Stable bundles on positive elliptic fibrations

Misha Verbitsky

Estruturas geométricas em variedades,

IMPA, November 17, 2022

Gauduchon metrics

DEFINITION: A Hermitian metric ω on a complex *n*-manifold is called **Gauduchon** if $dd^c \omega^{n-1} = 0$.

THEOREM: (P. Gauduchon, 1978) Let M be a compact, complex manifold, and h a Hermitian form. Then there exists a Gauduchon metric conformally equivalent to h, and it is unique, up to a constant multiplier.

REMARK: If ω is Gauduchon, then (by Stokes' theorem) $\int_M \omega^{n-1} dd^c f = 0$ for any f. The curvature Θ_L of a holomorphic line bundle L is well-defined up to $dd^c \log |h|$, where h is a conformal factor. Therefore, for any line bundle L, the number $\deg_{\omega} L := \int_M \omega^{n-1} \wedge \Theta_L$ is well defined.

REMARK: Unlike the Kähler case, $\deg_{\omega} L$ is a holomorphic invariant of L, and **not topological.**

DEFINITION: Given a torsion-free coferent sheaf F of rank r, let det $F := \Lambda^r F^{**}$. From algebraic geometry it is known that det F is a line bundle. Define **the degree** deg_{ω} $F := deg_{\omega} det F = \int_M \operatorname{Tr} \Theta_F \wedge \omega^{n-1}$.

Kobayashi-Hitchin correspondence

DEFINITION: Let F be a coherent sheaf over an n-dimensional Gauduchon manifold (M, ω) , and $slope(F) := \frac{\deg_{\omega} F}{rank(F)}$. A torsion-free sheaf F is called **stable** if for all subsheaves $F' \subset F$ one has slope(F') < slope(F). If F is a direct sum of stable sheaves of the same slope, F is called **polystable**.

DEFINITION: A Hermitian metric on a holomorphic vector bundle *B* is called **Yang-Mills** (Hermitian-Einstein) if $\Theta_B \wedge \omega^{n-1} = \text{slope}(F) \cdot \text{Id}_B \cdot \omega^n$, where Θ_B is its curvature.

THEOREM: (Kobayashi-Hitchin correspondence; Donaldson, Buchsdahl, Uhlenbeck-Yau, Li-Yau, Lübke-Teleman): Let *B* be a holomorphic vector bundle. Then *B* admits a Yang-Mills metric if and only if *B* is polystable.

COROLLARY: Any tensor product of polystable bundles is polystable.

REMARK: This result was generalized to coherent sheaves by Bando and Siu.

REMARK: Stability is required if you want to classify vector bundles or construct their moduli spaces.

Positivity for stable bundles

"Bogomolov's inequality": if deg B = 0 and B is Yang-Mills, then $Tr(\Theta_B \land \Theta_B) \land \omega^{n-2}$ is a positive volume form, vanishing only if the curvature Θ_B of B vanishes.

COROLLARY: A stable bundle *B* on a Kähler manifold *M* with $c_1(B) = 0$, $c_2(B) = 0$ is flat.

Today I will give a version of this statement on manifolds equipped with foliations, in particular, when M is equipped with a positive elliptic fibration.

Transversally Kähler foliations

DEFINITION: Semi-Hermitian form is a form $\omega \in \Lambda^{1,1}(M,\mathbb{R})$ such that $\omega(Ix,x) \ge 0$ for any $x \in TM$ (the inequality is strict iff ω is Hermitian).

DEFINITION: A foliation on a complex manifold M is a complex sub-bundle $F \subset TM$, dim_R F = 2, closed under commutator (usually it is assumed to be holomorphic). A foliation is called **transversally Kähler** if M is equipped with a closed semi-Hermitian form ω_0 such that $\omega_0(x, \cdot) = 0$ for any $x \in F$ and ω_0 is Hermitian on TM/F.

REMARK: On a compact Kähler *n*-manifold (M, ω) , a semi-Hermitian form ω_0 is never exact. Indeed, $\int_M \omega_0 \wedge \omega^{n-1} > 0$, hence ω_0 cannot be exact. On compact, complex, non-Kähler manifolds, transversally Kähler foliations with exact ω_0 are quite common.

