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Gauduchon metrics

DEFINITION: A Hermitian metric ω on a complex n-manifold is called

Gauduchon if ddcωn−1 = 0.

THEOREM: (P. Gauduchon, 1978) Let M be a compact, complex man-

ifold, and h a Hermitian form. Then there exists a Gauduchon metric

conformally equivalent to h, and it is unique, up to a constant multiplier.

REMARK: If ω is Gauduchon, then (by Stokes’ theorem)
∫
M ωn−1ddcf = 0

for any f . The curvature ΘL of a holomorphic line bundle L is well-defined up

to ddc log |h|, where h is a conformal factor. Therefore, for any line bundle

L, the number degω L :=
∫
M ωn−1 ∧ΘL is well defined.

REMARK: Unlike the Kähler case, degω L is a holomorphic invariant of L,

and not topological.

DEFINITION: Given a torsion-free coferent sheaf F of rank r, let detF :=

ΛrF ∗∗. From algebraic geometry it is known that detF is a line bundle. Define

the degree degω F := degω detF =
∫
M Tr ΘF ∧ ωn−1.
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Kobayashi-Hitchin correspondence

DEFINITION: Let F be a coherent sheaf over an n-dimensional Gauduchon
manifold (M,ω), and slope(F ) := degω F

rank(F ). A torsion-free sheaf F is called

stable if for all subsheaves F ′ ⊂ F one has slope(F ′) < slope(F ). If F is a
direct sum of stable sheaves of the same slope, F is called polystable.

DEFINITION: A Hermitian metric on a holomorphic vector bundle B is called
Yang-Mills (Hermitian-Einstein) if ΘB ∧ ωn−1 = slope(F ) · IdB ·ωn, where ΘB

is its curvature.

THEOREM: (Kobayashi-Hitchin correspondence; Donaldson, Buchsdahl,
Uhlenbeck-Yau, Li-Yau, Lübke-Teleman): Let B be a holomorphic vector
bundle. Then B admits a Yang-Mills metric if and only if B is polystable.

COROLLARY: Any tensor product of polystable bundles is polystable.

REMARK: This result was generalized to coherent sheaves by Bando
and Siu.

REMARK: Stability is required if you want to classify vector bundles or
construct their moduli spaces.
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Positivity for stable bundles

“Bogomolov’s inequality”: if degB = 0 and B is Yang-Mills, then Tr(ΘB ∧
ΘB)∧ ωn−2 is a positive volume form, vanishing only in the points where the

curvature ΘB of B vanishes. I will explain its proof in the next slide.

DEFINITION: Let r := rkB and ∆(B) := 2rc2(B) − (r − 1)c21(B). This

cohomology class is called the Bogomolov-Gieseker discriminant of B.

REMARK: The form Tr(ΘB ∧ΘB) is clearly closed. Its cohomology class

is equal to const ·∆(B).

COROLLARY: A stable bundle B on a Kähler manifold M with c1(B) =

0, c2(B) = 0 is flat.

Today I will give a version of this statement on manifolds equipped with folia-

tions, in particular, when M is equipped with a positive elliptic fibration.
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The Bogomolov-Lübke inequality

THEOREM: Let B be a stable bundle over a compact Kähler manifold M ,
∇ its Yang-Mills connection, and θ its curvature. Assume that slope(B) = 0.
Denote by ∆ ∈ H4(M) the discriminant of B, ∆ = 2rc2(B) − (r − 1)c1(B)2.
Then

∫
M ∆∧ωn−2 > 0, and the inequality may happen only when Θ = 0.

Proof. Step 1: Since the connection ∇ is Hermitian, it preserves the natural
real structure in Λ1,1(M)⊗End(B), η⊗b−→ η⊗b⊥, where by b⊥ one understands
the Hermitian adjoint endomorphism. Therefore, we may assume that Θ is
real with respect to this real structure.

Step 2: Let θ1, ..., θn be an orthonormal basis in Λ1,0(M). Consider the
decomposition Θ =

∑
i 6=j(θi∧θj−θi∧θj)⊗bij+

∑
i(θi∧θi)⊗ai with bij, ai ∈ u(B).

