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Gauduchon metrics

DEFINITION: A Hermitian metric w on a complex n-manifold is called
Gauduchon if dd‘w" 1 = 0.

THEOREM: (P. Gauduchon, 1978) Let M be a compact, complex man-
ifold, and h a Hermitian form. Then there exists a Gauduchon metric
conformally equivalent to A, and it is unique, up to a constant multiplier.

REMARK: If w is Gauduchon, then (by Stokes’ theorem) [y;w™ 1dd‘f = O
for any f. The curvature ©; of a holomorphic line bundle L is well-defined up
to ddlog |h|, where h is a conformal factor. Therefore, for any line bundle
L, the number deg, L := [,;w" 1 A O is well defined.

REMARK: Unlike the Kahler case, deg, L is a holomorphic invariant of L,
and not topological.

DEFINITION: Given a torsion-free coferent sheaf F of rank r, let det F' :=
AT F**. From algebraic geometry it is known that det F' is a line bundle. Define
the degree deg, F :=deg,detF = [, TrOp Aw" L.
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Kobayashi-Hitchin correspondence

DEFINITION: Let F' be a coherent sheaf over an n-dimensional Gauduchon
manifold (M,w), and slope(F) = %. A torsion-free sheaf F' is called
stable if for all subsheaves F/ C F one has slope(F’) < slope(F). If F is a

direct sum of stable sheaves of the same slope, F' is called polystable.

DEFINITION: A Hermitian metric on a holomorphic vector bundle B is called
Yang-Mills (Hermitian-Einstein) if © 5 Aw” ™! = slope(F) -Idg -w™, where ©p
IS its curvature.

THEOREM: (Kobayashi-Hitchin correspondence; Donaldson, Buchsdahl,
Uhlenbeck-Yau, Li-Yau, Libke-Teleman): Let B be a holomorphic vector
bundle. Then B admits a Yang-Mills metric if and only if B is polystable.

COROLLARY: Any tensor product of polystable bundles is polystable.

REMARK: This result was generalized to coherent sheaves by Bando
and Siu.

REMARK: Stability is required if you want to classify vector bundles or
construct their moduli spaces.
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Positivity for stable bundles

“Bogomolov’s inequality” : if deg B = 0 and B is Yang-Mills, then Tr(©gA
Op) Awh 2 is a positive volume form, vanishing only in the points where the
curvature ©p of B vanishes. I will explain its proof in the next slide.

DEFINITION: Let r := rkB and A(B) := 2rcy(B) — (r — 1)c%(B). This
cohomology class is called the Bogomolov-Gieseker discriminant of B.

REMARK: The form Tr(©pg A ©pg) is clearly closed. Its cohomology class
Is equal to const - A(B).

COROLLARY: A stable bundle B on a Kahler manifold M with c1(B) =
0,co(B) = 0 is flat.

Today I will give a version of this statement on manifolds equipped with folia-
tions, in particular, when M is equipped with a positive elliptic fibration.
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The Bogomolov-Lubke inequality

THEOREM: Let B be a stable bundle over a compact Kahler manifold M,
V its Yang-Mills connection, and 6 its curvature. Assume that slope(B) = 0.
Denote by A € H*(M) the discriminant of B, A = 2rcy(B) — (r — 1)c1(B)2.
Then fMA/\cu”_2 > 0, and the inequality may happen only when © = 0.

Proof. Step 1: Since the connection V is Hermitian, it preserves the natural
real structure in AL (M)®End(B), n®b — 7®bL, where by b1+ one understands
the Hermitian adjoint endomorphism. Therefore, we may assume that © is
real with respect to this real structure.

Step 2: Let 604,...,0, be an orthonormal basis in ALO(M). Consider the
decomposition © = ZZ#](@/@]—51A03)®bz]+EZ(GZA§Z)®aZ with bija a; € u(B).

