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Plan

1. Symplectic reduction and GIT

2. Hyperkahler reduction

3. Moment map for the gauge group action.

Conventions: Further on, G is a compact, connected Lie group, G¢ its
complexification, g and g¢ the corresponding Lie algebras. Central element
of g* is one which is fixed by the adjoint action of G.
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Cartan’s formula and symplectomorphisms

We denote the Lie derivative along a vector field as Liey : A*M —s A*M, and
contraction with a vector field by iy : A*M —s A1 07,

Cartan’s formula: doi; + i, od = Lie,.

REMARK: Let (M,w) be a symplectic manifold, G a Lie group acting on M
by symplectomorphisms, and g its Lie algebra. For any g € g, denote by pq
the corresponding vector field. Then Lie,,w = 0, giving d(ip,(w)) = 0. We
obtain that i,,(w) is closed, for any g ¢ g.

DEFINITION: A Hamiltonian of g € g is a function A on M such that
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Moment maps

DEFINITION: (M,w) be a symplectic manifold, G a Lie group acting on M
by symplectomorphisms. A moment map p of this action is a linear map
g — C°°M associating to each g € GG its Hamiltonian.

REMARK: It is more convenient to consider p as an element of g* Qr C°°M,
or (and this is most standard) as a function with values in g*.

REMARK: Moment map always exists if M is simply connected.

DEFINITION: A moment map M — g* is called equivariant if it is equiv-
ariant with respect to the coadjoint action of G on g*.

REMARK: M -5 g* is a moment map iff for all g € g, {(du,g) = ip,(w).

Therefore, a moment map is defined up to a constant g*-valued func-
tion. An equivariant moment map is is defined up to a constant g*-valued
function which is G-invariant, that is, up to addition of a central vector

c € gr.

CLAIM: An equivariant moment map exists whenever H!(G,g*) = 0.
In particular, when G is reductive and M is simply connected, an equivariant
moment map exists. Further on, all moment maps will be tacitly considered
equivariant.
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Weinstein-Marsden theorem

DEFINITION: (Weinstein-Marsden) (M,w) be a symplectic manifold, G a
compact Lie group acting on M by symplectomorphisms, M LN g" an equiv-
ariant moment map, and c € g* a central element. The quotient u_l(c)/G is
called symplectic reduction of M, denoted by M /G.

CLAIM: The symplectic quotient M /G is a symplectic manifold of di-
mension dimM —2dimG.

Proof. Step 1: T»(pn1(¢)) = dp~1(0), however, du is w-dual to the space
7(g) of vector fields tangent to the G-action, hence du—1(0) = 7(g)=*.

Step 2: Since u is G-equivariant, G preserves u~1(¢), hence 7(g) C du—1(0).
This implies that 7(g) C TM is isotropic (that is, W\T(g) = 0.) Its w-

orthogonal complement in T M is Tx(n"1(c)) (Step 1).

Step 3: Consider the characteristic foliation F on p~1(¢), that is, the set
of all v € Tu (" 1(e)) such that w(v,w) = 0 for all w € Tx(x"1(c)) From Step
2 we obtain that 7 = 7(g).

Step 4: Since w 1—1(e) is closed, it satisfies Liey(w) = 0 for all v € F. This
implies that it is lifted from the leaf space of characteristic foliation, identified
with M/G. =
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Svymplectic reduction and GIT

THEOREM: Let (M, I,w) be a Kahler manifold, G¢ a complex reductive Lie
group acting on M by holomorphic automorphisms, and G its compact form
acting isometrically. Then M /G is a Kahler manifold.

Proof: Since the orbits of the G-action are complex subvarieties, they are
symplectic. Since the orbits of G C G¢ are isotropic, and their dimension is
half of dimension of orbits of G¢, they are actially Lagrangian subvarieties in
orbits of G¢. Therefore, p~1(c) intersects each orbit of G¢ in a G-orbit. We
have identified M /G with a space of G¢-orbits which intersect p—1(c).
|

REMARK: In such a situation, M /G is called the Kahler quotient, or GIT
quotient. The choice of a central element ¢ € g* is known as a choice of
stability data.

