Stable bundles on positive elliptic fibrations

Misha Verbitsky

Simons Semester in Analysis and Geometry on Complex Manifolds

Budapest, September 16, 2025

Gauduchon metrics

DEFINITION: A Hermitian metric ω on a complex n-manifold is called **Gauduchon** if $dd^c\omega^{n-1}=0$.

THEOREM: (P. Gauduchon, 1978) Let M be a compact, complex manifold, and h a Hermitian form. Then there exists a Gauduchon metric conformally equivalent to h, and it is unique, up to a constant multiplier.

REMARK: If ω is Gauduchon, then (by Stokes' theorem) $\int_M \omega^{n-1} dd^c f = 0$ for any f. The curvature Θ_L of a holomorphic line bundle L is well-defined up to $dd^c \log |h|$, where h is a conformal factor. Therefore, for any line bundle L, the number $\deg_\omega L := \int_M \omega^{n-1} \wedge \Theta_L$ is well defined.

REMARK: Unlike the Kähler case, $\deg_{\omega} L$ is a holomorphic invariant of L, and not topological.

DEFINITION: Given a torsion-free coferent sheaf F of rank r, let $\det F := \Lambda^r F^{**}$. From algebraic geometry it is known that $\det F$ is a line bundle. Define the degree $\deg_{\omega} F := \deg_{\omega} \det F = \int_M \operatorname{Tr} \Theta_F \wedge \omega^{n-1}$.

Kobayashi-Hitchin correspondence

DEFINITION: Let F be a coherent sheaf over an n-dimensional Gauduchon manifold (M,ω) , and $\operatorname{slope}(F) := \frac{\deg_{\omega} F}{\operatorname{rank}(F)}$. A torsion-free sheaf F is called **stable** if for all subsheaves $F' \subset F$ one has $\operatorname{slope}(F') < \operatorname{slope}(F)$. If F is a direct sum of stable sheaves of the same slope, F is called **polystable**.

PEFINITION: A Hermitian metric on a holomorphic vector bundle B is called **Yang-Mills** (Hermitian-Einstein) if $\Theta_B \wedge \omega^{n-1} = \operatorname{slope}(F) \cdot \operatorname{Id}_B \cdot \omega^n$, where Θ_B is its curvature.

THEOREM: (Kobayashi-Hitchin correspondence; Donaldson, Buchsdahl, Uhlenbeck-Yau, Li-Yau, Lübke-Teleman): Let B be a holomorphic vector bundle. Then B admits a Yang-Mills metric if and only if B is polystable.

COROLLARY: Any tensor product of polystable bundles is polystable.

REMARK: This result was generalized to coherent sheaves by Bando and Siu.

REMARK: Stability is required if you want to classify vector bundles or construct their moduli spaces.

Positivity for stable bundles

"Bogomolov's inequality": if deg B=0 and B is Yang-Mills, then $\text{Tr}(\Theta_B \wedge \Theta_B) \wedge \omega^{n-2}$ is a positive volume form, vanishing only in the points where the curvature Θ_B of B vanishes. I will explain its proof in the next slide.

DEFINITION: Let $r := \operatorname{rk} B$ and $\Delta(B) := 2rc_2(B) - (r-1)c_1^2(B)$. This cohomology class is called **the Bogomolov-Gieseker discriminant** of B.

REMARK: The form $Tr(\Theta_B \wedge \Theta_B)$ is clearly closed. **Its cohomology class** is equal to $const \cdot \Delta(B)$.

COROLLARY: A stable bundle B on a Kähler manifold M with $c_1(B) = 0$, $c_2(B) = 0$ is flat.

Today I will give a version of this statement on manifolds equipped with foliations, in particular, when M is equipped with a positive elliptic fibration.

The Bogomolov-Lübke inequality

THEOREM: Let B be a stable bundle over a compact Kähler manifold M, ∇ its Yang-Mills connection, and θ its curvature. Assume that $\operatorname{slope}(B)=0$. Denote by $\Delta \in H^4(M)$ the discriminant of B, $\Delta = 2rc_2(B) - (r-1)c_1(B)^2$. Then $\int_M \Delta \wedge \omega^{n-2} \geqslant 0$, and the inequality may happen only when $\Theta=0$.

Proof. Step 1: Since the connection ∇ is Hermitian, it preserves the natural real structure in $\Lambda^{1,1}(M) \otimes \operatorname{End}(B)$, $\eta \otimes b \longrightarrow \overline{\eta} \otimes b^{\perp}$, where by b^{\perp} one understands the Hermitian adjoint endomorphism. Therefore, we may assume that Θ is real with respect to this real structure.

