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Hyperkähler manifolds

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian

structure g and a triple of complex structures I, J,K, satisfying quaternionic

relations I ◦ J = −J ◦ I = K, such that g is Kähler for I, J,K.

REMARK: A hyperkähler manifold has three symplectic forms

ωI := g(I·, ·), ωJ := g(J ·, ·), ωK := g(K·, ·).

REMARK: This is equivalent to ∇I = ∇J = ∇K = 0: the parallel transla-

tion along the connection preserves I, J,K.

DEFINITION: A holomorphically symplectic manifold is a complex man-

ifold equipped with non-degenerate, holomorphic (2,0)-form.

REMARK: Hyperkähler manifolds are holomorphically symplectic. In-

deed, Ω := ωJ +
√
−1 ωK is a holomorphic symplectic form on (M, I).

THEOREM: (Calabi-Yau) A compact, Kähler, holomorphically symplectic

manifold admits a unique hyperkähler metric in any Kähler class.
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Hyperkähler manifolds of maximal holonomy

THEOREM: (Calabi-Yau) A compact, Kähler, holomorphically symplectic

manifold admits a unique hyperkähler metric in any Kähler class.

DEFINITION: For the rest of this talk, a hyperkähler manifold is a com-

pact, Kähler, holomorphically symplectic manifold.

DEFINITION: A hyperkähler manifold M is called maximal holonomy, or

IHS if π1(M) = 0, H2,0(M) = C.

Bogomolov’s decomposition: Any hyperkähler manifold admits a finite

covering which is a product of a torus and several hyperkähler manifolds

of maximal holonomy.

Further on, all hyperkähler manifolds are assumed to be of maximal

holonomy.
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Lagrangian fibrations

THEOREM: (Matsushita) Let M be hyperkähler manifold of maximal

holonomy, and π : M −→X a surjective holomorphic map, with 0 < dimX <

dimM . Then π is a Lagrangian fibration (that is, has holomorphic La-

grangian fibers).

THEOREM: (Hwang) In these assumptions, X is biholomorphic to CPn

when it is smooth.

CONJECTURE: X is biholomorphic to CPn when it is normal.

THEOREM: (Matsushita)

Let M be hyperkähler manifold of maximal holonomy, and π : M −→X a

Lagrangian fibration, with X normal. Then H∗(X,Q) ∼= H∗(CPn,Q).

REMARK: General fibers of π are Abelian varieties (projective complex

tori), by Arnold-Liouville. Conversely, as shown by Hwang-Weiss, any La-

grangian complex torus in M is a fiber of a Lagrangian fibration.
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Multiplicity of the fibers

THEOREM: (Clemens-Persson)

Let π : M → X be a proper holomorphic map, and Fx its fiber in x ∈ X. Then

there exists a neighbourhood U ⊂ X of x and a continuous retraction

of π−1(U) to Fx.

DEFINITION: Let π : M −→X be a proper holomorphic map, x ∈ X a point,

and mx it maximal ideal. Denote by Fx := π−1(x) the set-theoretic preimage

of x, understood as a complex variety, and let F1, ..., Fk be its irreducible

components. (Scheme-theoretic) multiplicity of π in Fi is the rank of

OM/π∗mx in a general point of Fi.

REMARK: Let π : M −→X be a proper holomorphic map of complex man-

ifolds, with dimX = 1. Consider a general point z in a multiple fiber Fx.

Assume that Fx has multiplicity k in z. Then for an appropriate neigh-

bourhood Uz of z ∈ M, Uz is locally homeomorphic to UF ×∆, where ∆

is a disk, UF a neighbourhood of z in Fx, and π(z1, t) = tk. In particu-

lar, π restricted to ∆ is a k-sheeted covering. In these coordinates, the

Clemens-Persson map acts on Uz by contracting ∆ to the origin.
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Multiple fibers

DEFINITION: Let π : M −→X be a proper holomorphic map, x ∈ X a point,

Fx := π−1(x) and Fi its irreducible component, with (scheme-theoretical)

multiplicity µi. Denote the greatest common divisor of µi by µ. A fiber is

multiple if µ > 1. A fiber Fx is reduced if µi = 1 for all i. A fiber Fx is has

a reduced component if µi = 1 for at least one i.