Let = := Tr(©AO). Then =Aw" 2 = const Tr (— D ik b,,;zj + D it az-aj), where
const is a positive constant. On the other hand, A(®) = > a; = 0, which
brings ;. aa; = — Y ;a?. This gives
=AW 2 = const T (— Z b,L-Qj — Za%) :
i i

Since the Killing form on u(B) is negative definite, this sum is positive, and
strictly positive unless = =0. =
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Transversally Kahler foliations

DEFINITION: Semi-Hermitian form is a form w € ALL(M,R) such that
w(lx,z) >0 for any z € TM (the inequality is strict iff w is Hermitian).

DEFINITION: A foliation on a complex manifold M is a complex sub-bundle
F CTM, dimp F = 2, closed under commutator (usually it is assumed to be
holomorphic). A foliation is called transversally Kahler if M is equipped with
a closed semi-Hermitian form wg such that wg(xz,-) = 0 for any x € F' and wg
is Hermitian on TM/F.

REMARK: On a compact Kahler n-manifold (M, w), a semi-Hermitian form
wo IS never exact. Indeed, [;;wo Aw™ 1 >0, hence wy cannot be exact. On
compact, complex, non-Kahler manifolds, transversally Kahler foliations
with exact wg are quite common.

EXAMPLE: The classical Hopf surface is H := C2\0/Z, where Z acts as
a multiplication by a complex number A, |A| > 1. Clearly, H is diffeomorphic
to St x S§3, and fibered over CP! with fiber C*/()\).

CLAIM: Let 7 : H — CP! be the standard projection, and wg = w*wcpl be a
pullback of the Fubini-Study form. Clearly, wq is exact, because H2(H) = 0
(by Kiinneth formula). Therefore, H admits a transversally Kahler, exact
form.
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Prinipal elliptic fibrations.

DEFINITION: A principal elliptic fibration M is a complex manifold
equipped with a free holomorphic action of a 1-dimensional compact complex
torus T'.

Such a manifold is fibered over M /T, with fiber T.

REMARK: It is a principal T-bundle: all fibers are identified with 7T, with T
acting on fibers freely.

DEFINITION: Let M -5 X be a principal elliptic fibration, M compact.
We say that M is positive elliptic fibration, if for some Kahler class w on X,
m*w is exact. (“Kahler class” is a cohomology class of a Kahler form).

EXAMPLE: The classical Hopf surface introduced earlier.

EXAMPLE: A more general example is given by Tot(L*)/(Z), where L is an
ample line bundle. Such manifold is called a regular Vaisman manifold. It
is positive, because 7©*(c1(L)) = 0, and ¢1(L) is a Kahler class.
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Calabi-Eckmann manifolds

Fix a € C, a non-real, |a] > 1. Consider a subgroup
G={elxe?®CcC*xC* teC}cCC*xC*
within C* x C*. It is clearly co-compact and closed, with C* x C*/G being an
elliptic curve C*/{a).
Now, let M := (C™"\0)®(C™\0)/G, with G C C*x C* acting on (C™"\0)® (C™\0)
by (t1,t2)(x,y) — (t1x,t>y). Clearly, M is fibered over
cpr 1l xcpm™ !t = (C™0) ® (C™\0)/C* x C*

with a fiber C* x C*/G, which is an elliptic curve. Its total space M is called
the Calabi-Eckmann manifold. It is diffeomorphic to §27n—1 x §2m—1

REMARK: The map M —s CP*" 1 xCcP™1is a principal elliptic fibration.

REMARK: The pullback of a Kahler form from CP* 1 x cP™ 1 to M is
exact, because H2(M) = 0 (by Kiinneth formula).
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Irregular and quasi-regular foliations

DEFINITION: A foliation is called quasi-regular if all its leaves are compact.
If this is not so, it is called irregular. A foliation is called regular if all its
leaves are compact, and the leaf space is smooth.

REMARK: The examples given above (Vaisman, Calabi-Eckmann) are de-
formed naturally to irrregular foliated transversally Kahler manifolds.

