
Principal toric fibrations M. Verbitsky

Toric Fibrations on homogeneous complex
manifolds

Misha Verbitsky

October 14, 2021

HSE, Geometric Structures on Manifolds

1



Principal toric fibrations M. Verbitsky

Homogeneous complex manifolds

Definition 1.1: A complex manifold M is called homogeneous if its auto-
morphism group acts transitively.

Examples of compact homogeneous manifolds:

0. Flag spaces and partial flag spaces.

1. Calabi-Eckmann and Hopf manifolds.

2. Tori.

3. Let G be a compact, even-dimensional Lie group. Then G admits a
left-invariant complex structure (H. Samelson, 1953).

Remark 1.2: Compact homogeneous complex manifolds are usually non-
Kähler (exception: partial flag spaces, tori, their products and finite quo-
tients).
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Hopf surface

The (classical) Hopf surface. Fix α ∈ C, |α| > 1. Consider the quotient

H = (C2\0)/〈Z〉, with Z acting on C2 by (x, y)−→ (αx, αy). It is called the

Hopf surface. Topologically the Hopf surface is isomorphic to S1×S3 (hence,

non-Kähler). The elliptic curve T2 = C∗/〈α〉 acts on H by t, (x, y)−→ (tx, ty).

This action is free, and its quotient is CP1. The Hopf surface is a principal

elliptic fibration. Topologically, it’s a product of a Hopf fibration S3 −→ S2

and a circle.
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Calabi-Eckmann manifolds

Fix α ∈ C, α non-real, |α| > 1. Consider a subgroup

G := {et × eαt ⊂ C∗ × C∗, t ∈ C} ⊂ C∗ × C∗

within C∗ × C∗. It is clearly co-compact and closed, with C∗ × C∗/G being an
elliptic curve C∗/〈α〉.

Now, let M := (Cn\0)⊗(Cm\0)/G, with G ⊂ C∗×C∗ acting on (Cn\0)⊗(Cm\0)
by (t1, t2)(x, y)−→ (t1x, t2y). Clearly, M is fibered over

CPn−1 × CPm−1 = (Cn\0)⊗ (Cm\0)/C∗ × C∗

with a fiber C∗ × C∗/G, which is an elliptic curve. Then M is called the
Calabi-Eckmann manifold. It is diffeomorphic to S2n−1 × S2m−1. The
group U(n)× U(m) acts on M transitively.

We obtained a homogeneous complex structure on S2n−1 × S2m−1.

It is non-Kähler, because H2(M) = 0.
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Definition:

A complex principal toric fibration (bundle) M is a complex manifold

equipped with a free holomorphic action of a compact complex torus T .

Such a manifold is fibered over M/T , with fiber T .

It is a principal T -bundle: all fibers are identified with T , with T acting on

fibers freely.

Can consider this notion in smooth category as well (remove “complex”

and “holomorphic” from this definition).

To trivialize a principal group bundle it means to find a section (holo-

morphic section for complex trivialization, smooth for topological).
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Topology of principal toric bundles
(not necessarily complex)

A principal Tn-bundle over X is defined topologically by H1(X,T), where Tn
is a sheaf of smooth Tn-valued functions on X. An exact sequence

0−→ Γ−→ C∞(M)n −→ Tn −→ 0,

gives H1(Tn) = H2(M,Γ), where Γ = π1(T ) If Denote by

τ : H1(T,Z)−→H2(M,Z)

the map which corresponds to the H1(X,Tn)-class of a fiber bundle.

A principal fiber bundle is determined, up to a topological equivalence,
by this invariant. Also, any such τ corresponds to a principal fiber
bundle.

Example: A principal S1-bundle is a determined by its Chern class c1 in
H2(M).
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The transfer map
Using the Leray-Serre spectral sequence, it is easy to express the cohomology
of M in terms of H∗(X) and the Chern classes. This gives an exact sequence

0−→H1(X)−→H1(M)−→H1(T )
d2−→ H2(X)−→H2(M)

with d2 (a differential in Leray-Serre spectral sequence), called the transfer
map. It is easy to see that τ = d2.

Examples of principal toric bundles (in smooth category):
1. “Hopf fibration”. S3 fibered over S2, with fiber S1, and the Chern class
1. It is a total space of U(1)-bundle over CP1, which is denoted as O(−1).

