from Ratner’s theorems on classification of ergodic measures.

COROLLARY: On a hyperkähler manifold or a compact torus of dimension
2i > 2, any semicontinuous invariant of symplectic structures is constant
on irrational symplectic forms of standard type and fixed volume.
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Gromov Capacity

DEFINITION: Let M be a symplectic manifold. Define Gromov capac-

ity µ(M) as the supremum of radii r, for all symplectic embeddings from a

symplectic balls Br to M .

DEFINITION: Define symplectic volume of a symplectic manifold (M,ω)

as
∫
M ω

1
2 dimM .

REMARK: Gromov capacity is obviously bounded by the symplectic volumes:

a manifold of Gromov capacity r has volume ≥ Vol(Br). However, there are

manifolds of infinite volume with finite Gromov capacity.

THEOREM: (Gromov)

Consider a symplectic cylinder Cr := R2n−2×Br with the product symplectic

structure. Then the Gromov capacity of Cr is r.

REMARK: This result was used by Gromov to study symplectic packing in

CP2. He found the packing constant for 2 equal balls in CP2.
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Ekeland-Hofer theorem

THEOREM: (Ekeland-Hofer)

Let M , N be symplectic manifolds, and ϕ : M −→N a diffeomorphism.

Suppose that for all sufficiently small, convex open sets U ⊂ M , Gromov

capacity satisfies µ(U) = µ(ϕ(U)). Then ϕ is a symplectomorphism.

REMARK: This can be used to define C0- (continuous) symplectomor-

phisms.

REMARK: Ekeland-Hofer theorem implies a theorem of Gromov-Eliashberg:

symplectomorphism group is C0-closed in the group of diffeomorphisms.
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Packing constants

DEFINITION: Let (K,ωK) be a 2n-dimensional symplectic manifold with
finite volume, and (M,ωM) a symplectic manifold. We assume that K admits
a symplectic embedding to a bounded domain in R2n with a flat symplectic
structure. The corresponding packing constant is supremum of all ε such
that (K, εωK) admits a symplectic embedding to (M,ωM). It is easy to see that
the packing constant is semicontinuous as a function of ωM (Entov-V.)

REMARK: Packing constant is a generalization of Gromov’s symplectic ca-
pacity.

REMARK: Applying ergodicity to packing constants, we obtain that these
packing constant are universal, that is, independent from the choice of
an irrational symplectic structure as long as its volume stays constant. In-
deed, the packing constants are semicontinuous as functions of ω, and any
semicontinuous, MCG-invariant function is constant on dense orbits.

REMARK: Packing constants were computed explicitly when K is a union of
symplectic balls, ellipsoids, and M is a torus or a hyperkähler manifold. In this
situation, the only obstruction to packing is the symplectic volume of M
(Entov-V.). For more exotic shapes, nothing is known, though everybody is
sure that for the hyperkähler manifolds and the tori the packing should
be unobstructed, for any symplectic domain K ⊂ R2n.
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