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Gauduchon metrics

DEFINITION: A Hermitian metric w on a complex n-manifold is called
Gauduchon if dd‘w" 1 = 0.

THEOREM: (P. Gauduchon, 1978) Let M be a compact, complex man-
ifold, and h a Hermitian form. Then there exists a Gauduchon metric
conformally equivalent to A, and it is unique, up to a constant multiplier.

REMARK: If w is Gauduchon, then (by Stokes’ theorem) [y;w™ 1dd‘f = O
for any f. The curvature ©; of a holomorphic line bundle L is well-defined up
to ddlog |h|, where h is a conformal factor. Therefore, for any line bundle
L, the number deg, L := [,;w" 1 A O is well defined.

REMARK: Unlike the Kahler case, deg, L is a holomorphic invariant of L,
and not topological.

DEFINITION: Given a torsion-free coferent sheaf F of rank r, let det F' :=
AT F**. From algebraic geometry it is known that det F' is a line bundle. Define
the degree deg, F :=deg,detF = [, TrOp Aw" L.
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Kobayashi-Hitchin correspondence

DEFINITION: Let F' be a coherent sheaf over an n-dimensional Gauduchon
manifold (M,w), and slope(F) = %. A torsion-free sheaf F' is called
stable if for all subsheaves F/ C F one has slope(F’) < slope(F). If F is a

direct sum of stable sheaves of the same slope, F' is called polystable.

DEFINITION: A Hermitian metric on a holomorphic vector bundle B is called
Yang-Mills (Hermitian-Einstein) if © 5 Aw” ™! = slope(F) -Idg -w™, where ©p
IS its curvature.

THEOREM: (Kobayashi-Hitchin correspondence; Donaldson, Buchsdahl,
Uhlenbeck-Yau, Li-Yau, Libke-Teleman): Let B be a holomorphic vector
bundle. Then B admits a Yang-Mills metric if and only if B is polystable.

COROLLARY: Any tensor product of polystable bundles is polystable.

REMARK: This result was generalized to coherent sheaves by Bando
and Siu.

REMARK: Stability is required if you want to classify vector bundles or
construct their moduli spaces.
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Positivity for stable bundles

“Bogomolov’s inequality”: if deg B = 0 and B is Yang-Mills, then Tr(©z5 A
Op) A w"™2 is a positive volume form, vanishing only if the curvature ©p of
B vanishes.

COROLLARY: A stable bundle B on a Kahler manifold M with c1(B) =
0,co(B) = 0 is flat.

Today I will give a version of this statement on manifolds equipped with folia-
tions, in particular, when M is equipped with a positive elliptic fibration.
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Transversally Kahler foliations

DEFINITION: Semi-Hermitian form is a form w € ALL(M,R) such that
w(lx,z) >0 for any z € TM (the inequality is strict iff w is Hermitian).

DEFINITION: A foliation on a complex manifold M is a complex sub-bundle
F CTM, dimp F = 2, closed under commutator (usually it is assumed to be
holomorphic). A foliation is called transversally Kahler if M is equipped with
a closed semi-Hermitian form wg such that wg(xz,-) = 0 for any x € F' and wg
is Hermitian on TM/F.

REMARK: On a compact Kahler n-manifold (M, w), a semi-Hermitian form
wo IS never exact. Indeed, [;;wo Aw™ 1 >0, hence wy cannot be exact. On
compact, complex, non-Kahler manifolds, transversally Kahler foliations
with exact wg are quite common.

EXAMPLE: The classical Hopf surface is H := C2\0/Z, where Z acts as
a multiplication by a complex number A, |A| > 1. Clearly, H is diffeomorphic
to St x S§3, and fibered over CP! with fiber C*/()\).

CLAIM: Let 7 : H — CP! be the standard projection, and wg = w*wcpl be a
pullback of the Fubini-Study form. Clearly, wq is exact, because H2(H) = 0
(by Kiinneth formula). Therefore, H admits a transversally Kahler, exact
form.
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Locally trivial elliptic fibrations.