REMARK: Calabi-Eckmann manifolds were generalized by Lopez de Medrano,
Verjovsky and Meersseman. The complex structure on Calabi-Eckmann can
be deformed together with the foliation, giving a transversally Kahler man-
ifold with a foliation having non-compact leaves (‘“LVM-manifolds”).
A version of this construction is known as the moment-angle manifolds.
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Subvarieties in manifolds equipped with positive elliptic fibrations

THEOREM: Let (M,X,wg) be a manifold equipped with a rank 1 holo-
morphic foliation > and an exact trasversally Kahler form wg, and Z C M a
complex subvariety. Then Z is tangent to leaves of > everywhere. If, in
addition, X is quasi-regular, then 7 = w—l(Zo), where Zy C Mg is a complex
subvariety of the leaf space Mg = M/%.

Proof: Let £k ;= dimZ. Since wg is exact, we have fzwlg — 0. Therefore,
the restriction wg|z cannot be strictly positive; in other words, for each z € Z
the tangent space 71,7 intersects kerwg = 2. Since rk> = 1, this implies
that T'Z D T3> : with each z € Z, the manifold Z contains the whole leaf of >
passing through z. m
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Compatible Gauduchon metrics

DEFINITION: Let (M,X,wg) be a compact, complex manifold, and wg a
transversally Kahler form. A Gauduchon form w is called a Gauduchon form
compatible with the transversally Kahler foliation, if the projection to
the leaf space of > (the leaf space is not always defined globally, but locally
in M it always exists) is a Riemannian submersion.

REMARK: From now on, we will always fix a Gauduchon form w com-
patible with > wg.

CLAIM: At any given point of M, there is a frame such that wyg =

—v—1 COHStZ@i/\gi, and w=—y/—1 Z@i/\gi—\/—].@/\g, where 0,04,...,0, iS
an w-orthonormal basis in AL9(A7), and all 9, vanish on ~. m
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Leaf space of quasiregular foliations

REMARK: When % is quasiregular, M is equipped with a holomorphic
projection to the leaf space, n : M — X = M/>. In this case X is a
principal elliptic fibration.

MAIN THEOREM: Let F be a stable coherent sheaf on a compact, complex
manifold (M, X,wg), with a transversally Kahler, exact form, dimM > 2.
Assume that X is quasiregular, and let 7 : M — X = M/X> be the projection
map. Then F = 7*Fy® L, where Fj is a coherent sheaf on M/>, and L
a line bundile.

Proof: Last slide.

COROLLARY: In these assumptions, any coherent sheaf on M is filtra-
ble, that is, admits a filtration with rank 1 quotient sheaves.

REMARK: Filtrability is a very strong property! It fails on almost all
non-algebraic surfaces.
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Stability and transversally Kahler foliations (2)

THEOREM 1: Let (M,X,wg) be a compact, complex manifold, dim M > 2,
and wg a transversally Kahler, exact form. Consider a vector bundle B with a
Yang-Mills metric, deg, B = 0, and let V denote the Yang-Mills connection.
Then the curvature © of V satisfies ©(x,-) = 0 for any x € 3.

Proof: At a given point m € M, let wg = —v/—1 30, AO;, w= —/—1 30, A
0, —/—160 A0, where 0,01, ...,0, is an w-orthonormal basis in ALO(M) defined
above. Write the curvature of B as

+> (ON0;—0N0)Rb;+0AN0®a,
()

with b;;, b;, a;, a € u(B) being skew-Hermitian endomorphisms of B. Let
=:=Tr(@A®). Then (V-1)"=Awg > = Tr (=X b2+ a(Xa;)). On the other
hand, Ya; +a=AO =0, hence (vV—1)"=Awl 2 =Tr (—ZbZ-Q _ a2) . Since
Tr(—a?) is a positive definite form on u(B), the integral [,,(v/—1)"= /\wg_Q
IS non-negative, and positive unless b; and a both vanish everywhere. If wg is

exact, this integral vanishes, and ©(z) =0 forany z € . =
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Stable bundles on positive elliptic fibrations are equivariant

COROLLARY: In assumptions of Theorem 1, let X € > be a holomorphic
vector field tangent to the foliation >. Then Vyx takes holomorphic sec-
tions of B to holomorphic sections.

