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Egrodic group action on manifolds

DEFINITION: Let Γ be a group acting on a manifold M by measurable

maps. We say that the action of Γ is ergodic if any Γ-invariant measurable

subset of M is full measure or measure 0.

REMARK: Equivalently, (M,Γ) is ergodic iff any Γ-invariant integrable

function is constant almost everywhere.

REMARK: From ergodicity it follows that almost all orbits of Γ are dense,

but converse is not true.
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Egrodic group action on K3

THEOREM: (Serge Cantat)

Let M be a K3-surface which is obtained as a degree (2,2,2)-hypersurface

in CP1 × CP1 × CP1, and Γ its automorphism group. Then Γ acts on M

ergodically.

REMARK: Since M has degree 2 in each variable, it has 2:1 projection

to CP1 × CP1. This gives an order 2 automorphism exchanging these two

preimages. We obtain 3 order 2 automorphisms acting on M . “It is easy to

see” (Cantat) that they generate the free product (Z/2Z) ∗ (Z/2Z) ∗ (Z/2Z).

REMARK: (Z/2Z) ∗ (Z/2Z) ∗ (Z/2Z) is an index 6 subgroup in PGL(2,Z) =

(Z/2Z) ∗ (Z/2Z) ∗ (Z/2Z) o Σ3, where the projection to the symmetric group

is given by PGL(2,Z)→PGL(2,Z/2) = Σ3 (Goldman, MacShane, Stantchev,

2015).

REMARK: The aim of this talk: construct hyperkähler manifolds with

ergodic automorphism groups.
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Hyperkähler manifolds

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian

structure g and a triple of complex structures I, J,K, satisfying quaternionic

relations I ◦ J = −J ◦ I = K, such that g is Kähler for I, J,K.

REMARK: A hyperkähler manifold has three symplectic forms

ωI := g(I·, ·), ωJ := g(J ·, ·), ωK := g(K·, ·).

REMARK: This is equivalent to ∇I = ∇J = ∇K = 0: the parallel translation

along the connection preserves I, J,K.

DEFINITION: Let M be a Riemannian manifold, x ∈ M a point. The

subgroup of GL(TxM) generated by parallel translations (along all paths) is

called the holonomy group of M .

REMARK: A hyperkähler manifold can be defined as a manifold which

has holonomy in Sp(n) (the group of all endomorphisms preserving I, J,K).

REMARK: Hyperkähler manifolds are holomorphically symplectic. In-

deed, Ω := ωJ +
√
−1 ωK is a holomorphic symplectic form on (M, I).
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Holomorphically symplectic manifolds

DEFINITION: A holomorphically symplectic manifold is a complex man-
ifold equipped with non-degenerate, holomorphic (2,0)-form.

THEOREM: (Calabi-Yau) A compact, Kähler, holomorphically symplectic
manifold admits a unique hyperkähler metric in any Kähler class.

DEFINITION: For the rest of this talk, a hyperkähler manifold is a com-
pact, Kähler, holomorphically symplectic manifold.

DEFINITION: A hyperkähler manifold M is called simple, or maximal
holonomy, or IHS if π1(M) = 0, H2,0(M) = C.

Bogomolov’s decomposition: Any hyperkähler manifold admits a finite cov-
ering which is a product of a torus and several simple hyperkähler manifolds.

Further on, all hyperkähler manifolds are assumed to be simple.

THEOREM: (“Bochner’s vanishing”)
Let M be a maximal holonomy hyperkähler manifold. Then Hp,0 = 0 for p

odd, and Hp,0 = C for p even.
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The Bogomolov-Beauville-Fujiki form

THEOREM: (Fujiki). Let η ∈ H2(M), and dimM = 2n, where M is hy-

perkähler. Then
∫
M η2n = cq(η, η)n, for some primitive integer quadratic

form q on H2(M,Z), and c > 0 a rational number.