DEFINITION: A principal elliptic fibration M is a complex manifold
equipped with a free holomorphic action of a 1-dimensional compact complex
torus T'.

Such a manifold is fibered over M /T, with fiber T.

REMARK: It is a principal T-bundle: all fibers are identified with 7T, with T
acting on fibers freely.

DEFINITION: Let M -5 X be a principal elliptic fibration, M compact.
We say that M is positive elliptic fibration, if for some Kahler class w on X,
m*w is exact. (“Kahler class” is a cohomology class of a Kahler form).

EXAMPLE: The classical Hopf surface introduced earlier.

EXAMPLE: A more general example is given by Tot(L*)/(Z), where L is an
ample line bundle. Such manifold is called a regular Vaisman manifold. It
is positive, because 7©*(c1(L)) = 0, and ¢1(L) is a Kahler class.
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Calabi-Eckmann manifolds

Calabi-Eckmann manifolds.
Fix o € C, « non-real, |a|] > 1. Consider a subgroup

Gi={elxe?CC*"xC* teClcC*xC*

within C* x C*. It is clearly co-compact and closed, with C* x C*/G being an
elliptic curve C*/{«a).

Now, let M := (C™"\0)® (C™\0)/G, with G C C*xC* acting on (C™\0)® (C™\0)
by (t1,t2)(xz,y) — (t1x,toy). Clearly, M is fibered over

cprl xcpm™t = (C™\0) ® (C™\0)/C* x C*

with a fiber C* x C*/G, which is an elliptic curve. Its total space M is called
the Calabi-Eckmann manifold. It is diffeomorphic to §27—1 x §2m—1

REMARK: The map M —s CP* 1 xcP™ 1 is a principal elliptic fibration.

REMARK: The pullback of a Kahler form from CP"* 1 x cP™ 1 to M is
exact, because H2(M) = 0 (by Kiinneth formula).
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Irregular and quasi-regular foliations

DEFINITION: A foliation is called quasi-regular if all its leaves are compact.
If this is not so, it is called irregular. A foliation is called regular if all its
leaves are compact, and the leaf space is smooth.

REMARK: The examples given above (Vaisman, Calabi-Eckmann) are de-
formed naturally to irrregular foliated transversally Kahler manifolds.

REMARK: Calabi-Eckmann manifolds were generalized by Lopez de Medrano,
Verjovsky and Meersseman. The complex structure on Calabi-Eckmann can
be deformed together with the foliation, giving a transversally Kahler man-
ifold with a foliation having non-compact leaves (“LVM-manifolds”).
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Oeljeklaus-Toma manifolds

Let K be a number field which has 2t complex embedding denoted 7;,7; and
s real ones denoted o;, s > 0, t > 0.

Let (9}4' = 0% NN;o; *(R>0). Choose in O}"" a free abelian subgroup O}’U
of rank s such that the quotient RS/O}'}U is compact, where C’)}U is mapped
to R! as € — (Iog(al(g)), - Iog(at(g))). Let [T := OIJQ X O}U.

DEFINITION: An Oeljeklaus-Toma manifold is a quotient Ct x H5/I,
where O[‘E acts on C! x H? as

C('mla ey Lty Y1, "'7y8> — (331 + Tl(()a ooy Lt + Tt(C)7y1 + O-l(C)a ey Ys + O-S(C))a
and O;{’U as g(xla s Lty Y1 "'7y8) — (wla "'7xt70-1(£>y17 °°'7at(€)yt)

THEOREM: (Oeljeklaus-Toma) The OT-manifold M := C! x H5/I is a
compact complex manifold, without any non-constant meromorphic func-
tions. When t = 1, it is locally conformally Kahler. When s =1,t =1, it is
an Inoue surface of class SY.