Step 2: Let $\theta_1,...,\theta_n$ be an orthonormal basis in $\Lambda^{1,0}(M)$. Consider the decomposition $\Theta = \sum_{i \neq j} (\theta_i \wedge \overline{\theta}_j - \overline{\theta}_i \wedge \theta_j) \otimes b_{ij} + \sum_i (\theta_i \wedge \overline{\theta}_i) \otimes a_i$ with $b_{ij}, a_i \in \mathfrak{u}(B)$. Let $\Xi := \operatorname{Tr}(\Theta \wedge \Theta)$. Then $\Xi \wedge \omega^{n-2} = \operatorname{const} \operatorname{Tr}\left(-\sum_{i \neq j} b_{ij}^2 + \sum_{i \neq j} a_i a_j\right)$, where const is a positive constant. On the other hand, $\Lambda(\Theta) = \sum a_i = 0$, which brings $\sum_{i < j} a_i a_j = -\sum_i a_i^2$. This gives

$$\equiv \wedge \, \omega^{n-2} = \operatorname{const} \operatorname{Tr} \left(-\sum_{i \neq j} b_{ij}^2 - \sum_i a_i^2 \right).$$

Since the Killing form on $\mathfrak{u}(B)$ is negative definite, this sum is positive, and strictly positive unless $\Xi=0$.

Transversally Kähler foliations

DEFINITION: Semi-Hermitian form is a form $\omega \in \Lambda^{1,1}(M,\mathbb{R})$ such that $\omega(Ix,x) \geqslant 0$ for any $x \in TM$ (the inequality is strict iff ω is Hermitian).

DEFINITION: A **foliation** on a complex manifold M is a complex sub-bundle $F \subset TM$, $\dim_R F = 2$, closed under commutator (usually it is assumed to be holomorphic). A foliation is called **transversally Kähler** if M is equipped with a closed semi-Hermitian form ω_0 such that $\omega_0(x,\cdot) = 0$ for any $x \in F$ and ω_0 is Hermitian on TM/F.

REMARK: On a compact Kähler n-manifold (M, ω) , a semi-Hermitian form ω_0 is never exact. Indeed, $\int_M \omega_0 \wedge \omega^{n-1} > 0$, hence ω_0 cannot be exact. On compact, complex, non-Kähler manifolds, transversally Kähler foliations with exact ω_0 are quite common.

EXAMPLE: The classical Hopf surface is $H := \mathbb{C}^2 \setminus 0/\mathbb{Z}$, where \mathbb{Z} acts as a multiplication by a complex number λ , $|\lambda| > 1$. Clearly, H is diffeomorphic to $S^1 \times S^3$, and fibered over $\mathbb{C}P^1$ with fiber $\mathbb{C}^*/\langle \lambda \rangle$.

CLAIM: Let $\pi: H \longrightarrow \mathbb{C}P^1$ be the standard projection, and $\omega_0 := \pi^*\omega_{\mathbb{C}P^1}$ be a pullback of the Fubini-Study form. Clearly, ω_0 is exact, because $H^2(H) = 0$ (by Künneth formula). Therefore, H admits a transversally Kähler, exact form.

Prinipal elliptic fibrations.

DEFINITION: A principal elliptic fibration M is a complex manifold equipped with a free holomorphic action of a 1-dimensional compact complex torus T.

Such a manifold is fibered over M/T, with fiber T.

REMARK: It is a principal T-bundle: all fibers are identified with T, with T acting on fibers freely.

DEFINITION: Let $M \xrightarrow{\pi} X$ be a principal elliptic fibration, M compact. We say that M is **positive elliptic fibration**, if for some Kähler class ω on X, $\pi^*\omega$ is exact. ("Kähler class" is a cohomology class of a Kähler form).

EXAMPLE: The classical Hopf surface introduced earlier.

EXAMPLE: A more general example is given by $\text{Tot}(L^*)/\langle \mathbb{Z} \rangle$, where L is an ample line bundle. Such manifold is called a regular Vaisman manifold. It is positive, because $\pi^*(c_1(L)) = 0$, and $c_1(L)$ is a Kähler class.

