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Homogeneous complex manifolds

Definition 1.1: A complex manifold M is called homogeneous if its auto-
morphism group acts transitively.

Examples of compact homogeneous manifolds:
0. Flag spaces and partial flag spaces.

1. Calabi-Eckmann and Hopf manifolds.

2. Tori.

3. Let G be a compact, even-dimensional Lie group. Then G admits a
left-invariant complex structure (H. Samelson, 1953).

Remark 1.2: Compact homogeneous complex manifolds are usually non-
Kahler (exception: partial flag spaces, tori, their products and finite quo-
tients).
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Hopf surface

The (classical) Hopf surface. Fix a € C, |a| > 1. Consider the quotient
H = (C2\0)/(Z), with Z acting on C? by (z,y) — (az,ay). It is called the
Hopf surface. Topologically the Hopf surface is isomorphic to Slx 83 (hence,
non-Kihler). The elliptic curve T2 = C*/(a) acts on H by t, (z,y) — (tz, ty).
This action is free, and its quotient is CPl. The Hopf surface is a principal
elliptic fibration. Topologically, it's a product of a Hopf fibration S3 — 52
and a circle.
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Calabi-Eckmann manifolds

Fix a € C, a non-real, |a|] > 1. Consider a subgroup
Gi={exe?CC*xC* teC}lcCC*xC*

within C* x C*. It is clearly co-compact and closed, with C* x C*/G being an
elliptic curve C*/{«).

Now, let M := (C™"\0)® (C™\0)/G, with G C C*xC* acting on (C™\0)® (C™\0)
by (t1,t2)(x,y) — (t1x,t>y). Clearly, M is fibered over
cpr 1l xcpm™ !t = (C™\0) ® (C™\0)/C* x C*

with a fiber C* x C*/G, which is an elliptic curve. Then M is called the
Calabi-Eckmann manifold. It is diffeomorphic to S2n—1 x g2m—1  The
group U(n) x U(m) acts on M transitively.

We obtained a homogeneous complex structure on §27—1 x §g2m—1

It is non-Kahler, because H2(M) = 0.
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Definition:
A complex principal toric fibration (bundle) M is a complex manifold
equipped with a free holomorphic action of a compact complex torus 7T'.

Such a manifold is fibered over M /T, with fiber T.

It is a principal T-bundle: all fibers are identified with T, with 7" acting on
fibers freely.

Can consider this notion in smooth category as well (remove ‘“complex”
and “holomorphic” from this definition).

To trivialize a principal group bundle it means to find a section (holo-
morphic section for complex trivialization, smooth for topological).
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Topology of principal toric bundles
(not necessarily complex)

A principal T"™-bundle over X is defined topologically by Hl(X, T), where T"
is a sheaf of smooth T"-valued functions on X. An exact sequence

O—I—C>*°(M)"—T"—0,
gives H1(T") = H2(M,I), where ' = =1 (T") If Denote by
r: HYT,7) — H?(M,7)

the map which corresponds to the Hl(X, T™)-class of a fiber bundle.

A principal fiber bundle is determined, up to a topological equivalence,
by this invariant. AIlso, any such 7 corresponds to a principal fiber
bundle.

Example: A principal Sl-bundle is a determined by its Chern class ¢q in
H?2(M).
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The transfer map
Using the Leray-Serre spectral sequence, it is easy to express the cohomology
of M in terms of H*(X) and the Chern classes. This gives an exact sequence

0 — HY(X) —s HY (M) — HY(T) 2 H2(X) —s H2(M)

with d> (a differential in Leray-Serre spectral sequence), called the transfer
map. It is easy to see that » = d».

Examples of principal toric bundles (in smooth category):
1. “Hopf fibration”. S3 fibered over S2, with fiber S1, and the Chern class
1. It is a total space of U(1)-bundle over CP!, which is denoted as O(—1).

2. A generalization of this example. S27*1 is fibered over CP"?, with fiber S1.
Again, it is a total space of U(1)-bundle, corresponding to O(—1).

