Complex geometry and the isometries of the hyperbolic space

Misha Verbitsky

Tel Aviv University, July 11, 2024, Seminar in Real and Complex Geometry

Joint work with E. Amerik

Kähler manifolds

THEOREM: Let (M, I, g) be an almost complex Hermitian manifold. Then the following conditions are equivalent.

(i) The complex structure I is integrable, and the Hermitian form ω is closed.

(ii) One has $\nabla(I) = 0$, where ∇ is the Levi-Civita connection

 ∇ : End $(TM) \longrightarrow$ End $(TM) \otimes \Lambda^1(M)$.

DEFINITION: A complex Hermitian manifold M is called Kähler if either of these conditions hold. The cohomology class $[\omega] \in H^2(M)$ of a form ω is called **the Kähler class** of M. The set of all Kähler classes is called **the Kähler cone**.

REMARK: (the Hodge decomposition)

The second cohomology of a compact Kähler manifold are decomposed as $H^2(M,\mathbb{C}) = H^{2,0}(M) \oplus H^{1,1}(M) \oplus H^{0,2}(M)$, where $H^{2,0}(M)$ is the space of all cohomology classes which can be represented by holomorphic (2,0)forms, $H^{0,2}(M)$ its complex conjugate, and $H^{1,1}(M)$ the classes which can be represented by *I*-invariant forms.

Kummer surfaces

DEFINITION: A holomorphically symplectic manifold is a complex manifold equipped with a non-degenerate, holomorphic (2,0)-form.

EXAMPLE: For any complex manifold M, the total space T^*M of the cotangent bundle is holomorphically symplectic.

REMARK: $T^* \mathbb{C}P^1$ is a resolution of a singularity $\mathbb{C}^2/\pm 1$.

REMARK: Let *M* be a 2-dimensional complex manifold which is holomorphic symplectic form outside of singularities, which are all of form $\mathbb{C}^2/\pm 1$. Then **its resolution is also holomorphically symplectic.**

DEFINITION: Take a 2-dimensional complex torus T, then all 16 singular points of $T/\pm 1$ are of this form. Its resolution $T/\pm 1$ is called a Kummer surface. It is holomorphically symplectic.

DEFINITION: A K3 surface is a complex deformation of a Kummer surface.

K3 surfaces

"K3: Kummer, Kähler, Kodaira" (the name is due to A. Weil).

"Faichan Kangri is the 12th highest mountain on Earth."

Topology of K3 surfaces

THEOREM: Any complex compact surface with $c_1(M) = 0$ and $H^1(M) = 0$ is isomorphic to K3. Moreover, it is Kähler.

CLAIM: 1. $\pi_1(K3) = 0$,

2. The second homology and cohomology of K3 is torsion-free.

3. $b_2(K3) = 22$, and the signature of its intersection form is (3, 19).

4. The intersection form of K3 is even, and the corresponding quadratic lattice is $U^3 \oplus (-E_8)^2$, where $U = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ and E_8 is the Coxeter matrix for the group E_8 .

Complex surfaces and hyperbolic lattices

REMARK: Let *M* be a complex surface of Kähler type. Then the signature of the intersection form on $H^{1,1}(M)$ is $(1, h^{1,1} - 1)$.

THEOREM: Let M be a projective K3 surface, and Aut(M) its group of complex automorphisms. Then the natural map $Aut(M) \rightarrow O(H^{1,1}(M))$ has finite kernel.

REMARK: Since $H^{1,1}(M)$ has signature $(1, h^{1,1}-1)$, the group $O^+(H^{1,1}(M))$ is the group of isometries of a hyperbolic space $\mathbb{P}H^{1,1}(M)$. If we are interested in dynamics, the "finite kernel" does not make any difference. The automorphisms of M can be classified in the same way as isometries of the hyperbolic space of constant sectional curvature.

Classification of automorphisms of a hyperbolic space

REMARK: The group O(m, n), m, n > 0 has 4 connected components. We denote the connected component of 1 by $SO^+(m, n)$. We call a vector v positive if its square is positive.

DEFINITION: Let *V* be a vector space with quadratic form *q* of signature (1, n), $Pos(V) = \{x \in V \mid q(x, x) > 0\}$ its **positive cone**, and \mathbb{P}^+V projectivization of Pos(V). Denote by *g* any SO(V)-invariant Riemannian structure on \mathbb{P}^+V . Then (\mathbb{P}^+V, g) is called **hyperbolic space**, and the group $SO^+(V)$ **the group of oriented hyperbolic isometries**.