EXAMPLE: The classical Hopf surface is $H := \mathbb{C}^2 \setminus 0/\mathbb{Z}$, where \mathbb{Z} acts as a multiplication by a complex number λ , $|\lambda| > 1$. Clearly, H is diffeomorphic to $S^1 \times S^3$, and fibered over $\mathbb{C}P^1$ with fiber $\mathbb{C}^*/\langle \lambda \rangle$.

CLAIM: Let $\pi : H \longrightarrow \mathbb{C}P^1$ be the standard projection, and $\omega_0 := \pi^* \omega_{\mathbb{C}P^1}$ be a pullback of the Fubini-Study form. Clearly, ω_0 is exact, because $H^2(H) = 0$ (by Künneth formula). Therefore, H admits a transversally Kähler, exact form.

Locally trivial elliptic fibrations.

DEFINITION: A principal elliptic fibration M is a complex manifold equipped with a free holomorphic action of a 1-dimensional compact complex torus T.

Such a manifold is fibered over M/T, with fiber T.

REMARK: It is a principal T-bundle: all fibers are identified with T, with T acting on fibers freely.

DEFINITION: Let $M \xrightarrow{\pi} X$ be a principal elliptic fibration, M compact. We say that M is **positive elliptic fibration**, if for some Kähler class ω on X, $\pi^*\omega$ is exact. ("Kähler class" is a cohomology class of a Kähler form).

EXAMPLE: The classical Hopf surface introduced earlier.

EXAMPLE: A more general example is given by $Tot(L^*)/\langle \mathbb{Z} \rangle$, where *L* is an ample line bundle. Such manifold is called a regular Vaisman manifold. It is positive, because $\pi^*(c_1(L)) = 0$, and $c_1(L)$ is a Kähler class.

Calabi-Eckmann manifolds

Calabi-Eckmann manifolds.

Fix $\alpha \in \mathbb{C}$, α non-real, $|\alpha| > 1$. Consider a subgroup

 $G := \{ e^t \times e^{\alpha t} \subset \mathbb{C}^* \times \mathbb{C}^*, \quad t \in \mathbb{C} \} \subset \mathbb{C}^* \times \mathbb{C}^*$

within $\mathbb{C}^* \times \mathbb{C}^*$. It is clearly co-compact and closed, with $\mathbb{C}^* \times \mathbb{C}^*/G$ being an elliptic curve $\mathbb{C}^*/\langle \alpha \rangle$.

Now, let $M := (\mathbb{C}^n \setminus 0) \otimes (\mathbb{C}^m \setminus 0)/G$, with $G \subset \mathbb{C}^* \times \mathbb{C}^*$ acting on $(\mathbb{C}^n \setminus 0) \otimes (\mathbb{C}^m \setminus 0)$ by $(t_1, t_2)(x, y) \longrightarrow (t_1 x, t_2 y)$. Clearly, M is fibered over

$$\mathbb{C}P^{n-1} \times \mathbb{C}P^{m-1} = (\mathbb{C}^n \backslash 0) \otimes (\mathbb{C}^m \backslash 0) / \mathbb{C}^* \times \mathbb{C}^*$$

with a fiber $\mathbb{C}^* \times \mathbb{C}^*/G$, which is an elliptic curve. Its total space M is called **the Calabi-Eckmann manifold**. It is diffeomorphic to $S^{2n-1} \times S^{2m-1}$.

REMARK: The map $M \longrightarrow \mathbb{C}P^{n-1} \times \mathbb{C}P^{m-1}$ is a principal elliptic fibration.

REMARK: The pullback of a Kähler form from $\mathbb{C}P^{n-1} \times \mathbb{C}P^{m-1}$ to M is exact, because $H^2(M) = 0$ (by Künneth formula).

Irregular and quasi-regular foliations

DEFINITION: A foliation is called **quasi-regular** if all its leaves are compact. If this is not so, it is called **irregular**. A foliation is called **regular** if all its leaves are compact, and the leaf space is smooth.