2. A generalization of this example. S2n+1 is fibered over CPn, with fiber S1.
Again, it is a total space of U(1)-bundle, corresponding to O(−1).

3. G a Lie group, T ⊂ G a torus, G fibered over G/T .

4. Nilmanifolds (manifolds with transitive action of a nilpotent Lie group)
always admit principal toric fibrations.
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Complex principal toric bundles (complex manifolds with a free, holomor-
phic action of a complex torus T ).

1. The (classical) Hopf surface. Fix α ∈ C, |α| > 1. Consider the quotient
H = (C2\0)/〈Z〉, with Z acting on C2 by (x, y)−→ (αx, αy). It is called the
Hopf surface. Topologically the Hopf surface is isomorphic to S1×S3 (hence,
non-Kähler). The elliptic curve T2 = C∗/〈α〉 acts on H by t, (x, y)−→ (tx, ty).
This action is free, and its quotient is CP1. The Hopf surface is a principal
elliptic fibration. Topologically, it’s a product of a Hopf fibration S3 −→ S2

and a circle.

2. A generalization of this example. Let X be a complex manifold, and L

a holomorphic line bundle on X. Consider a principal C∗-bundle Tot(L∗) over
X (total space of L without a zero section). Taking a quotient

Tot(L∗)/〈Z〉, with Z acting as v 7→ αv,

we obtain, again, a principal elliptic bundle, with fiber T2 = C∗/〈α〉. When
X = CP1, L = O(−1), this gives a Hopf surface.
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Complex principal toric bundles (cont.)

Using the Leray-Serre spectral sequence

0−→H1(X)−→H1(M)−→H1(T )
d2−→ H2(X)

and the fact that im d2 = 〈c1(L)〉, we obtain that H1(M) is odd-dimensional

(hence, cannot be Kähler), for any M = Tot(L∗)/〈Z〉, with c1(L) nonzero over

Q.

3. Calabi-Eckmann manifolds.

Fix α ∈ C, α non-real, |α| > 1. Consider a subgroup

G := {et × eαt ⊂ C∗ × C∗, t ∈ C} ⊂ C∗ × C∗

within C∗ × C∗. It is clearly co-compact and closed, with C∗ × C∗/G being an

elliptic curve C∗/〈α〉.
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Now, let

M = (Cn\0)⊗ (Cm\0)/G,

with G ⊂ C∗ × C∗ acting on (Cn\0) ⊗ (Cm\0) by (t1, t2)(x, y)−→ (t1x, t2y).

Clearly, M is fibered over

CPn−1 × CPm−1 = (Cn\0)⊗ (Cm\0)/C∗ × C∗

with a fiber C∗×C∗/G, which is an elliptic curve. The fibration M −→ CPn−1×
CPm−1 is called the Calabi-Eckmann fibration, its total space M the

Calabi-Eckmann manifold. It is diffeomorphic to S2n−1 × S2m−1.

We obtained a homogeneous complex structure on S2n−1 × S2m−1.

It is non-Kähler, because H2(M) = 0.
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Borel-Remmert-Tits theorem:
Let M be a compact, complex, simply connected homogeneous manifold
(“homogeneous” means that G = Aut(M) acts on M transitively). Then M

is a principal toric fibration, with a base which is a homogeneous, rational
projective manifold.

Proof: Let K−1 = Λtop(TM) be the anticanonical class of M . Since TM

is globally generated, the same is true for K−1. This gives a G-invariant
morphism

M
π−→ PH0(K−1).

The fibers F of π are homogeneous with trivial canonical class, and its base is
homogeneous and projective (hence, rational). The fundamental group of F
is a quotient of π2(X), as follows from the long exact sequence of homotopy
groups for a Serre’s fibration:

π2(X)−→ π1(F )−→ π1(M) = 0

Therefore, π1(F ) is abelian. It remains to show that it is a torus.
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Lemma: Let F be a compact, complex, homogeneous manifold with π1(F )

abelian and a trivial anticanonical class K−1. Then F is a torus.

Proof: The sheaf of holomorphic vector fields on M is globally generated.

Taking a vector field v1 and multiplying it by general vector fields v2, ...vn, we

obtain a section of K−1, which is non-zero for general vi, and therefore non-

degenerate. We obtain that vi are linearly independent everywhere. Taking

the corresponding flows of diffeomorphisms, we obtain that F is a quotient

of a holomorphic Lie group G by a cocompact lattice. Since π1(F ) is abelian,

G is commutative, and T is a torus.
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Positive line bundles.