Let Ξ := Tr(Θ∧Θ). Then Ξ∧ωn−2 = const Tr
(
−
∑
i 6=j b

2
ij +

∑
i 6=j aiaj

)
, where

const is a positive constant. On the other hand, Λ(Θ) =
∑
ai = 0, which

brings
∑
i<j aiaj = −

∑
i a

2
i . This gives

Ξ ∧ ωn−2 = const Tr

−∑
i 6=j

b2ij −
∑
i

a2
i

 .
Since the Killing form on u(B) is negative definite, this sum is positive, and
strictly positive unless Ξ = 0.
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Transversally Kähler foliations

DEFINITION: Semi-Hermitian form is a form ω ∈ Λ1,1(M,R) such that
ω(Ix, x) > 0 for any x ∈ TM (the inequality is strict iff ω is Hermitian).

DEFINITION: A foliation on a complex manifold M is a complex sub-bundle
F ⊂ TM , dimR F = 2, closed under commutator (usually it is assumed to be
holomorphic). A foliation is called transversally Kähler if M is equipped with
a closed semi-Hermitian form ω0 such that ω0(x, ·) = 0 for any x ∈ F and ω0
is Hermitian on TM/F .

REMARK: On a compact Kähler n-manifold (M,ω), a semi-Hermitian form
ω0 is never exact. Indeed,

∫
M ω0 ∧ ωn−1 > 0, hence ω0 cannot be exact. On

compact, complex, non-Kähler manifolds, transversally Kähler foliations
with exact ω0 are quite common.

EXAMPLE: The classical Hopf surface is H := C2\0/Z, where Z acts as
a multiplication by a complex number λ, |λ| > 1. Clearly, H is diffeomorphic
to S1 × S3, and fibered over CP1 with fiber C∗/〈λ〉.

CLAIM: Let π : H −→ CP1 be the standard projection, and ω0 := π∗ωCP1 be a
pullback of the Fubini-Study form. Clearly, ω0 is exact, because H2(H) = 0
(by Künneth formula). Therefore, H admits a transversally Kähler, exact
form.
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Prinipal elliptic fibrations.

DEFINITION: A principal elliptic fibration M is a complex manifold

equipped with a free holomorphic action of a 1-dimensional compact complex

torus T .

Such a manifold is fibered over M/T , with fiber T .

REMARK: It is a principal T -bundle: all fibers are identified with T , with T

acting on fibers freely.

DEFINITION: Let M
π−→ X be a principal elliptic fibration, M compact.

We say that M is positive elliptic fibration, if for some Kähler class ω on X,

π∗ω is exact. (“Kähler class” is a cohomology class of a Kähler form).

EXAMPLE: The classical Hopf surface introduced earlier.

EXAMPLE: A more general example is given by Tot(L∗)/〈Z〉, where L is an

ample line bundle. Such manifold is called a regular Vaisman manifold. It

is positive, because π∗(c1(L)) = 0, and c1(L) is a Kähler class.
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Calabi-Eckmann manifolds

Fix α ∈ C, α non-real, |α| > 1. Consider a subgroup

G := {et × eαt ⊂ C∗ × C∗, t ∈ C} ⊂ C∗ × C∗

within C∗ × C∗. It is clearly co-compact and closed, with C∗ × C∗/G being an

elliptic curve C∗/〈α〉.

Now, let M := (Cn\0)⊗(Cm\0)/G, with G ⊂ C∗×C∗ acting on (Cn\0)⊗(Cm\0)

by (t1, t2)(x, y)−→ (t1x, t2y). Clearly, M is fibered over

CPn−1 × CPm−1 = (Cn\0)⊗ (Cm\0)/C∗ × C∗

with a fiber C∗ × C∗/G, which is an elliptic curve. Its total space M is called

the Calabi-Eckmann manifold. It is diffeomorphic to S2n−1 × S2m−1.

REMARK: The map M −→ CPn−1×CPm−1 is a principal elliptic fibration.

REMARK: The pullback of a Kähler form from CPn−1 × CPm−1 to M is

exact, because H2(M) = 0 (by Künneth formula).
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Irregular and quasi-regular foliations

DEFINITION: A foliation is called quasi-regular if all its leaves are compact.

If this is not so, it is called irregular. A foliation is called regular if all its

leaves are compact, and the leaf space is smooth.

REMARK: The examples given above (Vaisman, Calabi-Eckmann) are de-

formed naturally to irrregular foliated transversally Kähler manifolds.

REMARK: Calabi-Eckmann manifolds were generalized by Lopez de Medrano,

Verjovsky and Meersseman. The complex structure on Calabi-Eckmann can

be deformed together with the foliation, giving a transversally Kähler man-

ifold with a foliation having non-compact leaves (“LVM-manifolds”).

