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Kähler manifolds

THEOREM: Let (M, I, g) be an almost complex Hermitian manifold. Then

the following conditions are equivalent.

(i) The complex structure I is integrable, and the Hermitian form ω is closed.

(ii) One has ∇(I) = 0, where ∇ is the Levi-Civita connection

∇ : End(TM)−→ End(TM)⊗ Λ1(M).

DEFINITION: A complex Hermitian manifold M is called Kähler if either
of these conditions hold. The cohomology class [ω] ∈ H2(M) of a form ω

is called the Kähler class of M . The set of all Kähler classes is called the

Kähler cone.

REMARK: (the Hodge decomposition)

The second cohomology of a compact Kähler manifold are decomposed

as H2(M,C) = H2,0(M) ⊕ H1,1(M) ⊕ H0,2(M), where H2,0(M) is the space
of all cohomology classes which can be represented by holomorphic (2,0)-
forms, H0,2(M) its complex conjugate, and H1,1(M) the classes which can
be represented by I-invariant forms.
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Kummer surfaces

DEFINITION: A holomorphically symplectic manifold is a complex man-

ifold equipped with a non-degenerate, holomorphic (2,0)-form.

EXAMPLE: For any complex manifold M , the total space T ∗M of the

cotangent bundle is holomorphically symplectic.

REMARK: T ∗CP1 is a resolution of a singularity C2/±1.

REMARK: Let M be a 2-dimensional complex manifold which is holomorphic

symplectic form outside of singularities, which are all of form C2/±1. Then

its resolution is also holomorphically symplectic.

DEFINITION: Take a 2-dimensional complex torus T , then all 16 singular

points of T/±1 are of this form. Its resolution T̃/±1 is called a Kummer

surface. It is holomorphically symplectic.

DEFINITION: A K3 surface is a complex deformation of a Kummer surface.
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K3 surfaces

“K3: Kummer, Kähler, Kodaira” (the name is due to A. Weil).

“Faichan Kangri is the 12th highest mountain on Earth.”
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Topology of K3 surfaces

THEOREM: Any complex compact surface with c1(M) = 0 and H1(M) = 0

is isomorphic to K3. Moreover, it is Kähler.

CLAIM: 1. π1(K3) = 0,

2. The second homology and cohomology of K3 is torsion-free.

3. b2(K3) = 22, and the signature of its intersection form is (3,19).

4. The intersection form of K3 is even, and the corresponding quadratic

lattice is U3 ⊕ (−E8)2, where U =

(
0 1
1 0

)
and E8 is the Coxeter matrix for

the group E8.
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Complex surfaces and hyperbolic lattices

REMARK: Let M be a complex surface of Kähler type. Then the signature

of the intersection form on H1,1(M) is (1, h1,1 − 1).

THEOREM: Let M be a projective K3 surface, and Aut(M) its group of

complex automorphisms. Then the natural map Aut(M)−→O(H1,1(M))

has finite kernel.

REMARK: Since H1,1(M) has signature (1, h1,1−1), the group O+(H1,1(M))

is the group of isometries of a hyperbolic space PH1,1(M). If we are inter-

ested in dynamics, the “finite kernel” does not make any difference. The

automorphisms of M can be classified in the same way as isometries

of the hyperbolic space of constant sectional curvature.
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Classification of automorphisms of a hyperbolic space

REMARK: The group O(m,n),m, n > 0 has 4 connected components. We
denote the connected component of 1 by SO+(m,n). We call a vector v

positive if its square is positive.

DEFINITION: Let V be a vector space with quadratic form q of signature
(1, n), Pos(V ) = {x ∈ V | q(x, x) > 0} its positive cone, and P+V projec-
tivization of Pos(V ). Denote by g any SO(V )-invariant Riemannian structure
on P+V . Then (P+V, g) is called hyperbolic space, and the group SO+(V )
the group of oriented hyperbolic isometries.

Theorem-definition: Let n > 0, and α ∈ SO+(1, n) is an isometry acting on
V . Then one and only one of these three cases occurs

(i) α has an eigenvector x with q(x, x) > 0 (α is “elliptic isometry”)
(ii) α has an eigenvector x with q(x, x) = 0 and eigenvalue λx satisfying

|λx| > 1 (α is “hyperbolic (or loxodromic) isometry”)
(iii) α has a unique eigenvector x with q(x, x) = 0. (α is “parabolic

isometry”)

DEFINITION: An automorphism of a K3 surface (M, I) is called elliptic
(parabolic, hyperbolic) if it is elliptic (parabolic, hyperbolic) on H

1,1
I (M,R).

7



Hyperbolic geometry and hyperkähhler manifolds M. Verbitsky

Classification of automorphisms of complex surfaces

CLAIM: An elliptic automorphism of K3 has finite order.

Proof: Any elliptic isometry of Hn which has infinite orbit generates a group

which is dense in a compact torus, and O(H1,1(M,Z)) is discrete.

REMARK: Recall that an elliptic surface is a complex surface equipped

with a holomorphic, surjective map M −→ C to a curve, with general fibers

elliptic curves.