Proof: By definition, b is holomorphic if and only if V%1 = 0. However,

Vyvxb — V[Y,X]b + VXVYI) + @Y,Xb°

If Y € T91M, and b is holomorphic, we have Vyb = 0. Also, [X,Y] € 791,
because X is holomorphic, which also gives V[X Y]b = 0. Finally, @X yb =0
because X € > C ker©. We have shown that VyVxb =0 forany Y & 70107,
u

COROLLARY: Let M 5 X be a positive principal elliptic fibration, E the
elliptic curve, considered as a group, acting on the fibers of «, and E its
universal covering. Then any w-stable bundle on M is equipped with a
natural F-equivariant structure.

Proof: To define a E-equivariant structure, it would suffice to lift the vector
fields tangent to E to holomorphic vector fields on Tot B, compatible with
the vector bundle structure. This was done in the previous theorem. m

REMARK: To prove the Main Theorem, it remains to show that E-equivariance
implies that B® L = n*Bg, for some line bundle L on M, and some bundle
Boon X =M/FE.
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Line bundles on positive principal elliptic fibrations

Let E be an elliptic curve and M - X a positive principal E-fibration,
dim M > 3. Consider a line bundle L on M. Then E-equivariant structure on
L defines a homomorphism w1 (E) — Aut(L) = C*. We denote it x;. Since V
preserves the metric, x; takes values in U(1), defining a map x7 : Z2 — U(1).

PROPOSITION: Let E be an elliptic curve and M -2+ X a positive principal
E-fibration, dim M > 3. Then for any character y : m1(F) — U(1). there
exists a holomorphic line bundle L such that L = x .

Proof. Step 1: Consider the commutative diagram with exact rows coming
from the exponential exact sequence

HI(M,0,,) — Picg(M) — 0

| |

HYE,0p) — Picg(E) — 0
The characters x : ' — U(1) are in bijective correspondence with the bundles
from Picg(FE), and the correspondence is provided by a unique flat connec-
tion on every L € Picg(F). It remains to show that the natural arrow
Pico(M) — Picg(FE) is surjective.
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Step 2: From the diagram in Step 1, we obtain that surjectivity of the re-
striction Picg(M) — Picg(E) would follow if we prove that the restriction
map H1(M,0,) — HI(E,Of). is surjective.

Step 3: Since rk HI(E,Op) = 1, surjectivity would follow if we prove that
this map is non-trivial; equivalently, if we show that the natural map
Pico(M) — Picg(FE) Is non-zero. Let L be a line bundle with curvature wp;
then ¢1(L) = 0, but this bundle is non-trivial, because were it trivial, we would
have wg = 80f, and

O</ wo/\wn_1=/ 85f/\wn_1=/ f AW = 0.
M M M

Therefore, L is not a pullback of a line bundle on X, hence its restriction
to the fibers of « is non-trivial. =
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Stable bundles on positive principal elliptic fibrations are pullbacks (up
to a line bundle multiplier)

THEOREM: Let B be a w-stable bundle on a compact, complex manifold
equipped with a positive elliptic fibration . M — X. Then B=71"By® L,
where Bg Is a stable bundle on X, and L a holomorphic line bundie.

Proof: Let p: EE — Aut(Tot F) be the equivariant action constructed above,
and ™ the kernel of the natural map E — E. Since I acts on B by automor-
phisms, and the automorphisms of stable bundles are scalar, ' acts on B as
a character x : 72 — U(1). However, by the previous proposition, any such
character can be realized by a line bundle L. Then B® L1 is trivial on the
leaves of 7w, which implies B=7n"Bg® L. =
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