DEFINITION: Let π : M −→X be a surjective holomorphic map of complex

manifolds, and D ⊂ X its set of critical values, which is known as the dis-

criminant, or the discriminant divisor (it has codimension 1). We say that

π has no multiple fibers in codimension 1 if for a general point x ∈ D, the

fiber π−1(x) is not multiple.
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Multiple fibers of Lagrangian fibrations

Recall that a class η ∈ Hk(M,Z) is called primitive if it is not divisible, that
is, there is no η′ ∈ Hk(M,Z) such that η = rη′, with r ∈ Z, |r| ⩾ 2.

The main result of today’s talk

MAIN THEOREM: Let π : M −→ CPn be a Lagrangian fibration on a
hyperkähler manifold. Let H ⊂ CPn be the hyperplane section. Then the
following assertions are equivalent.

(i) The homology class of π−1(H) is primitive.
(ii) The map π has has no multiple fibers in codimension 1.
(iii) For a general hyperplane section H, the complement M\π−1(H) is

simply connected.
(iv) The homology map H2(M,Z) → H2(CPn,Z) is surjective.

REMARK: The equivalence (i) ⇔ (iv) follows immediately from Poincaré
duality. The implication (i) ⇒ (ii) is based on the following theorem, due to
R. Thom.

THEOREM: For any orientable smooth n-manifold V , all elements of the
following integral homology groups can be realized by orientable sub-
manifolds: Hn−1(V,Z), Hn−2(V,Z), Hi(V,Z) for all i ⩽ 5.
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Multiple fibers and primitivity

Here we prove the implication (i) ⇒ (ii).

PROPOSITION: Let π : M −→ CPn be a Lagrangian fibration on a hy-

perkähler manifold. Let H ⊂ CPn be the hyperplane section. Assume that

the homology class of π−1(H) is primitive. Then the map π has has no

multiple fibers in codimension 1.

Proof. Step 1: By Poincaré duality, the homology class of π−1(H) is primitive

if and only if there exists a homology class z ∈ H2(M,Z) such that z∩π−1(H) =

1. By Thom’s theorem, this class can be represented by a 2-manifold

C. Using Thom’s transversality, we can also assume that C intersects π−1(D)

transversally in its smooth point, and π(C) is smooth.

Step 2: Let x ∈ π−1(D)∩C be a smooth point on an irreducible component Zi

of multiplicity k. Then C ∩Zi is divisible by k. Therefore, C∩π−1(D)
π(C)∩D is divisible

by the greatest common divisor µ of multiplicities of all Zi. This is impossible,

unless µ = 1, because [D] = k[H], hence C ∩ π−1(D) = k = π(C) ∩ D. We

have proven that primitivity of π−1(H) implies that π has has no multiple

fibers in codimension 1.
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Fundamental group of p−1(Cn)

THEOREM: Let p : M → CPn be a proper holomorphic surjection of pro-
jective manifolds with connected fibers, π1(M) = 0, and H ⊂ CPn a generic
hyperplane. Let M0 := p−1(CPn \ H) Then π1(M0) = 0 if and only if the
homology class π−1(H) is primitive.
Proof: The natural map π1(M0)−→ π1(M) is surjective (Chapter IX, Cor.
5.6, SGA1). Its kernel is generated by small loops around the divisor π−1(H)
which are contracted in a smooth section S of p in a neighbourhood of the
divisor π−1(H). Consider the long exact sequence of homotopy of a pair

→ π2(M) → π2(M,M0) → π1(M0) → π1(M) → 0.

The generator of ker(π1(M0))−→ π1(M)) is an element τ ∈ π2(M,M0) repre-
sented by the pair (S, S∩M0). Since π1(M,M0) = 0 any element of H2(M,M0)
can be represented by a sphere. This class τ ∈ π2(M,M0) belongs to the im-
age of π2(M) if and only if there is a homology class τ̃ ∈ H2(M,Z) which
satisfies τ̃ ∩ π−1(H) = 1, and this is equivalent to the primitivity of the fun-
damental class [π−1(H)] ∈ H2(M,Z).
REMARK: To finish the proof of main result, it remains to show that no
multiple fibers in codimension 1 implies the primitivity of π−1(H).

REMARK: So far all arguments were valid for general proper holomor-
phic fibrations, but the last remaining implication is based on hyperkähler
geometry.
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The Bogomolov-Beauville-Fujiki form

THEOREM: (Fujiki). Let η ∈ H2(M), and dimM = 2n, where M is hy-

perkähler. Then
∫
M η2n = cq(η, η)n, for some primitive integer quadratic

form q on H2(M,Z), and c > 0 a rational number.