Definition: This form is called Bogomolov-Beauville-Fujiki form. It is

defined by the Fujiki’s relation uniquely, up to a sign. The sign is

determined from the following formula (Bogomolov, Beauville)

λq(η, η) =
∫
X
η ∧ η ∧Ωn−1 ∧Ωn−1−

−
n− 1

2n

(∫
X
η ∧Ωn−1 ∧Ωn

)(∫
X
η ∧Ωn ∧Ωn−1

)
where Ω is the holomorphic symplectic form, and λ > 0.

Remark: q has signature (3, b2 − 3). It is negative definite on primitive

forms, and positive definite on 〈Ω,Ω, ω〉, where ω is a Kähler form.
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Holomorphic Lagrangian fibrations

THEOREM: (Matsushita, 1997)

Let π : M→X be a surjective holomorphic map from a hyperkähler manifold

M to X, whith 0 < dimX < dimM . Then dimX = 1/2 dimM, and the

fibers of π are holomorphic Lagrangian (this means that the holomorphic

symplectic form vanishes on π−1(x)).

DEFINITION: Such a map is called a holomorphic Lagrangian fibration.

REMARK: The base of π is conjectured to be rational. Hwang (2007)

proved that X ∼= CPn, if it is smooth. Matsushita (2000) proved that it has

the same rational cohomology as CPn.
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The hyperkähler SYZ conjecture

DEFINITION: A cohomology class η ∈ H1,1(M) is nef if it lies in the closure

of the Kähler cone

A trivial observation: Let π : M→X be a holomorphic Lagrangian fibration,

and ωX a Kähler class on X. Then η := π∗ωX is nef, and satisfies q(η, η) = 0.

DEFINITION: A line bundle is called semiample if LN is generated by its

holomorphic sections, which have no common zeros.

The hyperkähler SYZ conjecture: Let L be a line bundle on a hy-

perkähler manifold, with q(c1(L), c1(L)) = 0, and c1(L) nef. Then L is

semiample.

REMARK: The corresponding projective map M→P(H0(M,L)∗) is a La-

grangian fibration to its image, as follows from Matsushita theorem.

REMARK: Hyperkähler SYZ conjecture is proven for all known examples

of hyperkähler manifolds.
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The hyperbolic space and its isometries

REMARK: The group O(m,n),m, n > 0 has 4 connected components. We

denote the connected component of 1 by SO+(m,n). We call a vector v

positive if its square is positive.

DEFINITION: Let V be a vector space with quadratic form q of signature

(1, n), Pos(V ) = {x ∈ V | q(x, x) > 0} its positive cone, and P+V projec-

tivization of Pos(V ). Denote by g any SO(V )-invariant Riemannian structure

on P+V . Then (P+V, g) is called hyperbolic space, and the group SO+(V )

the group of oriented hyperbolic isometries.
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Classification of automorphisms of hyperbolic space

Theorem-definition: Let n > 0, and α ∈ SO+(1, n) is a non-trivial oriented

isometry acting on V = R1,n. Then one and only one of these three cases

occurs

(i) α has an eigenvector x with q(x, x) > 0 (α is “elliptic isometry”)

(ii) α has an eigenvector x with q(x, x) = 0 and a real eigenvalue λx

satisfying |λx| > 1 (α is “hyperbolic isometry”)

(iii) α has a unique eigenvector x with q(x, x) = 0 (α is “parabolic

isometry”).

REMARK: All eigenvalues of elliptic and parabolic isometries have abso-

lute value 1. Hyperbolic and elliptic isometries are semisimple (that is,

diagonalizable over C), parabolic are not.

DEFINITION: The quadric {l ∈ PV | q(l, l) = 0} is called the absolute.

It is realized as the boundary of the hyperbolic space P+V . Then elliptic

isometries have no fixed points on the absolute, parabolic isometries

have 1 fixed point on the absolute, and hyperbolic isometries have 2.
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Automorphisms of hyperkahler manifolds

REMARK: Serge Cantat argues for a change of terminology to use “loxo-

dromic” instead of “hyperbolic”, and using “hyperbolic” for automorphisms

which act trivially on a codimension 2 hyperspace.