Let X be a complex manifold, and L a holomorphic line bundle. L is called

positive, or ample if for sufficiently big N , L⊗N is globally generated, and,

moreover, the natural map

X −→ P(H0(L⊗N))

is an embedding. In this case L⊗N is called very ample.

Theorem (Kodaira-Nakano):

A holomorphic line bundle is ample if and only if it admits a Hermitian metric,

with curvature Θ which satisfies −
√
−1 Θ(z, z) > 0 for any non-zero vector

z ∈ T1,0(M).

This means that −
√
−1 Θ(·, I·) is a Kähler metric on X.
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Positive elliptic fibrations.
Definition: Let M

π−→ X be an elliptic fibration, M compact. We say that
M is positive elliptic fibration, if for some Kähler class ω on X, π∗ω is exact.
“Kähler class” is a cohomology class of a Kähler form.

Examples:
1. Hopf manifold, H2(M) = 0, hence positive

2. Calabi-Eckmann manifold (same)

3. SU(3) is elliptically fibered over the flag manifold F (2,3), also H2(M) = 0.

4. Tot(L∗)/〈Z〉, where L is an ample line bundle. Such manifold is called a
regular Vaisman manifold. It is positive, because π∗(c1(L)) = 0, and c1(L)
is a Kähler class.

It is possible to interpret τ as a “curvature class” of a fibration, and when it
is Kähler, we can say that a fibration is positive. This happens precisely when
the image of τ contains a Kähler class.
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Subvarieties of positive elliptic fibrations

Theorem: Let M
π−→ X be a positive elliptic T fibration, and Z ⊂ M be a

subvariety, of positive dimension m. Then Z is T -invariant.

Proof: Let ω0 = π∗ω be a pullback of a Kähler form which is exact. Then∫
Z
ωm0 = 0.

On the other hand, all eigenvalues of ω0

∣∣∣
Z

are non-negative, and all are
positive, unless Z is tangent to the action of T . In a point where Z is not
tangent to T , the form ωm0 is positive, and in this case the integral

∫
Z ω

m
0 is

also positive.

A similar result is true for stable coherent sheaves.

Theorem: Let M
π−→ X, dimCX > 1, be a positive elliptic T fibration, and

F a stable reflexive sheaf on M . Then F ∼= L⊗π∗F0, where L is a line bundle,
and F0 a stable coherent sheaf on X.
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Positive toric fibrations

Definition: Let M
π−→ X be a complex principal toric fibration, M compact,

with fiber T . Assume that the image of τ : H1(T,C)−→H2(X,C) contains a

Kähler form. Then the fibration M
π−→ X is called convex. NB: Can define

convexity for arbitrary fiber bundles.

Consider a holomorphic quotient T1 = T/T2 of T . Taking the quotient space

M/T2, we obtain a complex principal toric fibration, with fiber T1.

Assume that for all T1 = T/T2, dimT1 > 0, the induced fibration M/T2 −→X

is also convex. Then M
π−→ X is called positive.

Example. Let M be a complex, compact homogeneous manifold with

H2(M) = 0 (e.g. a Lie group), and M
π−→ X the Borel-Remmert-Tits toric

fibration. Assume that the fibers of π have no proper subtori (easy to insure

by taking a generic invariant complex structure). Then M is positive.
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Theorem. Consider an irreducible complex subvariety Z ⊂ M of a positive

principal toric fibration M
π−→ X, with fiber T . Then Z is T -invariant, or is

contained in a fiber of π.

Proof: 1. For any positive-dimensional subvariety Z0 ⊂ X, the restriction of

π to Z0 has no multisections (because
∫
Z ω

m
0 must vanish).

2. Given a space A (of Fujiki class C) with an action of T , consider an

associated fiber bundle M ×T A over X. Unless T acts on A trivially, M ×T A
is also convex, hence admits no multisections.

3. If Z ⊂ M is not T -invariant, it provides us with a multisection from X to

M ×T A, where A is the space of deformations of the fiber Z ∩ π−1(t0). It is

of Fujiki class C, hence convex. Cannot have multisections! Contradiction.
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