Calabi-Eckmann manifolds

Fix $\alpha \in \mathbb{C}$, α non-real, $|\alpha| > 1$. Consider a subgroup

$$G := \{ e^t \times e^{\alpha t} \subset \mathbb{C}^* \times \mathbb{C}^*, \quad t \in \mathbb{C} \} \subset \mathbb{C}^* \times \mathbb{C}^*$$

within $\mathbb{C}^* \times \mathbb{C}^*$. It is clearly co-compact and closed, with $\mathbb{C}^* \times \mathbb{C}^*/G$ being an elliptic curve $\mathbb{C}^*/\langle \alpha \rangle$.

Now, let $M := (\mathbb{C}^n \setminus 0) \otimes (\mathbb{C}^m \setminus 0) / G$, with $G \subset \mathbb{C}^* \times \mathbb{C}^*$ acting on $(\mathbb{C}^n \setminus 0) \otimes (\mathbb{C}^m \setminus 0)$ by $(t_1, t_2)(x, y) \longrightarrow (t_1x, t_2y)$. Clearly, M is fibered over

$$\mathbb{C}P^{n-1} \times \mathbb{C}P^{m-1} = (\mathbb{C}^n \backslash 0) \otimes (\mathbb{C}^m \backslash 0) / \mathbb{C}^* \times \mathbb{C}^*$$

with a fiber $\mathbb{C}^* \times \mathbb{C}^*/G$, which is an elliptic curve. Its total space M is called the Calabi-Eckmann manifold. It is diffeomorphic to $S^{2n-1} \times S^{2m-1}$.

REMARK: The map $M \longrightarrow \mathbb{C}P^{n-1} \times \mathbb{C}P^{m-1}$ is a principal elliptic fibration.

REMARK: The pullback of a Kähler form from $\mathbb{C}P^{n-1} \times \mathbb{C}P^{m-1}$ to M is exact, because $H^2(M) = 0$ (by Künneth formula).

Irregular and quasi-regular foliations

DEFINITION: A foliation is called **quasi-regular** if all its leaves are compact. If this is not so, it is called **irregular**. A foliation is called **regular** if all its leaves are compact, and the leaf space is smooth.

REMARK: The examples given above (Vaisman, Calabi-Eckmann) are deformed naturally to irrregular foliated transversally Kähler manifolds.

REMARK: Calabi-Eckmann manifolds were generalized by Lopez de Medrano, Verjovsky and Meersseman. The complex structure on Calabi-Eckmann can be deformed together with the foliation, giving a transversally Kähler manifold with a foliation having non-compact leaves ("LVM-manifolds"). A version of this construction is known as the moment-angle manifolds.

Subvarieties in manifolds equipped with positive elliptic fibrations

THEOREM: Let (M, Σ, ω_0) be a manifold equipped with a rank 1 holomorphic foliation Σ and an exact trasversally Kähler form ω_0 , and $Z \subset M$ a complex subvariety. Then Z is tangent to leaves of Σ everywhere. If, in addition, Σ is quasi-regular, then $Z = \pi^{-1}(Z_0)$, where $Z_0 \subset M_0$ is a complex subvariety of the leaf space $M_0 = M/\Sigma$.

Proof: Let $k:=\dim Z$. Since ω_0 is exact, we have $\int_Z \omega_0^k = 0$. Therefore, the restriction $\omega_0|_Z$ cannot be strictly positive; in other words, for each $z \in Z$ the tangent space T_zZ intersects $\ker \omega_0 = \Sigma$. Since $\operatorname{rk} \Sigma = 1$, this implies that $TZ \supset T\Sigma$: with each $z \in Z$, the manifold Z contains the whole leaf of Σ passing through z.

Compatible Gauduchon metrics

DEFINITION: Let (M, Σ, ω_0) be a compact, complex manifold, and ω_0 a transversally Kähler form. A Gauduchon form ω is called a **Gauduchon form** compatible with the transversally Kähler foliation, if the projection to the leaf space of Σ (the leaf space is not always defined globally, but locally in M it always exists) is a Riemannian submersion.

REMARK: From now on, we will always fix a Gauduchon form ω compatible with Σ, ω_0 .

CLAIM: At any given point of M, there is a frame such that $\omega_0 = -\sqrt{-1} \ const \sum \theta_i \wedge \overline{\theta}_i$, and $\omega = -\sqrt{-1} \ \sum \theta_i \wedge \overline{\theta}_i - \sqrt{-1} \ \theta \wedge \overline{\theta}$, where $\theta, \theta_1, ..., \theta_n$ is an ω -orthonormal basis in $\Lambda^{1,0}(M)$, and all θ_i vanish on Σ .