Theorem-definition: Let n > 0, and $\alpha \in SO^+(1, n)$ is an isometry acting on V. Then one and only one of these three cases occurs

(i) α has an eigenvector x with q(x,x) > 0 (α is "elliptic isometry")

(ii) α has an eigenvector x with q(x,x) = 0 and eigenvalue λ_x satisfying $|\lambda_x| > 1$ (α is "hyperbolic (or loxodromic) isometry")

(iii) α has a unique eigenvector x with q(x,x) = 0. (α is "parabolic isometry")

DEFINITION: An automorphism of a K3 surface (M, I) is called **elliptic** (parabolic, hyperbolic) if it is elliptic (parabolic, hyperbolic) on $H_I^{1,1}(M, \mathbb{R})$.

Classification of automorphisms of complex surfaces

CLAIM: An elliptic automorphism of K3 has finite order.

Proof: Any elliptic isometry of \mathbb{H}^n which has infinite orbit generates a group which is dense in a compact torus, and $O(H^{1,1}(M,\mathbb{Z}))$ is discrete.

REMARK: Recall that an elliptic surface is a complex surface equipped with a holomorphic, surjective map $M \longrightarrow C$ to a curve, with general fibers elliptic curves.

THEOREM: (M. Gizatullin) Let τ be a parabolic automorphism of a complex surface M. Then M is elliptic, and a finite power of τ preserves the fibers of elliptic projection.

THEOREM: (S. Cantat) Let τ be a parabolic automorphism of a surface preserving an elliptic fibration $\pi : M \longrightarrow C$. Then the action of τ has dense orbits on almost all fibers of π .

Egrodic group action on manifolds

DEFINITION: Let Γ be a group acting on a manifold M by measurable maps. We say that the action of Γ is **ergodic** if any Γ -invariant measurable subset of M is full measure or measure 0.

REMARK: Equivalently, (M, Γ) is ergodic iff any Γ -invariant integrable function is constant almost everywhere.

CLAIM: Let M be a manifold, μ a Lebesgue measure, and G a group acting on M ergodically. Then the set of non-dense orbits has measure 0.

Proof. Step 1: Consider a non-empty open subset $U \subset M$. Then $\mu(U) > 0$, hence $M' := G \cdot U$ satisfies $\mu(M \setminus M') = 0$. For any orbit $G \cdot x$ not intersecting $U, x \in M \setminus M'$. Therefore the set Z_U of such orbits has measure 0.

Proof. Step 2: Choose a countable base $\{U_i\}$ of topology on M. Then the set of points in dense orbits is $M \setminus \bigcup_i Z_{U_i}$.

REMARK: From ergodicity it follows that **almost all orbits of** Γ are dense, but converse is not true.

Egrodic group action on K3

THEOREM: (Serge Cantat)

Let M be a K3-surface which is obtained as a degree (2,2,2)-hypersurface in $\mathbb{C}P^1 \times \mathbb{C}P^1 \times \mathbb{C}P^1$, and Γ its automorphism group. Then Γ acts on Mergodically.

REMARK: Since M has degree 2 in each variable, it has 2:1 projection to $\mathbb{C}P^1 \times \mathbb{C}P^1$. This gives an order 2 automorphism exchanging these two preimages. We obtain 3 order 2 automorphisms acting on M. They generate the free product $(\mathbb{Z}/2\mathbb{Z}) * (\mathbb{Z}/2\mathbb{Z}) * (\mathbb{Z}/2\mathbb{Z})$.

REMARK: $(\mathbb{Z}/2\mathbb{Z}) * (\mathbb{Z}/2\mathbb{Z}) * (\mathbb{Z}/2\mathbb{Z})$ is an index 6 subgroup in $PGL(2,\mathbb{Z}) = (\mathbb{Z}/2\mathbb{Z}) * (\mathbb{Z}/2\mathbb{Z}) * (\mathbb{Z}/2\mathbb{Z}) \times \Sigma_3$, where the projection to the symmetric group is given by $PGL(2,\mathbb{Z}) \longrightarrow PGL(2,\mathbb{Z}/2) = \Sigma_3$ (Goldman, MacShane, Stantchev, 2015).