REMARK: The examples given above (Vaisman, Calabi-Eckmann) are deformed naturally to irrregular foliated transversally Kähler manifolds.

REMARK: Calabi-Eckmann manifolds were generalized by Lopez de Medrano, Verjovsky and Meersseman. The complex structure on Calabi-Eckmann can be deformed together with the foliation, giving **a transversally Kähler manifold with a foliation having non-compact leaves** ("LVM-manifolds").

Oeljeklaus-Toma manifolds

Let K be a number field which has 2t complex embedding denoted $\tau_i, \overline{\tau}_i$ and s real ones denoted σ_i , s > 0, t > 0.

Let $\mathcal{O}_{K}^{*,+} := \mathcal{O}_{K}^{*} \cap \bigcap_{i} \sigma_{i}^{-1}(\mathbb{R}^{>0})$. Choose in $\mathcal{O}_{K}^{*,+}$ a free abelian subgroup $\mathcal{O}_{K}^{*,U}$ of rank s such that the quotient $\mathbb{R}^{s}/\mathcal{O}_{K}^{*,U}$ is compact, where $\mathcal{O}_{K}^{*,U}$ is mapped to \mathbb{R}^{t} as $\xi \longrightarrow \left(\log(\sigma_{1}(\xi)), ..., \log(\sigma_{t}(\xi))\right)$. Let $\Gamma := \mathcal{O}_{K}^{+} \rtimes \mathcal{O}_{K}^{*,U}$.

DEFINITION: An Oeljeklaus-Toma manifold is a quotient $\mathbb{C}^t \times H^s/\Gamma$, where \mathcal{O}_K^+ acts on $\mathbb{C}^t \times H^t$ as

 $\zeta(x_1, ..., x_t, y_1, ..., y_s) = (x_1 + \tau_1(\zeta), ..., x_t + \tau_t(\zeta), y_1 + \sigma_1(\zeta), ..., y_s + \sigma_s(\zeta)),$ and $\mathcal{O}_K^{*, U}$ as $\xi(x_1, ..., x_t, y_1, ..., y_s) = (x_1, ..., x_t, \sigma_1(\xi)y_1, ..., \sigma_t(\xi)y_t)$

THEOREM: (Oeljeklaus-Toma) The OT-manifold $M := \mathbb{C}^t \times H^s/\Gamma$ is a compact complex manifold, without any non-constant meromorphic functions. When t = 1, it is locally conformally Kähler. When s = 1, t = 1, it is an Inoue surface of class S^0 .

THEOREM: (Ornea-V.) Let M be an OT-manifold, t = 1. Then M is equipped with a holomorphic 1-dimensional foliation and a transversally Kähler, exact form.

Stability and transversally Kähler foliations

THEOREM: Let (M, Σ, ω_0) be a compact, complex manifold, dim M > 2, and ω_0 a transversally Kähler, exact form. Let $\omega_1 := \omega_0 + \theta \wedge I(\theta), \ \theta \in \Lambda^1(M)$ be a Hermitian form, and ω the corresponding Gauduchon form. Consider a vector bundle B with a Yang-Mills metric, deg $_{\omega} B = 0$, and let ∇ denote the Yang-Mills connection. Then the curvature Θ_B of ∇ satisfies $\Theta_B(x, \cdot) = 0$ for any $x \in \Sigma$.

REMARK: The condition "Then the curvature Θ_B of ∇ satisfies $\Theta_B(x, \cdot) = 0$ for any $x \in \ker \omega_0$ " means that (B, ∇) is locally lifted from the leaf space of the foliation Σ .

Leaf space of quasiregular foliations

REMARK: When Σ is quasiregular, M is equipped with a holomorphic projection to the leaf space, $\pi : M \longrightarrow X = M/\Sigma$. In this situation, the category of coherent sheaves can be described explicitly, in terms of a projective orbifold M/Σ .