REMARK: Let M be a hyperkähler manifold. Then the BBF form has

signature (1, b2 − 3) on H1,1(M).

DEFINITION: An automorphism of a hyperkähler manifold (M, I) is called

elliptic (parabolic, hyperbolic) if it is elliptic (parabolic, hyperbolic) on

H
1,1
I (M,R).

REMARK: Let p be a parabolic automorphism of a hyperkähler manifold, and

η its fixed point in H1,1(M) associated with the fixed point in the absolute.

Then η is proportional to an integer cohomology class which lies on

the boundary of the Kähler cone. Indeed, η can be obtained as a limit

pi(w) for any Kähler class w on M .
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Ergodic automorphism groups

Today’s main result:

Theorem 1: Let M be a hyperkähler manifold admitting two parabolic au-

tomorphisms p1, p2 which have distinct fixed points on the absolute. Assume

that SYZ conjecture holds for the corresponding two fixed points on the

boundary of the Kähler cone. Then p1, p2 generate a group acting on M

ergodically.

REMARK: If M admits a parabolic automorphism and Aut(M) is not virtually

abelian, M admits parabolic automorphisms which have different fixed points

on the absolute.

REMARK: In “Construction of automorphisms of hyperkähler manifolds” (E.

Amerik, M. Verbitsky, 2017, Compositio) we proved that any hyperkähler

manifold with b2 sufficiently big admits a projective deformation Mp

with a parabolic automorphism. Moreover, the automorphism group of Mp

is arithmetic, hence Mp admits parabolic automorphisms with different

fixed points in the absolute.
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Parabolic automorphisms and Lagrangian fibrations

REMARK: The following theorem is due to Federico Lo Bianco, “Dynamics

of birational transformations of hyperkähler manifolds : invariant foliations

and fibrations”, Theorem B.

THEOREM: Let p be a parabolic automorphism of an algebraic hyperkähler

manifold M , and π : M→X a Lagrangian fibration such that for a Kähler

class ω on X, its pulback π∗ω is the class on the boundary of the Kähler cone

fixed by p. Then a certain power of p preserves the fibers of π.

REMARK: In this case we say that p preserves the Lagrangian fibration

π. Such a fibration is unique, because π is uniquely determined by the

cohomology class π∗ω, and p fixes one and only one point in the absolute.
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Parabolic automorphisms and translations

REMARK: A complex torus T is not a priori a group, unless you fix the origin.

However, its translation group, denoted by Tr(T ), is a complex, commutative

Lie group, and it is isomorphic to T as a manifold.

CLAIM: A translation τx of a torus T by a vector x ∈ Tr(T ) has all its orbits

dense if and only if x is not contained in a smaller torus T ′ ⊂ Tr(T ). In this

case, τx is ergodic.

Theorem 2: Let p be a parabolic automorphism of a hyperkähler manifold

preserving a Lagrangian fibration π : M→X. Then there exists a full measure,

Baire second category subset R ⊂ X, such that for all r ∈ R the fibers π−1(r)

are tori, and the automorphism p acts on π−1(r) with dense orbits.

REMARK: Theorem 2 implies Theorem 1. Indeed, let Γ be the group

generated by two parabolic automorphisms p1, p2, ϕ a Γ-invariant measurable

function, and π1, π2 the Lagrangian fibrations associated with p1, p2. Since

ϕ is pi-invariant, it is constant almost everywhere on almost all fibers of

πi. However, a function which is constant on fibers of πi is constant on M ,

because these fibers are transversal and complementary.
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Hodge structures

DEFINITION: Let VR be a real vector space. A (real) Hodge structure

of weight w on a vector space VC = VR ⊗R C is a decomposition VC =⊕
p+q=w V

p,q, satisfying V p,q = V q,p. It is called integer or rational Hodge

structure if one fixes an integer or rational lattice VZ or VQ in VR. A Hodge

structure is equipped with U(1)-action, with u ∈ U(1) acting as up−q on V p,q.

Morphism of Hodge structures is an inteber/rational map which is U(1)-

invariant.