Leaf space of quasiregular foliations

REMARK: When Σ is quasiregular, M is equipped with a holomorphic projection to the leaf space, $\pi: M \longrightarrow X = M/\Sigma$. In this case Σ is a principal elliptic fibration.

MAIN THEOREM: Let F be a stable coherent sheaf on a compact, complex manifold (M, Σ, ω_0) , with a transversally Kähler, exact form, dim M > 2. Assume that Σ is quasiregular, and let $\pi: M \longrightarrow X = M/\Sigma$ be the projection map. Then $F = \pi^* F_0 \otimes L$, where F_0 is a coherent sheaf on M/Σ , and L a line bundle.

Proof: Last slide.

COROLLARY: In these assumptions, any coherent sheaf on M is filtrable, that is, admits a filtration with rank 1 quotient sheaves.

REMARK: Filtrability is a very strong property! It fails on almost all non-algebraic surfaces.

Stability and transversally Kähler foliations (2)

THEOREM 1: Let (M, Σ, ω_0) be a compact, complex manifold, dim M > 2, and ω_0 a transversally Kähler, exact form. Consider a vector bundle B with a Yang-Mills metric, $\deg_{\omega} B = 0$, and let ∇ denote the Yang-Mills connection. **Then the curvature** Θ of ∇ satisfies $\Theta(x, \cdot) = 0$ for any $x \in \Sigma$.

Proof: At a given point $m \in M$, let $\omega_0 = -\sqrt{-1} \sum \theta_i \wedge \overline{\theta}_i$, $\omega = -\sqrt{-1} \sum \theta_i \wedge \overline{\theta}_i - \sqrt{-1} \theta \wedge \overline{\theta}_i$, where $\theta, \theta_1, ..., \theta_n$ is an ω -orthonormal basis in $\Lambda^{1,0}(M)$ defined above. Write the curvature of B as

$$\Theta = \sum_{i \neq j} (\theta_i \wedge \overline{\theta}_j - \overline{\theta}_i \wedge \theta_j) \otimes b_{ij} + \sum_i (\theta_i \wedge \overline{\theta}_i) \otimes a_i
+ \sum_i (\theta \wedge \overline{\theta}_i - \overline{\theta} \wedge \theta_i) \otimes b_i + \theta \wedge \overline{\theta} \otimes a,$$

with $b_{ij},\ b_i,\ a_i,\ a\in\mathfrak{u}(B)$ being skew-Hermitian endomorphisms of B. Let $\Xi:=\mathrm{Tr}(\Theta\wedge\Theta).$ Then $(\sqrt{-1})^n\Xi\wedge\omega_0^{n-2}=\mathrm{Tr}\left(-\sum b_i^2+a\left(\sum a_i\right)\right).$ On the other hand, $\sum a_i+a=\Lambda\Theta=0$, hence $(\sqrt{-1})^n\Xi\wedge\omega_0^{n-2}=\mathrm{Tr}\left(-\sum b_i^2-a^2\right).$ Since $\mathrm{Tr}(-a^2)$ is a positive definite form on $\mathfrak{u}(B)$, the integral $\int_M(\sqrt{-1})^n\Xi\wedge\omega_0^{n-2}$ is non-negative, and positive unless b_i and a both vanish everywhere. If ω_0 is exact, this integral vanishes, and $\Theta(x)=0$ for any $x\in\Sigma$.

Stable bundles on positive elliptic fibrations are equivariant

COROLLARY: In assumptions of Theorem 1, let $X \in \Sigma$ be a holomorphic vector field tangent to the foliation Σ . Then ∇_X takes holomorphic sections of B to holomorphic sections.

Proof: By definition, b is holomorphic if and only if $\nabla^{0,1}b = 0$. However,

$$\nabla_Y \nabla_X b = \nabla_{[Y,X]} b + \nabla_X \nabla_Y b + \Theta_{Y,X} b.$$

If $Y\in T^{0,1}M$, and b is holomorphic, we have $\nabla_Y b=0$. Also, $[X,Y]\in T^{0,1}M$, because X is holomorphic, which also gives $\nabla_{[X,Y]}b=0$. Finally, $\Theta_{X,Y}b=0$ because $X\in\Sigma\subset\ker\Theta$. We have shown that $\nabla_Y\nabla_X b=0$ for any $Y\in T^{0,1}M$.