Definition: This form is called Bogomolov-Beauville-Fujiki form. It is

defined by the Fujiki’s relation uniquely, up to a sign. The sign is

determined from the following formula (Bogomolov, Beauville)

λq(η, η) =
∫
X
η ∧ η ∧Ωn−1 ∧Ωn−1−

−
n− 1

2n

(∫
X
η ∧Ωn−1 ∧Ωn

)(∫
X
η ∧Ωn ∧Ωn−1

)
where Ω is the holomorphic symplectic form, and λ > 0.

Remark: q has signature (3, b2 − 3). It is negative definite on primitive

forms, and positive definite on ⟨Ω,Ω, ω⟩, where ω is a Kähler form.
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Hirzebruch-Riemann-Roch formula

DEFINITION: Let B be a holomorphic vector bundle (or a coherent sheaf).

The holomorphic Euler characteristic is χ(L) :=
∑

i(−1)iHi(M,B).

THEOREM: (Riemann-Roch-Hirzebruch) Let M be a compact complex
manifold, and B a holomorphic vector bundle. Theb χ(B) can be expressed
through the the Chern classes of TM and B, χ(B) =

∫
M td(TM) ∧ ch(B)

where td is the the Todd polynomial on Chern classes of TM ,

td(M) = 1+
1

2
c1 +

1

12
(c21 + c2) +

1

24
c1c2 +

1

720
(−c41 +4c21c2 + c1c3 +3c222− c4) + ...

and ch(B) its Chern character,

ch(B) = 1+ c1 +
1

2
(c21 − 2c2) +

1

6
(c31 − 3c1c2 +3c3) + ...
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Hirzebruch-Riemann-Roch formula and BBF form

THEOREM: (Huybrechts) Let M be a hyperkähler manifold, dimC M = 2n
and L a holomorphic line bundle. Then χ(L) =

∑
aiq(c1(L))

i, where the
coefficients ai are constants depending on the topology of M.

Proof. Step 1: Let A∗ be the subalgebra in cohomology generated by
H2(M). Then A2i ∼= Symi(H2(M)) up to the middle degree, and An+i ∼=
Symn−i(H2(M)); there is an O(H2(M))-action on cohomology, and the
multiplication is O(H2(M))-invariant (V., 1995).

Step 2: All Chern classes of TM are O(H2(M))-invariant, but there is
only one (up to a constant multiplier) O(H2(M))-invariant functional on
Sym2i(H2(M)). On the class η2i ∈ H4i(M) this functional takes value q(η, η)i.
Therefore, all L-dependent coefficients in the Hirzebruch-Riemann-Roch
formula for χ(L) are expressed through q(c1(L)).

COROLLARY: Let L be a line bundle on a hyperkähler manifold M , dimCM =
2n. Assume that q(c1(L)) = 0. Then χ(L) = n+1.

Proof: Indeed, χ(L) = χ(OM) = n + 1, with the second equality implied by
Bochner’s vanishing theorem.
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Second cohomology of a hyperkähler manifold is torsion-free

CLAIM: Let M be a hyperkähler manifold of maximal holonomy. Then

H2(M) is torsion-free.

Proof: The universal coefficients formula gives the exact sequence:

0 → Ext1Z(H1(X;Z),Z) → H2(X;Z) → HomZ(H2(X;Z),Z) → 0.

Since H1(X,Z) = 0 for a maximal holonomy hyperkähler manifold, this gives

an isomorphism H2(X;Z) = HomZ(H2(X;Z),Z), hence the torsion van-

ishes.
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ETMDPS vanishing theorem

DEFINITION: A real (1,1)-form η on a complex manifold M is called pos-

itive if η(x, Ix) ⩾ 0 for all real tangent vectors x.

REMARK: This is a case of so-called “French positivity”: in this termi-

nology, 0 is a positive form.

The following theorem was rediscovered several times during 1990-ies (Enoki,

Takegoshi, Morougane). Its most general form (which we do not use) is due

to Demailly, Peternell and Schneider.