THEOREM: Let F be a stable coherent sheaf on a be a compact, complex manifold (M, Σ, ω_0) , with a transversally Kähler, exact form, dim M > 2. Assume that Σ is quasiregular, and let $\pi : M \longrightarrow X = M/\Sigma$ be the projection map. Then $F = \pi^* F_0 \otimes L$, where F_0 is a coherent sheaf on M/Σ , and L a line bundle.

COROLLARY: In these assumptions, any coherent sheaf on M is filtrable, that is, admits a filtration with rank 1 quotient sheaves.

REMARK: Filtrability is a very strong property! It fails on almost all non-algebraic surfaces.

Stability and transversally Kähler foliations (2)

THEOREM: Let (M, Σ, ω_0) be a compact, complex manifold, dim M > 2, and ω_0 a transversally Kähler, exact form. Let $\omega_1 := \omega_0 - \sqrt{-1}\theta \wedge \overline{\theta}, \ \theta \in \Lambda^{1,0}(M)$ be a Hermitian form, and ω the corresponding Gauduchon form. Consider a vector bundle B with a Yang-Mills metric, deg_{ω} B = 0, and let ∇ denote the Yang-Mills connection. Then the curvature Θ_B of ∇ satisfies $\Theta_B(x, \cdot) = 0$ for any $x \in \Sigma$.

Proof: At a given point $m \in M$, let $\omega_0 = -\sqrt{-1} \sum \theta_i \wedge \overline{\theta}_i$, $\omega = -\sqrt{-1} \sum \theta_i \wedge \overline{\theta}_i - \sqrt{-1} \theta \wedge \overline{\theta}_i$, where $\theta, \theta_1, ..., \theta_n$ is an orthonormal basis in $\Lambda^{1,0}(M)$. Write the curvature of B as

$$\Theta = \sum_{i \neq j} (\theta_i \wedge \overline{\theta}_j + \overline{\theta}_i \wedge \overline{\theta}_j) \otimes b_{ij} + \sum_i (\theta_i \wedge \overline{\theta}_i) \otimes a_i \\ + \sum_i (\theta \wedge \overline{\theta}_i + \overline{\theta} \wedge \overline{\theta}_i) \otimes b_i + \theta \wedge \overline{\theta} \otimes a,$$

with b_{ij} , b_i , a_i , $a \in \mathfrak{u}(B)$ being skew-Hermitian endomorphisms of B. Let $\Xi := \operatorname{Tr}(\Theta \wedge \Theta)$. Then $(\sqrt{-1})^n \Xi \wedge \omega_0^{n-2} = \operatorname{Tr}\left(-\sum b_i^2 + a\left(\sum a_i\right)\right)$. On the other hand, $\sum a_i + a = \Lambda \Theta = 0$, hence $(\sqrt{-1})^n \Xi \wedge \omega_0^{n-2} = \operatorname{Tr}\left(-\sum b_i^2 - a^2\right)$. Since $\operatorname{Tr}(-a^2)$ is a positive definite form on $\mathfrak{u}(B)$, the integral $\int_M (\sqrt{-1})^n \Xi \wedge \omega_0^{n-2}$ is non-negative, and positive unless b_i and a both vanish everywhere. If ω_0 is exact, this integral vanishes, and $\Theta(x) = 0$ for any $x \in \Sigma$.

Foliation by group orbits

REMARK: The condition $\deg_{\omega} B = 0$ can be rectified by a tensor multiplication with an appropriate line bundle of non-zero degree.

THEOREM: Let (M, Σ, ω_0) be a compact, complex manifold, dim M > 2, and ω_0 a transversally Kähler, exact form. Let ρ denote an action of \mathbb{C} on M. Assume that its orbits are leaves of Σ , and that the form ω_0 is ρ -invariant. **Then any stable bundle (or coherent sheaf)** B on M is ρ -equivariant.

Proof: When $\deg_{\omega} B = 0$, the bundle *B* is flat on the leaves of Σ , and the parallel transport along leaves is compatible with the connection. When $\deg_{\omega} B \neq 0$, we multiply *B* by a ρ -equivariant line bundle *L* of degree $\frac{-\deg B}{\operatorname{rk} B}$. For *L* one could take a topologically trivial line bundle with curvature $\operatorname{const} \omega_0$.