COROLLARY: Let $M \stackrel{\pi}{\to} X$ be a positive principal elliptic fibration, E the elliptic curve, considered as a group, acting on the fibers of π , and \tilde{E} its universal covering. Then any ω -stable bundle on M is equipped with a natural \tilde{E} -equivariant structure.

Proof: To define a \tilde{E} -equivariant structure, it would suffice to lift the vector fields tangent to E to holomorphic vector fields on $\operatorname{Tot} B$, compatible with the vector bundle structure. This was done in the previous theorem.

REMARK: To prove the Main Theorem, it remains to show that \tilde{E} -equivariance implies that $B\otimes L=\pi^*B_0$, for some line bundle L on M, and some bundle B_0 on X=M/E.

Line bundles on positive principal elliptic fibrations

Let E be an elliptic curve and $M \xrightarrow{\pi} X$ a positive principal E-fibration, $\dim M \geqslant 3$. Consider a line bundle L on M. Then \tilde{E} -equivariant structure on L defines a homomorphism $\pi_1(E) \longrightarrow \operatorname{Aut}(L) = \mathbb{C}^*$. We denote it χ_L . Since ∇ preserves the metric, χ_L takes values in U(1), defining a map $\chi_L: \mathbb{Z}^2 \to U(1)$.

PROPOSITION: Let E be an elliptic curve and $M \xrightarrow{\pi} X$ a positive principal E-fibration, dim $M \geqslant 3$. Then for any character $\chi: \pi_1(E) \longrightarrow U(1)$. there exists a holomorphic line bundle L such that $L = \chi_L$.

Proof. Step 1: Consider the commutative diagram with exact rows coming from the exponential exact sequence

$$H^1(M, \mathcal{O}_M) \longrightarrow \operatorname{Pic}_0(M) \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow$$

$$H^1(E, \mathcal{O}_E) \longrightarrow \operatorname{Pic}_0(E) \longrightarrow 0$$

The characters $\chi: \Gamma \longrightarrow U(1)$ are in bijective correspondence with the bundles from $\operatorname{Pic}_0(E)$, and the correspondence is provided by a unique flat connection on every $L \in \operatorname{Pic}_0(E)$. It remains to show that the natural arrow $\operatorname{Pic}_0(M) \longrightarrow \operatorname{Pic}_0(E)$ is surjective.

Step 2: From the diagram in Step 1, we obtain that surjectivity of the restriction $Pic_0(M) \longrightarrow Pic_0(E)$ would follow if we prove that the restriction map $H^1(M, \mathcal{O}_M) \longrightarrow H^1(E, \mathcal{O}_E)$. is surjective.

Step 3: Since $\operatorname{rk} H^1(E,\mathcal{O}_E)=1$, surjectivity would follow if we prove that this map is non-trivial; equivalently, if we show that the natural map $\operatorname{Pic}_0(M) \to \operatorname{Pic}_0(E)$ is non-zero. Let L be a line bundle with curvature ω_0 ; then $c_1(L)=0$, but this bundle is non-trivial, because were it trivial, we would have $\omega_0=\partial\overline{\partial} f$, and

$$0 < \int_{M} \omega_{0} \wedge \omega^{n-1} = \int_{M} \partial \overline{\partial} f \wedge \omega^{n-1} = \int_{M} f \wedge \partial \overline{\partial} \omega^{n-1} = 0.$$

Therefore, L is not a pullback of a line bundle on X, hence its restriction to the fibers of π is non-trivial.

Stable bundles on positive principal elliptic fibrations are pullbacks (up to a line bundle multiplier)

THEOREM: Let B be a ω -stable bundle on a compact, complex manifold equipped with a positive elliptic fibration $\pi: M \longrightarrow X$. Then $B = \pi^* B_0 \otimes L$, where B_0 is a stable bundle on X, and L a holomorphic line bundle.

Proof: Let $\rho: \tilde{E} \to \operatorname{Aut}(\operatorname{Tot} F)$ be the equivariant action constructed above, and Γ the kernel of the natural map $\tilde{E} \to E$. Since Γ acts on B by automorphisms, and the automorphisms of stable bundles are scalar, Γ acts on B as a character $\chi: \mathbb{Z}^2 \to U(1)$. However, by the previous proposition, any such character can be realized by a line bundle L. Then $B \otimes L^{-1}$ is trivial on the leaves of π , which implies $B = \pi^* B_0 \otimes L$.