DEFINITION: Polarization on a rational Hodge structrure of weight w is

a U(1)-invariant non-degenerate 2-form h ∈ V ∗Q ⊗ V
∗
Q (symmetric or antisym-

metric depending on parity of w) which satisfies

−
√
−1 p−qh(x, x) > 0 (∗)

(“Riemann-Hodge relations”) for each non-zero x ∈ V p,q.
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Hodge structures of weight 1

DEFINITION: Two complex tori T1, T2 are called isogeneous if there exists

a surjective finite holomorphic map T1→T2.

REMARK: The category of complex tori is equivalent to the category

of integer Hodge structures of weight (1,0) and (0,1) (such Hodge

structures are called “Hodge structures of weight 1”). The category of

complex tori up to isogeny is equivalent to the category of rational Hodge

structures of weight 1.

REMARK: Under this correspondence, abelian manifolds correspond to

Hodge structures admitting a polarization.

CLAIM: The category C of rational Hodge structures admitting a po-

larization is semisimple, that is, any object of C is a direct sum of irreducible

ones.

REMARK: In particular, the category of abelian manifolds up to isogeny

is semisimple.
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Variations of Hodge structures

DEFINITION: Let M be a complex manifold. A variation of Hodge struc-

tures (VHS) on M is a complex vector bundle (B,∇) with a flat connection

equipped with a parallel anti-complex involution and Hodge structures at each

point, B =
⊕
p+q=wB

p,q which satisfy the following conditions:

(a) the polarization and the real structure are parallel with respect with ∇.

(b) (“Griffiths transversality condition”) ∇1,0(Bp,q) ⊂ Bp,q ⊕Bp+1,q−1

CLAIM: Polarized integer variations of Hodge structures of weight 1 are the

same as holomorphic Abelian fibrations.

EXAMPLE: Let π : M→X be a proper holomorphic surjective submersion.

Consider the bundle V := Rkπ∗(CM) with the fiber in x the k-th cohomol-

ogy of π−1(x), the Hodge decomposition coming from the complex structure

on π−1(x), and the Gauss-Manin connection. This defines a variation of

Hodge structures.
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Deligne’s semisimplicity theorem

THEOREM: (Deligne’s semisimplicity theorem, P. Deligne, “Un théorème

de finitude pour la monodromie”, 1984)

Let V be a polarized, rational variation of Hodge structures over a quasipro-

jective base M . Then the underlying flat bundle can be decomposed as

V =
⊕
iWi ⊗ Li, where Li correspond to pairwise non-isomorphic irreducible

representations of π1(M), and Wi are trivial representations. Moreover, Wi

are equipped with a Hodge structure, Li are equipped with the struc-

ture of a VHS, and the decomposition V =
⊕
iWi⊗Li is compatible with

the Hodge structures on Wi, Li.

Applying this result to abelian fibration, notice that one of two summands in

Wi ⊗ Li has weight 0, and another has weight 1. This gives a corollary:

COROLLARY: Let V be an abelian fibration (that is, a fibration with fiber

an abelian variety, admitting a globally defined integer Kähler class). After

passing to an isogeneous fibration V1, we can decompose V1 onto a product

of abelian fibrations with an irreducible monodromy of Gauss-Manin

connection and an isotrivial fibration.
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AM-GM inequality and products of Hermitian forms

REMARK: Let α1, ..., αn be positive numbers. Their arithmetic mean is∑
αi
n and geometric mean is n

√∏
iαi. AM-GM inequality states that

∑
αi
n >

n
√∏

iαi and the equality happens if and only if all αi are equal.

COROLLARY: Let α1, ..., αn be positive numbers such that
∑
αi = n and∏

αi = 1. Then all αi = 1.

Lemma 1: Let ω1, ω2 be Hermitian forms on a vector space V = Cn, and h1, h2

the corresponding Hermitian forms. Suppose that ω1 ∧ ωn−1
2 = ωn1 = ωn2.

Then ω1 = ω2.