THEOREM: Let (M, I, ω) be a compact Kähler manifold, dimCM = n, K

its canonical bundle, and L a holomorphic line bundle on M equipped with

a Hermitian metric h. Assume that the curvature Θ of L is a positive form

on M . Then the wedge multiplication operator η −→ ωi ∧ η induces a

surjective map

H0(Ωn−iM ⊗ L)
ωi∧·−→ Hi(K ⊗ L).

Here ω is considered as an element in H1(Ω1M), and multiplication by ω maps

Hk(Ωn−lM ⊗ L) to Hk+1(Ωn−l+1M ⊗ L).
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Primitivity and vanishing of cohomology

THEOREM: Let M be a hyperkähler manifold admitting a Lagrangian fi-

bration π : M → X, and H a line bundle on X. Let L be a line bundle such

that L⊗k = π∗H. Then L is trivial on all smooth fibers of π.

Proof. Step 1: Let F be a smooth fiber of π, which is an abelian variety

by Arnol’d-Liouville. Then T ∗M |F is an extension of a trivial bundle TF

with another trivial bundle NF = T ∗F . For any non-trivial line bundle

L ∈ Pic0(F ), we have H0(L⊗TF ) = 0 and H0(L⊗NF ) = 0, which implies

that H0(L⊗ T ∗M |F ) = 0. Similarly one H0(L⊗ ΛkT ∗M |F ) = 0 (Lemma 2).

Step 2: Unless L is trivial on F , we have H0(L ⊗ ΛkT ∗M |F ) = 0, which

implies that H0(L ⊗ Λ∗M) = 0. By Enoki-Mourugane-Takegoshi-Demailly-

Peternell-Schneider theorem, this implies that Hi(L) = 0, hence χ(L) = 0,

contradicting the formula χ(L) = n+1 (Huybrechts).
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Fiberwise monodromy of a line bundle

Proposition 1: Let M be a hyperkähler manifold admitting a Lagrangian

fibration π : M → X, and H a line bundle on X. Let L be a line bundle such

that L⊗k = π∗H. Then L admits a connection ∇ which is flat on each

restriction L|F to the fiber of π.

Proof: Choose a constant metric hk on L⊗k|F = OF and let h be its k-th

root, which is a metric on L|F . Since hk is constant, its curvature is flat,

and the Chern connection ∇ associated with h is also flat.

DEFINITION: Fiberwise monodromy of L is its monodromy on the fibers

of π.

Remark 1: Clearly, L = π∗L0 if the fiberwise monodromy of L on each

fiber is trivial.
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Fiberwise monodromy and the fundamental group π−1(Cn)

Proposition 2: Let π : M → CPn be a Lagrangian fibration. Consider
a general hyperplane section H ⊂ CPn. Assume that π1(M\π−1(H)) = 0.
Then π−1(H) is primitive.

Proof. Step 1: Let k be the maximal integer divisor of [π−1(H)] ∈ H4n−2(M,Z),
and L a line bundle such that Lk = π∗O(1). To show that k = 1, it suffices
to show that the fiberwise monodromy of L on each fiber of π is trivial
(Remark 1).

Step 2: Let ∇ be the standard connection on O(1), with its curvature equal
to the Fubini-Study form ωFS, and ∇L the corresponding connection on L

(there is a bijection between connections on a line bundle and its tensor
powers). Then its curvature is equal to 1

kπ
∗(ωFS). On CPn\H, the form ωFS

is exact, moreover, ωFS = dθ for some θ = dcf , where f is the Kähler potential
of ωFS|Cn , f(z) = const · log(|z|2/(1 + |z|2)). Consider the connection ∇L −
1
kπ

∗θ on L
∣∣∣CPn\H . This connection is by construction flat, and its fiberwise

monodromy is equal to the fiberwise monodromy of ∇L.

Step 3: Monodromy of a flat connection on simply connected manifold
is trivial. Therefore, π1(M\π−1(H)) = 0 implies that the monodromy of
∇L − 1

kπ
∗θ and the fiberwise monodromy of ∇L vanishes.
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Clemens-Persson retraction theorem

THEOREM: (Clemens-Persson)

Let π : M → X be a proper holomorphic map, and Fx its fiber in x ∈ X. Then

there exists a neighbourhood U ⊂ X of x and a continuous retraction

of π−1(U) to Fx.