3. G a Lie group, T'C G a torus, G fibered over G/T.

4. Nilmanifolds (manifolds with transitive action of a nilpotent Lie group)
always admit principal toric fibrations.
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Complex principal toric bundles (complex manifolds with a free, holomor-
phic action of a complex torus T).

1. The (classical) Hopf surface. Fix a € C, |a] > 1. Consider the quotient
H = (C2\0)/(Z), with Z acting on C? by (z,y) — (az,ay). It is called the
Hopf surface. Topologically the Hopf surface is isomorphic to Sl g3 (hence,
non-Kihler). The elliptic curve T2 = C*/(a) acts on H by t, (z,y) — (tz, ty).
This action is free, and its quotient is CP1. The Hopf surface is a principal
elliptic fibration. Topologically, it's a product of a Hopf fibration S3 —s S2
and a circle.

2. A generalization of this example. Let X be a complex manifold, and L
a holomorphic line bundle on X. Consider a principal C*-bundle Tot(L*) over
X (total space of L without a zero section). Taking a quotient

Tot(L*)/{Z), with Z acting as v — av,

we obtain, again, a principal elliptic bundle, with fiber T2 = C*/{a). When
X =CP1l, L = 0O(-1), this gives a Hopf surface.
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Complex principal toric bundles (cont.)

Using the Leray-Serre spectral sequence

0 — HY(X) —s HY (M) — HY(T) 2 H2(X)

and the fact that imdo = (¢1(L)), we obtain that H1(M) is odd-dimensional
(hence, cannot be Kahler), for any M = Tot(L*)/{(Z), with ¢1(L) nonzero over

Q.

3. Calabi-Eckmann manifolds.
Fix a € C, a non-real, |a|] > 1. Consider a subgroup

G={elxe?CcC*"xC* teClcC*xC*

within C* x C*. It is clearly co-compact and closed, with C* x C*/G being an
elliptic curve C*/{«a).
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Now, let
M = (C™\0) ® (C™\0)/G,

with G C C* x C* acting on (C™\0) ® (C™\0) by (t1,t2)(x,y) — (t1x,toy).
Clearly, M is fibered over

cpr 1l xcpm™t = (C™0) ® (C"™\0)/C* x C*
with a fiber C* x C* /G, which is an elliptic curve. The fibration M — cpr—1x
cpPm™1 is called the Calabi-Eckmann fibration, its total space M the
Calabi-Eckmann manifold. It is diffeomorphic to §2n—1 x g2m—1

We obtained a homogeneous complex structure on S2n—1 x §2m—1

It is non-Kahler, because H2(M) = 0.

10



Principal toric fibrations M. Verbitsky

Borel-Remmert-Tits theorem:

Let M be a compact, complex, simply connected homogeneous manifold
(“homogeneous” means that G = Aut(M) acts on M transitively). Then M
iS a principal toric fibration, with a base which is a homogeneous, rational
projective manifold.

Proof: Let K—1 = AP(TM) be the anticanonical class of M. Since TM
is globally generated, the same is true for K—1. This gives a G-invariant
morphism

M Iy PHO(K™D).
The fibers F of m are homogeneous with trivial canonical class, and its base is
homogeneous and projective (hence, rational). The fundamental group of F

is a quotient of m»(X), as follows from the long exact sequence of homotopy
groups for a Serre's fibration:

7T2(X) —>7T1(F) —>7T1(M) =0

Therefore, w1 (F) is abelian. It remains to show that it is a torus.
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Lemma: Let F' be a compact, complex, homogeneous manifold with w1 (F)
abelian and a trivial anticanonical class K~ 1. Then F is a torus.

Proof: The sheaf of holomorphic vector fields on M is globally generated.
Taking a vector field v1 and multiplying it by general vector fields v,,...v,, We
obtain a section of K—1 which is non-zero for general v;, and therefore non-
degenerate. We obtain that v; are linearly independent everywhere. Taking
the corresponding flows of diffeomorphisms, we obtain that F' is a quotient
of a holomorphic Lie group G by a cocompact lattice. Since 71 (F") is abelian,
G is commutative, and T is a torus.
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Positive line bundles.