THEOREM: (M. Gizatullin) Let τ be a parabolic automorphism of a com-

plex surface M . Then M is elliptic, and a finite power of τ preserves the

fibers of elliptic projection.

THEOREM: (S. Cantat) Let τ be a parabolic automorphism of a surface

preserving an elliptic fibration π : M −→ C. Then the action of τ has dense

orbits on almost all fibers of π.
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Egrodic group action on manifolds

DEFINITION: Let Γ be a group acting on a manifold M by measurable

maps. We say that the action of Γ is ergodic if any Γ-invariant measurable

subset of M is full measure or measure 0.

REMARK: Equivalently, (M,Γ) is ergodic iff any Γ-invariant integrable

function is constant almost everywhere.

CLAIM: Let M be a manifold, µ a Lebesgue measure, and G a group acting

on M ergodically. Then the set of non-dense orbits has measure 0.

Proof. Step 1: Consider a non-empty open subset U ⊂M . Then µ(U) > 0,

hence M ′ := G · U satisfies µ(M\M ′) = 0. For any orbit G · x not intersecting

U , x ∈M\M ′. Therefore the set ZU of such orbits has measure 0.

Proof. Step 2: Choose a countable base {Ui} of topology on M . Then the

set of points in dense orbits is M\
⋃
iZUi.

REMARK: From ergodicity it follows that almost all orbits of Γ are dense,

but converse is not true.
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Egrodic group action on K3

THEOREM: (Serge Cantat)

Let M be a K3-surface which is obtained as a degree (2,2,2)-hypersurface

in CP1 × CP1 × CP1, and Γ its automorphism group. Then Γ acts on M

ergodically.

REMARK: Since M has degree 2 in each variable, it has 2:1 projection

to CP1 × CP1. This gives an order 2 automorphism exchanging these two

preimages. We obtain 3 order 2 automorphisms acting on M . They generate

the free product (Z/2Z) ∗ (Z/2Z) ∗ (Z/2Z).

REMARK: (Z/2Z)∗(Z/2Z)∗(Z/2Z) is an index 6 subgroup in PGL(2,Z) =

(Z/2Z)∗ (Z/2Z)∗ (Z/2Z)oΣ3, where the projection to the symmetric group is

given by PGL(2,Z)−→ PGL(2,Z/2) = Σ3 (Goldman, MacShane, Stantchev,

2015).
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Hyperkähler manifolds

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian

structure g and a triple of complex structures I, J,K, satisfying quaternionic

relations I ◦ J = −J ◦ I = K, such that g is Kähler for I, J,K.

REMARK: A hyperkähler manifold has three symplectic forms

ωI := g(I·, ·), ωJ := g(J ·, ·), ωK := g(K·, ·).

REMARK: This is equivalent to ∇I = ∇J = ∇K = 0: the parallel translation

along the connection preserves I, J,K.

DEFINITION: Let M be a Riemannian manifold, x ∈ M a point. The

subgroup of GL(TxM) generated by parallel translations (along all paths) is

called the holonomy group of M .

REMARK: A hyperkähler manifold can be defined as a manifold which

has holonomy in Sp(n) (the group of all endomorphisms preserving I, J,K).

REMARK: Hyperkähler manifolds are holomorphically symplectic. In-

deed, Ω := ωJ +
√
−1 ωK is a holomorphic symplectic form on (M, I).
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Holomorphically symplectic manifolds

DEFINITION: A holomorphically symplectic manifold is a complex man-

ifold equipped with non-degenerate, holomorphic (2,0)-form.

THEOREM: (Calabi-Yau) A compact, Kähler, holomorphically symplectic

manifold admits a unique hyperkähler metric in any Kähler class.

DEFINITION: For the rest of this talk, a hyperkähler manifold is a com-

pact, Kähler, holomorphically symplectic manifold.

DEFINITION: A hyperkähler manifold M is called maximal holonomy, or

IHS if π1(M) = 0, H2,0(M) = C.

Bogomolov’s decomposition: Any hyperkähler manifold admits a finite cov-

ering which is a product of a torus and several simple hyperkähler manifolds.

Further on, all hyperkähler manifolds are assumed to be of maximal

holonomy.
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The Bogomolov-Beauville-Fujiki form

THEOREM: (Fujiki). Let η ∈ H2(M), and dimM = 2n, where M is hy-

perkähler. Then
∫
M η2n = cq(η, η)n, for some primitive integer quadratic

form q on H2(M,Z), and c > 0 a rational number.

Definition: This form is called Bogomolov-Beauville-Fujiki form. It is

defined by the Fujiki’s relation uniquely, up to a sign. The sign is

determined from the following formula (Bogomolov, Beauville)

λq(η, η) =
∫
X
η ∧ η ∧Ωn−1 ∧Ωn−1−

−
n− 1

2n

(∫
X
η ∧Ωn−1 ∧Ωn

)(∫
X
η ∧Ωn ∧Ωn−1

)
where Ω is the holomorphic symplectic form, and λ > 0.