THEOREM: Let M be a hyperkähler manifold admitting a Lagrangian fi-

bration π : M → X, and H a line bundle on X. Let L be a line bundle

such that L⊗k = π∗H. Given a special fiber Fx, consider the Clemens-Persson

retraction map Φ : π−1(U)−→ Fx. Let F be a smooth fiber of π. Assume

that Φ : F −→ Fx is surjective on fundamental groups. Then L is trivial on

Fx.

Proof: Let γx ∈ π1(Fx) be a loop, and γ ∈ π1(F ) be a loop such that Φ(γ) =

γx. Consider the homotopy Φt contracting Id to Φ, with Φ0 = Id and Φ1 = Φ,

and denote by µt the monodromy of the connection ∇ (Proposition 1) along

Φt(γ). By construction, µt is continuous in t, and trivial for all t ̸= 1, hence

the monodromy of ∇ along γ is trivial, and L is trivial on fibers of π by

Remark 1.
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Surjectivity in codimension 1

DEFINITION: Recall that a line bundle H is called primitive if H is not
isomorphic to a non-trivial tensor power of another line bundle.
Theorem 3: Let M be a hyperkähler manifold admitting a Lagrangian fi-
bration π : M → X, and H a primitive line bundle on X. Let D ⊂ X be
the discriminant of π, that is, the set of singular values of π. Assume that
for a general x ∈ D, the Clemens-Persson map Φ : F −→ Fx is surjective on
fundamental groups. Then π∗H is primitive.

Proof: Consider a primitive line bundle L on M such that π∗H = L⊗k. Let
D0 ⊂ D be the set of all x ∈ D such that L|F x is trivial. This set is Zariski open,
hence its complement D1 ⊂ D has codimension 1 in D and codimension
2 in X.

Step 2: Let Z := π−1(D1), and j : M\Z −→M the open embedding. Then
L = j∗j∗L by “Serre’s condition S2” (OSS, Ch. II, Lemma 1.1.12).
This immediately implies that L is a pullback of a bundle L1 on X.

Step 3: Indeed, the bundle j∗L is trivial on the fibers of π, hence it is
obtained as a pullback of a line bundle L0 on X\D1. By the same argument,
Pic(X) = Pic(X\D1), hence L0 is a restriction of a line bundle L1 on X. Then
L
∣∣∣M\Z = π∗L1

∣∣∣M\Z . Applying “Serre’s condition S2” again, we obtain
that L = π∗L1.
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Surjectivity on second homotopy groups and multiple fibers

REMARK: To finish the proof of main theorem, we need to show that the

condition “no multiple fibers in codimension 1” implies that the Clemens-

Persson map is surjective on fundamental groups; then Theorem 3 will imply

that π−1(H) is primitive.

Claim 3: Let p : M −→ CP1 be a proper holomorphic surjection, and z ∈ CP1

a singular value. Denote by M0 the complement M\p−1(z). Then the natural

map π2(M,M0) → π2(CP1,CP1\z) is surjective if and only if z is not a

multiple fiber.

Proof: Suppose that the components D1, ..., Dn of the divisor D = p−1(z) have

multiplicity µ1, ..., µn. The image of π2(M,M0) in π2(CP1) = π2(CP1,CP1\z)
is generated by sections of p transversal to D1, ..., Dn; each of such sections

meets Di with multiplicity µi.
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The proof of Main Theorem

THEOREM: Let π : M → CPn be a Lagrangian fibration, with no multiple

fibers in codimension 1. Then the Clemens-Persson map is surjective on

fundamental groups for general fibers over the points of the discriminant.

Proof. Step 1: Let U be a neighbourhood of the special fiber π−1(z) in

π−1(CP1), where z ∈ CP1 ⊂ CPn is a general point of the discriminant, and

U0 := U\π−1(z). Then π1(U0) surjectively maps to π1(π(U)\z). Let F be

a general fiber of π and consider the long exact sequence of homotopy of a

fibration

0 → π1(F ) → π1(U0) → π1(π(U)\z) → 0. (∗)

Since π1(U0) surjectively maps to π1(π(U)\z) = Z, there exists A ∈ π1(U0)

which maps to the generator of the π1(π(U)\z). Then the long exact sequence

(*) implies that the group π1(U0) is generated by π1(F ) and A.

Step 2: Using Claim 3, we can chose A in such a way that its image inder

the Clemens-Persson map vanishes. Then π1(U) is an image of π1(F ).
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