REMARK: The points of M /G are in bijective correspondence with the
orbits of G¢ which intersect ;~1(¢). Such orbits are called polystable, and
the intersection of a Gg-orbit with p=1(¢) is a G-orbit.
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Kahler reduction and a Kahler potential

DEFINITION: Kahler potential on a Kahler manifold (M,w) is a function
1 such that dd“y = w.

PROPOSITION: Let G be a real Lie group acting on a Kahler manifold M
by holomorphic isometries, and @ be a G-invariant Kahler potential. Then
the moment map g x M M9, R can be written as g, m — — Liep, ¥, where
v=171(g) € TM is the tangent vector field associated with g € g.

Proof: Since ¢ is G-invariant, and I is G-invariant, we have 0 = Liey d“y
(dd®y) ov + d({d“y,v)). Using w = dd“), we rewrite this equation as wiv =
—d((d“y,v)), giving an equation for the moment map pug = —(d“,v). Acting
by I on both sides, we obtain ug = —(dy, Iv) = — Liej,¢. =

COROLLARY: Let V be a Hermitian representation of a compact Lie group
G. Then the corresponding moment map can be written as pg4(v) =
—Liegg [v]> = —3(v, Ig(v)). =
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Hyperkahler manifolds

DEFINITION: A hyperkahler structure on a manifold M is a Riemannian
structure g and a triple of complex structures I, J, K, satisfying quaternionic
relations I oJ = —J oI = K, such that g is Kahler for I, J, K.

REMARK: A hyperkahler manifold has three symplectic forms
Wy .= Q(I,); Wy .= g(']7)’ WK = Q(K,)

REMARK: This is equivalent to VI = VJ = VK = 0: the parallel transport
along the connection preserves I, J, K.

REMARK:
The form Q ;= w; 4+ v—1wg is holomorphic and symplectic on (M, ).
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Hyperkahler reduction

DEFINITION: Let G be a compact Lie group, p its action on a hyperkahler
manifold M by hyperkdhler isometries, and g* a dual space to its Lie algebra. A
hyperkahler moment map is a G-equivariant smooth map p: M — g* @ R3
such that (u;(v),g9) = w;(v,dp(g)), for every v € TM, g € g and ¢ = 1,2,3,
where w; is one three Kahler forms associated with the hyperkahler structure.

DEFINITION: Let &1,&2,&3 be three G-invariant vectors in g*. The quotient
manifold M J/G := p~1(&1,65,€3) /G is called the hyperkahler quotient of M.

THEOREM: (Hitchin, Karlhede, Lindstrom, RocCek)
The quotient M //G is hyperkaehler.
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Holomorphic moment map

Let Q ;= w;++v—1wg. Thisis a holomorphic symplectic (2,0)-form on (M, I).
The proof of HKLR theorem. Step 1: Let uj,ux be the moment map
associated with wj,wg, and pc = py+ V-1 pg. Then (duc,g) = ip,($2).

Therefore, duc € ALO(M,T) ® g*.

Step 2: This implies that the map pc is holomorphic. It is called the
holomorphic moment map.

Step 3: By definition, M/G = uz'(c)/G, where ¢ € g* ®g C is a central
element. This is a Kahler manifold, because it is a Kahler quotient of a
Kahler manifold.

Step 4: We obtain 3 complex structures I,J, K on the hyperkahler quotient
M //G. They are compatible in the usual way (an easy exercise). =
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Gauge group

DEFINITION: Let G be a Lie group, and P a principal G-bundle on M. The
gauge group of P is the group of G-invariant automorphisms of P.

REMARK: Let G¢ be a complex Lie group, P a principal Gg-bundle, A the
space of all Ge-invariant connections on P, and B¢ the bundle of G-invariant
vector fields tangent to the fibers of P. Then A is a complex affine vector
space with linearization /\1M®fp@. It is equipped with the gauge group
action.