Let X be a complex manifold, and L a holomorphic line bundle. L is called
positive, or ample if for sufficiently big N, LON s globally generated, and,
moreover, the natural map

X — P(HO(L®NVY)

IS an embedding. In this case LN s called very ample.

Theorem (Kodaira-Nakano):
A holomorphic line bundle is ample if and only if it admits a Hermitian metric,

with curvature © which satisfies —/—1 ©(z,z) > 0 for any non-zero vector
z e TLO(M).

This means that —/—1 (-, I-) is a Kahler metric on X.
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Positive elliptic fibrations.

Definition: Let M 25 X be an elliptic fibration, M compact. We say that
M is positive elliptic fibration, if for some Kahler class w on X, 7*w is exact.
“Kahler class” is a cohomology class of a Kahler form.

Examples:
1. Hopf manifold, H2(M) = 0, hence positive

2. Calabi-Eckmann manifold (same)
3. SU(3) is elliptically fibered over the flag manifold F(2,3), also H2(M) = 0.

4. Tot(L*)/(Z), where L is an ample line bundle. Such manifold is called a
regular Vaisman manifold. It is positive, because 7*(c1(L)) = 0, and c1(L)
is a Kahler class.

It is possible to interpret = as a ‘curvature class” of a fibration, and when it
is Kahler, we can say that a fibration is positive. This happens precisely when
the image of 7 contains a Kahler class.
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Subvarieties of positive elliptic fibrations

Theorem: Let M -2+ X be a positive elliptic T fibration, and Z ¢ M be a
subvariety, of positive dimension m. Then Z is T-invariant.

Proof: Let wg = n*w be a pullback of a Kahler form which is exact. Then

= 0.
78

On the other hand, all eigenvalues of wO|Z are non-negative, and all are
positive, unless Z is tangent to the action of T'. In a point where Z is not
tangent to T, the form wg' is positive, and in this case the integral [, w{' is
also positive.

A similar result is true for stable coherent sheaves.

Theorem: Let M — X, dim¢ X > 1, be a positive elliptic T fibration, and
F' a stable reflexive sheaf on M. Then F = L®n*Fy, where L is a line bundle,
and Fp a stable coherent sheaf on X.
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Positive toric fibrations

Definition: Let M —=5 X be a complex principal toric fibration, M compact,
with fiber T. Assume that the image of r: H(T,C) — H?(X,C) contains a
Kahler form. Then the fibration M -+ X is called convex. NB: Can define
convexity for arbitrary fiber bundles.

Consider a holomorphic quotient Ty = T /1> of T. Taking the quotient space
M /T5, we obtain a complex principal toric fibration, with fiber T7.

Assume that for all Ty = T /15, dimT7 > 0O, the induced fibration M/T>, — X
is also convex. Then M -Zs X is called positive.

Example. Let M be a complex, compact homogeneous manifold with
H2(M) =0 (e.g. a Lie group), and M -~ X the Borel-Remmert-Tits toric
fibration. Assume that the fibers of @ have no proper subtori (easy to insure

by taking a generic invariant complex structure). Then M is positive.
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Theorem. Consider an irreducible complex subvariety Z7 C M of a positive
principal toric fibration M -~ X, with fiber T. Then Z is T-invariant, or is
contained in a fiber of .

Proof:. 1. For any positive-dimensional subvariety Zg C X, the restriction of
m to Zp has no multisections (because [, wj® must vanish).

2. Given a space A (of Fujiki class C) with an action of T, consider an
associated fiber bundle M x1 A over X. Unless T acts on A trivially, M x1 A
IS also convex, hence admits no multisections.

3. If Z C M is not T-invariant, it provides us with a multisection from X to
M xp A, where A is the space of deformations of the fiber Z N w—l(to). It is
of Fujiki class C, hence convex. Cannot have multisections! Contradiction.
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