Hyperkähler manifolds

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian structure g and a triple of complex structures I, J, K, satisfying quaternionic relations $I \circ J = -J \circ I = K$, such that g is Kähler for I, J, K.

REMARK: A hyperkähler manifold has three symplectic forms $\omega_I := g(I, \cdot), \ \omega_J := g(J, \cdot), \ \omega_K := g(K, \cdot).$

REMARK: This is equivalent to $\nabla I = \nabla J = \nabla K = 0$: the parallel translation along the connection preserves I, J, K.

DEFINITION: Let M be a Riemannian manifold, $x \in M$ a point. The subgroup of $GL(T_xM)$ generated by parallel translations (along all paths) is called **the holonomy group** of M.

REMARK: A hyperkähler manifold can be defined as a manifold which has holonomy in Sp(n) (the group of all endomorphisms preserving I, J, K).

REMARK: Hyperkähler manifolds are holomorphically symplectic. Indeed, $\Omega := \omega_J + \sqrt{-1} \omega_K$ is a holomorphic symplectic form on (M, I).

Holomorphically symplectic manifolds

DEFINITION: A holomorphically symplectic manifold is a complex manifold equipped with non-degenerate, holomorphic (2,0)-form.

THEOREM: (Calabi-Yau) A compact, Kähler, holomorphically symplectic manifold admits a unique hyperkähler metric in any Kähler class.

DEFINITION: For the rest of this talk, a hyperkähler manifold is a compact, Kähler, holomorphically symplectic manifold.

DEFINITION: A hyperkähler manifold M is called **maximal holonomy**, or **IHS** if $\pi_1(M) = 0$, $H^{2,0}(M) = \mathbb{C}$.

Bogomolov's decomposition: Any hyperkähler manifold admits a finite covering which is a product of a torus and several simple hyperkähler manifolds.

Further on, all hyperkähler manifolds are assumed to be of maximal holonomy.

The Bogomolov-Beauville-Fujiki form

THEOREM: (Fujiki). Let $\eta \in H^2(M)$, and dim M = 2n, where M is hyperkähler. Then $\int_M \eta^{2n} = cq(\eta, \eta)^n$, for some primitive integer quadratic form q on $H^2(M, \mathbb{Z})$, and c > 0 a rational number.

Definition: This form is called **Bogomolov-Beauville-Fujiki form**. **It is defined by the Fujiki's relation uniquely, up to a sign**. The sign is determined from the following formula (Bogomolov, Beauville)

$$\lambda q(\eta, \eta) = \int_X \eta \wedge \eta \wedge \Omega^{n-1} \wedge \overline{\Omega}^{n-1} - \frac{n-1}{2n} \left(\int_X \eta \wedge \Omega^{n-1} \wedge \overline{\Omega}^n \right) \left(\int_X \eta \wedge \Omega^n \wedge \overline{\Omega}^{n-1} \right)$$

where Ω is the holomorphic symplectic form, and $\lambda > 0$.

Remark: *q* has signature $(3, b_2 - 3)$. It is negative definite on primitive forms, and positive definite on $\langle \Omega, \overline{\Omega}, \omega \rangle$, where ω is a Kähler form.

Holomorphic Lagrangian fibrations

THEOREM: (Matsushita, 1997)

Let $\pi : M \longrightarrow X$ be a surjective holomorphic map from a hyperkähler manifold M to X, whith $0 < \dim X < \dim M$. Then $\dim X = 1/2 \dim M$, and the fibers of π are holomorphic Lagrangian (this means that the holomorphic symplectic form vanishes on $\pi^{-1}(x)$).

DEFINITION: Such a map is called **a holomorphic Lagrangian fibration**.

REMARK: The base of π is conjectured to be rational. Hwang (2007) proved that $X \cong \mathbb{C}P^n$, if it is smooth. Matsushita (2000) proved that it has the same rational cohomology as $\mathbb{C}P^n$.

The hyperkähler SYZ conjecture

DEFINITION: A cohomology class $\eta \in H^{1,1}(M)$ is **nef** if it lies in the closure of the Kähler cone

A trivial observation: Let $\pi : M \longrightarrow X$ be a holomorphic Lagrangian fibration, and ω_X a Kähler class on X. Then $\eta := \pi^* \omega_X$ is nef, and satisfies $q(\eta, \eta) = 0$.