DEFINITION: Let Py be a reduction of the principal Ge-bundle P to G, and
g — g be the corresponding real structure operator on Pe. Then Aut(Py) is
called the real gauge group, and Aut(P) the complex gauge group. The
Killing form on B¢ is denoted as a,b — Tr(ab) € C°M.
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Hyperkahler structure on the space of connections

CLAIM: Let Pr be a complexification of a principal G-bundle P on a compact
Riemann surface M, and V € A a connecion in Pr. Denote by g — g' the
real involution on P fixing B. Then the tangent space Ty A is equipped
with a real gauge invariant Hermitian form g(a,b) = [,; Re Tr(a A b') and
a complex linear 2-form Q(u,v) ;= [j; Tr(uAv). =

DEFINITION: Define quaternionic structure on Ty A as follows. The com-
plex structure I comes from the complex structure on B¢, and J comes from

ReQ(x, Jy) = g(a,b).

REMARK: For A\@a € TgA = AL (M) ®cgo, we can write J(A®a) = I;(N)®al,
where I, is a complex structure operator on M acting on Al(M).

COROLLARY: The manifold A is equipped with a natural real gauge
invariant flat hyperkahler structure. =
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Hyperkahler moment map

REMARK: The tangent space to the gauge group Aut(P) can be identified
with PBe. Therefore, the gauge moment map takes values in B = Pc.

THEOREM: Let (M,I,w) be a Riemannian surface equipped with a Her-
mitian form w, P a principal G¢g-bundle, A the space of connections on P,
and G C G¢. a compact real form. Consider the hyperkdhler structure on A
defined above. Then the holomorphic moment map associated with the
gauge action can be written as V — —%, where Oy € /\2M®*1§@ IS the
curvature of V.

Proof. Step 1: If V1 = V+ A, we have 0y, = Oy +V(A)+AANA. Therefore,
differential of ©g takes A € A1 M @ P to fM V(A). If we pair this to b € P,
we obtain A — [3, Tr(bV(A)). This is the differential of a moment map
evaluated in V,b.

Step 2: The holomorphic symplectic form on A is expressed as Q2(A,B) =
Jar Tr(AA B). For any b € P, the corresponding vector field on A is written
as V(b), and the corresponding 1-form as Q(V(b), A) = [; Tr(V(b)ANA). Here
A e TA is a tangent vector, and Q2(V(b),-) is considered as a 1-form on A.

Step 3: It remains to compare the 1-forms obtained in Step 1 and Step 2:
Ty Tr(V)ANA) =— [y Tr(bV(A)). m
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Space of flat connections

THEOREM: The space of stable flat connections on a compact Riemann
surface up to (complex) gauge equivalence is obtained as M = A//G, where
g is the real gauge group. In particular, M is hyperkahler.

Proof: Denote the space of flat connections by Aq C A. Flatness is vanishing
of the holomorphic moment map, hence Aq/G = AJ/G. However, Aq/G is
precisely the space of stable flat connections up to complex gauge equivalence.
]
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Addendum: Real moment map

PROPOSITION: Since the Hermitian form on A is fixed by affine trans-
forms, it can be written as dd° of a quadratic function which is its
Kahler potential. The latter can be written as (V) = [, Tr[V, V] (here
V! is a connection operator which is real conjugate to V).

Proof: Second derivative of this quadratic map is Hess(z,y) = [y Re(z Ayt).
u

PROPOSITION: Thet real moment map for gauge action on the space
of connections is %—v].

Proof: The gauge Lie algebra action is written as g(V) = V 4+ V(g), for all
g € Pc. This gives an expression for the real moment map:

19(V) = 5o [ TV + V=190,V = V=1V (@) = [ Tr(1¥. VI(9))

We obtain that the real moment map pu: A — P takes V and puts it to
[V, V]

w
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