THEOREM: (Ornea-V.) Let M be an OT-manifold, t = 1. Then M is
equipped with a holomorphic 1-dimensional foliation and a transversally
Kahler, exact form.
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Stability and transversally Kahler foliations

THEOREM: Let (M,X,wg) be a compact, complex manifold, dimM > 2,
and wq a transversally Kihler, exact form. Let wy :=wo+0AI(0), 0 € N1 (M)
be a Hermitian form, and w the corresponding Gauduchon form. Consider a
vector bundle B with a Yang-Mills metric, deg, B = 0, and let V denote the
Yang-Mills connection. Then the curvature ©p5 of V satisfies ©gz(x,-) =0
for any x € >_.

REMARK: The condition “Then the curvature © g of V satisfies ©g(z,-) =0

for any = € kerwg” means that (B,V) is locally lifted from the leaf space
of the foliation 2.
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Leaf space of quasiregular foliations

REMARK: When % is quasiregular, M is equipped with a holomorphic
projection to the leaf space, = : M — X = M/>. In this situation,
the category of coherent sheaves can be described explicitly, in terms of a
projective orbifold M/3.

THEOREM: Let F be a stable coherent sheaf on a be a compact, complex
manifold (M, X,wg), with a transversally Kahler, exact form, dimM > 2.
Assume that X is quasiregular, and let 7 : M — X = M /X be the projection
map. Then F = 7*Fy® L, where Fj is a coherent sheaf on M/3>, and L
a line bundile.

COROLLARY: In these assumptions, any coherent sheaf on M is filtra-
ble, that is, admits a filtration with rank 1 quotient sheaves.

REMARK: Filtrability is a very strong property! It fails on almost all
non-algebraic surfaces.
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Stability and transversally Kahler foliations (2)

THEOREM: Let (M,X,wg) be a compact, complex manifold, dimM > 2,
and wq a transversally Kihler, exact form. Let wy := wg—+v/—10A0, 0 € ALO(M)
be a Hermitian form, and w the corresponding Gauduchon form. Consider a
vector bundle B with a Yang-Mills metric, deg, B = 0, and let V denote the
Yang-Mills connection. Then the curvature ©p5 of V satisfies ©z5(xz,-) =0
for any xz ¢ >_.

Proof: At a given point m € M, let wg = —v/—1 30, AO;, w= —/—1 36, A
0, —/—10A0, where 0,601, ...,0, is an orthonormal basis in ALO(M). Write the
curvature of B as

©=)> (0;n0;+0;10; )®b23—|—2(0 NO;) R a;
)
—|—Z(9/\9i+9/\0i)®bi—|—9/\9®a,

vvlth bij, bi, a;, a € u(B) being skevv—Hermitian endomorphisms of B. Let

= Tr(©AO). Then (\/—)"”’f_/\wO = Tr (— Zbg +a (> ai)>. On the other
hand, Y a; +a = A© = 0, hence (V—1)"= Awh 2 =Tr (—ZbQ — 2) Since
Tr(—a?) is a positive definite form on u(B), the integral [y,(v/—1 "= ANwpy 2
IS non-negative, and positive unless b; and a both vanish everywhere. If wg is

exact, this integral vanishes, and ©(z) =0 forany z € . =
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Foliation by group orbits

REMARK: The condition deg, B = 0 can be rectified by a tensor multi-
plication with an appropriate line bundle of non-zero degree.

THEOREM: Let (M,X,wg) be a compact, complex manifold, dimM > 2,
and wqp a transversally Kahler, exact form. Let p denote an action of C on M.
Assume that its orbits are leaves of >, and that the form wqg is p-invariant.
Then any stable bundle (or coherent sheaf) B on M is p-equivariant.

Proof: When deg,B = 0, the bundle B is flat on the leaves of %2, and
the parallel transport along leaves is compatible with the connection. When
deg,, B # 0, we multiply B by a p-equivariant line bundle L of degree _fkelggB.
For L one could take a topologically trivial line bundle with curvature constwq.
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