DEFINITION: A line bundle is called **semiample** if L^N is generated by its holomorphic sections, which have no common zeros.

The hyperkähler SYZ conjecture: Let *L* be a line bundle on a hyperkähler manifold, with $q(c_1(L), c_1(L)) = 0$, and $c_1(L)$ nef. Then *L* is semiample.

REMARK: The corresponding projective map $M \longrightarrow \mathbb{P}(H^0(M, L)^*)$ is a Lagrangian fibration to its image, as follows from Matsushita theorem.

REMARK: Hyperkähler SYZ conjecture is proven for all known examples of hyperkähler manifolds.

Automorphisms of hyperkahler manifolds

REMARK: Let *M* be a hyperkähler manifold. Then the **BBF form has** signature $(1, b_2-3)$ on $H^{1,1}(M)$. An automorphism of a hyperkähler manifold (M, I) is called elliptic (parabolic, hyperbolic) if it is elliptic (parabolic, hyperbolic) on $H_I^{1,1}(M, \mathbb{R})$.

REMARK: Let p be a parabolic automorphism of a hyperkähler manifold, and η its fixed point in $H^{1,1}(M)$ associated with the fixed point in the absolute. **Then** η **is proportional to an integer cohomology class which lies on the boundary of the Kähler cone.** Indeed, η can be obtained as a limit $p^i(w)$ for any Kähler class w on M.

THEOREM: (Federico Lo Bianco)

Let p be a parabolic automorphism of an algebraic hyperkähler manifold M, and $\pi: M \longrightarrow X$ a Lagrangian fibration such that for a Kähler class ω on X, its pulback $\pi^*\omega$ is the class on the boundary of the Kähler cone fixed by p. **Then a certain power of** p **preserves the fibers of** π .

REMARK: In this case we say that p preserves the Lagrangian fibration π . If SYZ comjecture holds for M, a power of any parabolic automorphism preserves a Lagrangian fibration. Such a fibration is unique, because π is uniquely determined by the cohomology class $\pi^*\omega$, and p fixes one and only one point in the absolute.

Ergodic automorphism groups

Today's main result:

Theorem 1: Let M be a hyperkähler manifold admitting two parabolic automorphisms p_1, p_2 which have distinct fixed points on the absolute. Assume that SYZ conjecture holds for the corresponding two fixed points on the boundary of the Kähler cone. Then p_1, p_2 generate a group acting on M ergodically.

REMARK: If M admits a parabolic automorphism and Aut(M) is not virtually abelian, M admits parabolic automorphisms which have different fixed points on the absolute.

REMARK: In "Construction of automorphisms of hyperkähler manifolds" (E. Amerik, M. V., 2017, Compositio) we proved that **any hyperkähler manifold with** b_2 **sufficiently big admits a projective deformation** M_p **with a parabolic automorphism.** Moreover, the automorphism group of M_p is arithmetic, hence M_p admits parabolic automorphisms with different fixed points in the absolute.

Parabolic automorphisms and translations

REMARK: A complex torus T is not a priori a group, unless you fix the origin. However, its translation group, denoted by Tr(T), is a complex, commutative Lie group, and it is isomorphic to T as a manifold.

CLAIM: A translation τ_x of a torus T by a vector $x \in Tr(T)$ has all its orbits dense if and only if x is not contained in a smaller torus $T' \subset Tr(T)$. In this case, τ_x is ergodic.

Theorem 2: Let p be a parabolic automorphism of a hyperkähler manifold preserving a Lagrangian fibration π : $M \longrightarrow X$. Then there exists a full measure, Baire second category subset $R \subset X$, such that for all $r \in R$ the fibers $\pi^{-1}(r)$ are tori, and **the automorphism** p **acts on** $\pi^{-1}(r)$ **with dense orbits.**

REMARK: Theorem 2 implies Theorem 1. Indeed, let Γ be the group generated by two parabolic automorphisms p_1, p_2, φ a Γ -invariant measurable function, and π_1, π_2 the Lagrangian fibrations associated with p_1, p_2 . Since φ is p_i -invariant, it is constant almost everywhere on almost all fibers of π_i . However, a function which is constant on fibers of π_i is constant on M, because these fibers are transversal and complementary.