A version of this construction is known as the moment-angle manifolds.
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Subvarieties in manifolds equipped with positive elliptic fibrations

THEOREM: Let (M,Σ, ω0) be a manifold equipped with a rank 1 holo-

morphic foliation Σ and an exact trasversally Kähler form ω0, and Z ⊂ M a

complex subvariety. Then Z is tangent to leaves of Σ everywhere. If, in

addition, Σ is quasi-regular, then Z = π−1(Z0), where Z0 ⊂M0 is a complex

subvariety of the leaf space M0 = M/Σ.

Proof: Let k := dimZ. Since ω0 is exact, we have
∫
Z ω

k
0 = 0. Therefore,

the restriction ω0|Z cannot be strictly positive; in other words, for each z ∈ Z
the tangent space TzZ intersects kerω0 = Σ. Since rk Σ = 1, this implies

that TZ ⊃ TΣ: with each z ∈ Z, the manifold Z contains the whole leaf of Σ

passing through z.
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Compatible Gauduchon metrics

DEFINITION: Let (M,Σ, ω0) be a compact, complex manifold, and ω0 a

transversally Kähler form. A Gauduchon form ω is called a Gauduchon form

compatible with the transversally Kähler foliation, if the projection to

the leaf space of Σ (the leaf space is not always defined globally, but locally

in M it always exists) is a Riemannian submersion.

REMARK: From now on, we will always fix a Gauduchon form ω com-

patible with Σ, ω0.

CLAIM: At any given point of M , there is a frame such that ω0 =

−
√
−1 const

∑
θi ∧ θi, and ω = −

√
−1

∑
θi ∧ θi−

√
−1 θ ∧ θ, where θ, θ1, ..., θn is

an ω-orthonormal basis in Λ1,0(M), and all θi vanish on Σ.
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Leaf space of quasiregular foliations

REMARK: When Σ is quasiregular, M is equipped with a holomorphic

projection to the leaf space, π : M −→X = M/Σ. In this case Σ is a

principal elliptic fibration.

MAIN THEOREM: Let F be a stable coherent sheaf on a compact, complex

manifold (M,Σ, ω0), with a transversally Kähler, exact form, dimM > 2.

Assume that Σ is quasiregular, and let π : M −→X = M/Σ be the projection

map. Then F = π∗F0 ⊗ L, where F0 is a coherent sheaf on M/Σ, and L

a line bundle.

Proof: Last slide.

COROLLARY: In these assumptions, any coherent sheaf on M is filtra-

ble, that is, admits a filtration with rank 1 quotient sheaves.

REMARK: Filtrability is a very strong property! It fails on almost all

non-algebraic surfaces.
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Stability and transversally Kähler foliations (2)

THEOREM 1: Let (M,Σ, ω0) be a compact, complex manifold, dimM > 2,

and ω0 a transversally Kähler, exact form. Consider a vector bundle B with a

Yang-Mills metric, degωB = 0, and let ∇ denote the Yang-Mills connection.

Then the curvature Θ of ∇ satisfies Θ(x, ·) = 0 for any x ∈ Σ.

Proof: At a given point m ∈ M , let ω0 = −
√
−1

∑
θi ∧ θi, ω = −

√
−1

∑
θi ∧

θi−
√
−1 θ ∧ θ, where θ, θ1, ..., θn is an ω-orthonormal basis in Λ1,0(M) defined

above. Write the curvature of B as

Θ =
∑
i 6=j

(θi ∧ θj − θi ∧ θj)⊗ bij +
∑
i

(θi ∧ θi)⊗ ai

+
∑
i

(θ ∧ θi − θ ∧ θi)⊗ bi + θ ∧ θ ⊗ a,

with bij, bi, ai, a ∈ u(B) being skew-Hermitian endomorphisms of B. Let

Ξ := Tr(Θ∧Θ). Then (
√
−1)nΞ∧ωn−2

0 = Tr
(
−
∑
b2i + a (

∑
ai)

)
. On the other

hand,
∑
ai + a = ΛΘ = 0, hence (

√
−1 )nΞ ∧ ωn−2

0 = Tr
(
−
∑
b2i − a

2
)
. Since

Tr(−a2) is a positive definite form on u(B), the integral
∫
M(
√
−1 )nΞ ∧ ωn−2

0
is non-negative, and positive unless bi and a both vanish everywhere. If ω0 is

exact, this integral vanishes, and Θ(x) = 0 for any x ∈ Σ.
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Stable bundles on positive elliptic fibrations are equivariant

COROLLARY: In assumptions of Theorem 1, let X ∈ Σ be a holomorphic
vector field tangent to the foliation Σ. Then ∇X takes holomorphic sec-
tions of B to holomorphic sections.
Proof: By definition, b is holomorphic if and only if ∇0,1b = 0. However,

∇Y∇Xb = ∇[Y,X]b+∇X∇Y b+ ΘY,Xb.