Proof: Simultaneous diagonalization theorem implies that h2 can be diago-

nalized in an orthonormal basis for h1. Let A = ω2ω
−1
1 be the corresponding

diagonal matrix. Clearly,
ω1∧ωn−1

2
ωn2

= 1
n Tr(A) and

ωn1
ωn2

= detA. By AM-GM

inequality, ω1 ∧ ωn−1
2 = ωn1 = ωn2 implies that all eigenvalues of A are 1, and

ω1 = ω2.
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Lagrangian fibrations and Fujiki formula

Proposition 1: (Voisin) Let π : M→X be a Lagrangian fibration on a
hyperkähler manifold. Then any smooth fiber T := π−1(x) is a torus, and,
moreover, the natural restriction map H2(M)→H2(T ) has rank 1.

Proof. Step 1: The normal bundle NT of T is trivial because NT = π∗TxX,
and its tangent bundle is trivial because it is dual to the normal bundle. Then
T is a torus, because torus is the only compact Kähler manifold with trivial
tangent bundle.

Step 2: Let ω0 ∈ H2(X) be a class on X satisfying
∫
X ω

n
0 = 1, where n =

dimCX, and ω1, ω2 ∈ H2(M) any cohomology classes. We need to show
that ω1|T is proportional to ω2|T . Since T is Lagrangian, the (2,0)-forms are
restricted to zero, and we may assume that ω1, ω2 ∈ H1,1(M). Picking ω1
Kähler and replacing ω2 by an appropriate linear combination, we may also
assume that ω2 is also Kähler. Clearly, q(π∗ω0, π

∗ω0) = 0. By Fujiki formula,∫
T ω

n
i =

∫
M ωni ∧ π

∗ωn0 = q(ωi, π
∗ω0)n and∫

T
ω2 ∧ ωn−1

1 =
∫
M
ω2 ∧ ωn−1

1 π∗ωn0 = q(ω2, π
∗ω0)q(ω1, π

∗ω0)n−1.

Rescaling ωi in such a way that q(ω1, π
∗ω0) = q(ω2, π

∗ω0) = 1, we obtain that
ω1 ∧ ωn−1

2 = ωn1 = ωn2 for two Kähler classes on a torus. By Lemma 1, this
implies that ω1 is cohomologous to ω2.
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Oguiso’s theorem on Lagrangian fibrations

Corollary 1: (similar to K. Oguiso, “Picard number of the generic fiber
of an abelian fibered hyperkaehler manifold”, Theorem 1.1)
Let π : M→X be a Lagrangian fibration on a hyperkähler manifold, X0 ⊂ X

a smooth locus of π, and V the variation of Hodge structures over X0 asso-
ciated with H1(π−1(x)), for all x ∈ X0. Then V is irreducible as a variation
of Hodge structures. Moreover, the monodromy representation is irre-
ducible, unless dimCM = 2.

The proof is implied by Voisin’s theorem (if V is not irreducible, the sym-
plectic form can be decomposed) and Deligne’s invariant cycle theorem (all
monodromy invariant vectors in V are obtained as restrictions of the coho-
mology classes in H∗(M)).

PROPOSITION: Let p be a parabolic automorphism of a hyperkähler man-
ifold, preserving a Lagrangian fibration π : M→X. For a regular value
x ∈ X, let px ∈ Tr(π−1(x)) be the corresponding parallel transport of the
torus π−1(x), and Px its closure in Tr(π−1(x)). Assume that the dimension of
Px is maximal. Then Px is a monodromy-invariant subtorus Tr(π−1(x)).

The proof (omitted) uses the semi-continuity of Px as a function of x ∈ X.
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Ergodicity of parabolic automorphisms

COROLLARY: Let π : M→X be a Lagrangian fibration, and p a parabolic

automorphism. Then p acts with dense orbits on a general fiber of π.

Proof: The closure of an orbit of maximal dimension is given by a monodromy-

invariant subspace in H1(π−1(x)). However, the monodromy of the Gauss-

Manin local system is irreducible by Corollary 1.
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