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Homogeneous complex manifolds

DEFINITION: A complex manifold M is called homogeneous if its auto-
morphism group acts transitively.

Examples of compact homogeneous manifolds:

0. Flag spaces and partial flag spaces.

1. Calabi-Eckmann and Hopf manifolds.

2. Tori.

3. Let G be a compact, even-dimensional Lie group. Then G admits a
left-invariant complex structure (H. Samelson, 1953).

REMARK: Compact homogeneous complex manifolds are usually non-Kähler
(exception: partial flag spaces, tori, their products and finite quotients).

2



Principal toric fibrations M. Verbitsky

Hopf surface

The (classical) Hopf surface. Fix α ∈ C, |α| > 1. Consider the quotient

H = (C2\0)/〈Z〉, with Z acting on C2 by (x, y)−→ (αx, αy). It is called the

Hopf surface. Topologically the Hopf surface is isomorphic to S1×S3 (hence,

non-Kähler). The elliptic curve T2 = C∗/〈α〉 acts on H by t, (x, y)−→ (tx, ty).

This action is free, and its quotient is CP1. The Hopf surface is a principal

elliptic fibration. Topologically, it’s a product of a Hopf fibration S3 −→ S2

and a circle.

The Calabi-Eckmann manifold is a complex manifold diffeomorphic to

S2n−1×S2m−1 with transitive holomorphic action of U(n)×U(m). It is defined

as follows.
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Calabi-Eckmann manifolds

Fix α ∈ C, Imα > 1. Consider a subgroup

G := {et × eαt ⊂ C∗ × C∗, t ∈ C} ⊂ C∗ × C∗

within C∗ × C∗. Clearly, for each (x, y) ∈ C∗ × C∗ there exists t ∈ C such that
etx = 1. This defines t up to 2π

√
−1 , hence y is defined up a multiplier λn,

where λ = e
√
−1 2πα. Since |λ| > 1, the quotient C∗×C∗

et×eαt = C∗
〈λ〉 is an elliptic curve

Now, let M := (Cn\0)⊗(Cm\0)/G, with G ⊂ C∗×C∗ acting on (Cn\0)⊗(Cm\0)
by (t1, t2)(x, y)−→ (t1x, t2y). Clearly, M is fibered over

CPn−1 × CPm−1 = (Cn\0)⊗ (Cm\0)/C∗ × C∗

with a fiber C∗ × C∗/G, which is an elliptic curve. This complex manifold is
called the Calabi-Eckmann manifold. It is diffeomorphic to S2n−1×S2m−1.
The group U(n)× U(m) acts on M transitively.

It is non-Kähler, because H2(M) = 0.
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Principal toric fibrations

DEFINITION: A complex principal toric fibration M is a complex manifold

equipped with a free holomorphic action of a compact complex torus T .

Such a manifold is fibered over M/T , with fiber T .

It is a principal T -bundle: all fibers are identified with T , with T acting on

fibers freely.

To trivialize a principal group bundle it means to find a section.
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Borel-Remmert-Tits theorem

Borel-Remmert-Tits theorem: Let M be a compact, complex, simply con-
nected homogeneous manifold. Then M is a principal toric fibration, with a
base which is a homogeneous, rational projective manifold.

QUESTION: Let K−1 = ΛdimM
C (TM) be the anticanonical class of M . Since

TM is globally generated, the same is true for K−1. This gives a G-invariant
morphism

M
π−→ PH0(K−1).

The fibers F of π are homogeneous with trivial canonical class, and its
base is homogeneous and projective (hence, rational). The fundamental
group of F is a quotient of π2(X), as follows from the long exact sequence
of homotopy groups for a Serre’s fibration:

π2(X)−→ π1(F )−→ π1(M) = 0

Therefore, π1(F ) is abelian. It remains to show that it is a torus.
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Homogeneous manifolds with trivial canonical class

LEMMA: Let F be a compact, complex, homogeneous manifold with π1(F )

abelian and a trivial anticanonical class K−1. Then F is a torus.

Proof: The sheaf of holomorphic vector fields on M is globally generated.

Taking a vector field v1 and multiplying it by general vector fields v2, ...vn, we

obtain a section of K−1, which is non-zero for general vi, and therefore non-

degenerate. We obtain that vi are linearly independent everywhere. Taking

the corresponding flows of diffeomorphisms, we obtain that F is a quotient of

a holomorphic Lie group G by a cocompact lattice. Since π1(F ) is abelian,

G is commutative, and T is a torus.
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Positive elliptic fibrations

DEFINITION: Let M
π−→ X be an elliptic fibration, M compact. We say

that M is a positive elliptic fibration, if for some Kähler class ω on X, π∗ω
is exact. (“Kähler class” is a cohomology class of a Kähler form.)

Examples:

1. Hopf manifold, H2(M) = 0, hence positive.

2. Calabi-Eckmann manifold (same).

3. SU(3) is elliptically fibered over the flag manifold F (2,3), also H2(M) = 0.
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Subvarieties of positive elliptic fibrations

Theorem: Let M
π−→ X be a positive elliptic T fibration, and Z ⊂ M a

subvariety of positive dimension m. Then Z is T -invariant.

Proof: Let ω0 = π∗ω be a pullback of a Kähler form which is exact. Then∫
Z
ωm0 = 0.

On the other hand, all eigenvalues of ω0

∣∣∣
Z

are non-negative, and positive if

Z is transversal to the action of T . Since
∫
Z ω

m
0 = 0, the variety Z is tangent

to T everywhere.
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Positive toric fibrations

DEFINITION: Let M
π−→ X be a complex principal toric fibration, M com-

pact, with fiber T . We say that π is convex if π∗ω is exact for some Kähler

form ω. We say that π is positive if for any proper complex subtorus T ′ ⊂ T ,

the corresponding quotient fibration M/T ′ −→X is convex.

EXAMPLE: Let M be a complex, compact homogeneous manifold with

H2(M) = 0 (e.g. a Lie group), and M
π−→ X the Borel-Remmert-Tits toric

fibration. Assume that the fiber of π have no proper subtori (easy to insure

by taking a generic invariant complex structure). Then M is positive.
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Subvarieties in principal toric fibrations

THEOREM: Consider an irreducible complex subvariety Z ⊂M of a positive

principal toric fibration M
π−→ X, with fiber T . Then Z is T -invariant, or

is contained in a fiber of π.

Proof: 1. For any positive-dimensional subvariety Z0 ⊂ X, the restriction of

π to Z0 has no multisections (because
∫
Z ω

m
0 must vanish).

2. Given a Kähler manifold A with an action of T , consider an associated fiber

bundle M ×T A over X. Unless T acts on A trivially, the fibration M ×T A 7→ X

is also convex, hence it admits no multisections.

3. If Z ⊂ M is not T -invariant, it provides us with a multisection from X to

M×T A, where A is the Barlet space of deformations of the variety Z∩π−1(t0)

in the torus. It is convex (step 2). Then it cannot have multisections!

Contradiction.
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Open questions

THEOREM: Let M
π−→ X, dimCX > 1, be a positive elliptic T fibration,

and F a stable reflexive sheaf on M . Then F ∼= L⊗ π∗F0, where L is a line

bundle, and F0 a stable coherent sheaf on X.

COROLLARY: Every coherent sheaf on M is an extension of sheaves

obtained as L⊗ π∗F0.

DEFINITION: A coherent sheaf is called filtrable if it is an extension of

coherent sheaves of rank 1 and 0.

COROLLARY: A coherent sheaf on a total space of a principal elliptic

fibration is filtrable.

QUESTION: Is there a similar result for positive torus fibrations?
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