If Y ∈ T0,1M , and b is holomorphic, we have ∇Y b = 0. Also, [X,Y ] ∈ T0,1M ,
because X is holomorphic, which also gives ∇[X,Y ]b = 0. Finally, ΘX,Y b = 0
because X ∈ Σ ⊂ ker Θ. We have shown that ∇Y∇Xb = 0 for any Y ∈ T0,1M .

COROLLARY: Let M
π→ X be a positive principal elliptic fibration, E the

elliptic curve, considered as a group, acting on the fibers of π, and Ẽ its
universal covering. Then any ω-stable bundle on M is equipped with a
natural Ẽ-equivariant structure.

Proof: To define a Ẽ-equivariant structure, it would suffice to lift the vector
fields tangent to E to holomorphic vector fields on TotB, compatible with
the vector bundle structure. This was done in the previous theorem.

REMARK: To prove the Main Theorem, it remains to show that Ẽ-equivariance
implies that B ⊗ L = π∗B0, for some line bundle L on M , and some bundle
B0 on X = M/E.
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Line bundles on positive principal elliptic fibrations

Let E be an elliptic curve and M
π−→ X a positive principal E-fibration,

dimM > 3. Consider a line bundle L on M . Then Ẽ-equivariant structure on

L defines a homomorphism π1(E)−→ Aut(L) = C∗. We denote it χL. Since ∇
preserves the metric, χL takes values in U(1), defining a map χL : Z2 → U(1).

PROPOSITION: Let E be an elliptic curve and M
π−→ X a positive principal

E-fibration, dimM > 3. Then for any character χ : π1(E)−→ U(1). there

exists a holomorphic line bundle L such that L = χL.

Proof. Step 1: Consider the commutative diagram with exact rows coming

from the exponential exact sequence

H1(M,OM) −→ Pic0(M) −→ 0y y
H1(E,OE) −→ Pic0(E) −→ 0

The characters χ : Γ−→ U(1) are in bijective correspondence with the bundles

from Pic0(E), and the correspondence is provided by a unique flat connec-

tion on every L ∈ Pic0(E). It remains to show that the natural arrow

Pic0(M)−→ Pic0(E) is surjective.
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Step 2: From the diagram in Step 1, we obtain that surjectivity of the re-

striction Pic0(M)−→ Pic0(E) would follow if we prove that the restriction

map H1(M,OM)−→H1(E,OE). is surjective.

Step 3: Since rkH1(E,OE) = 1, surjectivity would follow if we prove that

this map is non-trivial; equivalently, if we show that the natural map

Pic0(M) → Pic0(E) is non-zero. Let L be a line bundle with curvature ω0;

then c1(L) = 0, but this bundle is non-trivial, because were it trivial, we would

have ω0 = ∂∂f , and

0 <
∫
M
ω0 ∧ ωn−1 =

∫
M
∂∂f ∧ ωn−1 =

∫
M
f ∧ ∂∂ωn−1 = 0.

Therefore, L is not a pullback of a line bundle on X, hence its restriction

to the fibers of π is non-trivial.
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Stable bundles on positive principal elliptic fibrations are pullbacks (up

to a line bundle multiplier)

THEOREM: Let B be a ω-stable bundle on a compact, complex manifold

equipped with a positive elliptic fibration π : M −→X. Then B = π∗B0 ⊗ L,

where B0 is a stable bundle on X, and L a holomorphic line bundle.

Proof: Let ρ : Ẽ → Aut(TotF ) be the equivariant action constructed above,

and Γ the kernel of the natural map Ẽ → E. Since Γ acts on B by automor-

phisms, and the automorphisms of stable bundles are scalar, Γ acts on B as

a character χ : Z2 → U(1). However, by the previous proposition, any such

character can be realized by a line bundle L. Then B⊗L−1 is trivial on the

leaves of π, which implies B = π∗B0 ⊗ L.
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