Remark: q has signature (3, b2 − 3). It is negative definite on primitive

forms, and positive definite on 〈Ω,Ω, ω〉, where ω is a Kähler form.
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Holomorphic Lagrangian fibrations

THEOREM: (Matsushita, 1997)

Let π : M −→X be a surjective holomorphic map from a hyperkähler manifold

M to X, whith 0 < dimX < dimM . Then dimX = 1/2 dimM, and the

fibers of π are holomorphic Lagrangian (this means that the holomorphic

symplectic form vanishes on π−1(x)).

DEFINITION: Such a map is called a holomorphic Lagrangian fibration.

REMARK: The base of π is conjectured to be rational. Hwang (2007)

proved that X ∼= CPn, if it is smooth. Matsushita (2000) proved that it has

the same rational cohomology as CPn.
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The hyperkähler SYZ conjecture

DEFINITION: A cohomology class η ∈ H1,1(M) is nef if it lies in the closure

of the Kähler cone

A trivial observation: Let π : M −→X be a holomorphic Lagrangian fibra-

tion, and ωX a Kähler class on X. Then η := π∗ωX is nef, and satisfies

q(η, η) = 0.

DEFINITION: A line bundle is called semiample if LN is generated by its

holomorphic sections, which have no common zeros.

The hyperkähler SYZ conjecture: Let L be a line bundle on a hy-

perkähler manifold, with q(c1(L), c1(L)) = 0, and c1(L) nef. Then L is

semiample.

REMARK: The corresponding projective map M −→ P(H0(M,L)∗) is a La-

grangian fibration to its image, as follows from Matsushita theorem.

REMARK: Hyperkähler SYZ conjecture is proven for all known examples

of hyperkähler manifolds.
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Automorphisms of hyperkahler manifolds

REMARK: Let M be a hyperkähler manifold. Then the BBF form has
signature (1, b2−3) on H1,1(M). An automorphism of a hyperkähler manifold
(M, I) is called elliptic (parabolic, hyperbolic) if it is elliptic (parabolic,
hyperbolic) on H

1,1
I (M,R).

REMARK: Let p be a parabolic automorphism of a hyperkähler manifold, and
η its fixed point in H1,1(M) associated with the fixed point in the absolute.
Then η is proportional to an integer cohomology class which lies on
the boundary of the Kähler cone. Indeed, η can be obtained as a limit
pi(w) for any Kähler class w on M .

THEOREM: (Federico Lo Bianco)
Let p be a parabolic automorphism of an algebraic hyperkähler manifold M ,
and π : M −→X a Lagrangian fibration such that for a Kähler class ω on X,
its pulback π∗ω is the class on the boundary of the Kähler cone fixed by p.
Then a certain power of p preserves the fibers of π.

REMARK: In this case we say that p preserves the Lagrangian fibration π.
If SYZ comjecture holds for M , a power of any parabolic automorphism
preserves a Lagrangian fibration. Such a fibration is unique, because π is
uniquely determined by the cohomology class π∗ω, and p fixes one and only
one point in the absolute.
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Ergodic automorphism groups

Today’s main result:

Theorem 1: Let M be a hyperkähler manifold admitting two parabolic au-

tomorphisms p1, p2 which have distinct fixed points on the absolute. Assume

that SYZ conjecture holds for the corresponding two fixed points on the

boundary of the Kähler cone. Then p1, p2 generate a group acting on M

ergodically.

REMARK: If M admits a parabolic automorphism and Aut(M) is not virtually

abelian, M admits parabolic automorphisms which have different fixed

points on the absolute.

REMARK: In “Construction of automorphisms of hyperkähler manifolds”

(E. Amerik, M. V., 2017, Compositio) we proved that any hyperkähler

manifold with b2 sufficiently big admits a projective deformation Mp

with a parabolic automorphism. Moreover, the automorphism group of Mp

is arithmetic, hence Mp admits parabolic automorphisms with different

fixed points in the absolute.
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Parabolic automorphisms and translations

REMARK: A complex torus T is not a priori a group, unless you fix the origin.
However, its translation group, denoted by Tr(T ), is a complex, commutative
Lie group, and it is isomorphic to T as a manifold.

CLAIM: A translation τx of a torus T by a vector x ∈ Tr(T ) has all its orbits
dense if and only if x is not contained in a smaller torus T ′ ⊂ Tr(T ). In this
case, τx is ergodic.

Theorem 2: Let p be a parabolic automorphism of a hyperkähler manifold
preserving a Lagrangian fibration π : M −→X. Then there exists a full
measure, Baire second category subset R ⊂ X, such that for all r ∈ R the
fibers π−1(r) are tori, and the automorphism p acts on π−1(r) with dense
orbits.

REMARK: Theorem 2 implies Theorem 1. Indeed, let Γ be the group
generated by two parabolic automorphisms p1, p2, ϕ a Γ-invariant measurable
function, and π1, π2 the Lagrangian fibrations associated with p1, p2. Since
ϕ is pi-invariant, it is constant almost everywhere on almost all fibers of
πi. However, a function which is constant on fibers of πi is constant on M ,
because these fibers are transversal and complementary.
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