Hyperkähler reduction and the moduli of flat bundles on complex curves

Misha Verbitsky

February 4, Thursday, 2016,

Seminar on geometric structures on manifolds,

LAG HSE.

Plan

- 1. Symplectic reduction and GIT
- 2. Hyperkähler reduction
- 3. Moment map for the gauge group action.

Conventions: Further on, G is a compact, connected Lie group, $G_{\mathbb{C}}$ its complexification, \mathfrak{g} and $\mathfrak{g}_{\mathbb{C}}$ the corresponding Lie algebras. Central element of \mathfrak{g}^* is one which is fixed by the adjoint action of G.

Cartan's formula and symplectomorphisms

We denote the Lie derivative along a vector field as $\operatorname{Lie}_x : \Lambda^i M \longrightarrow \Lambda^i M$, and contraction with a vector field by $i_x : \Lambda^i M \longrightarrow \Lambda^{i-1} M$.

Cartan's formula: $d \circ i_x + i_x \circ d = \text{Lie}_x$.

REMARK: Let (M, ω) be a symplectic manifold, G a Lie group acting on M by symplectomorphisms, and \mathfrak{g} its Lie algebra. For any $g \in \mathfrak{g}$, denote by ρ_g the corresponding vector field. Then $\operatorname{Lie}_{\rho_g} \omega = 0$, giving $d(i_{\rho_g}(\omega)) = 0$. We obtain that $i_{\rho_q}(\omega)$ is closed, for any $g \in \mathfrak{g}$.

DEFINITION: A Hamiltonian of $g \in \mathfrak{g}$ is a function h on M such that $dh = i_{\rho_g}(\omega)$.

Moment maps

DEFINITION: (M, ω) be a symplectic manifold, G a Lie group acting on M by symplectomorphisms. A moment map μ of this action is a linear map $\mathfrak{g} \longrightarrow C^{\infty}M$ associating to each $g \in G$ its Hamiltonian.

REMARK: It is more convenient to consider μ as an element of $\mathfrak{g}^* \otimes_{\mathbb{R}} C^{\infty} M$, or (and this is most standard) as a function with values in \mathfrak{g}^* .

REMARK: Moment map always exists if *M* is simply connected.

DEFINITION: A moment map $M \longrightarrow \mathfrak{g}^*$ is called **equivariant** if it is equivariant with respect to the coadjoint action of G on \mathfrak{g}^* .

REMARK: $M \xrightarrow{\mu} \mathfrak{g}^*$ is a moment map iff for all $g \in \mathfrak{g}$, $\langle d\mu, g \rangle = i_{\rho_g}(\omega)$. Therefore, a moment map is defined up to a constant \mathfrak{g}^* -valued function. An equivariant moment map is is defined up to a constant \mathfrak{g}^* -valued function which is *G*-invariant, that is, up to addition of a central vector $c \in \mathfrak{g}^*$.

CLAIM: An equivariant moment map exists whenever $H^1(G, \mathfrak{g}^*) = 0$. In particular, when G is reductive and M is simply connected, an equivariant moment map exists. Further on, all moment maps will be tacitly considered equivariant.

Weinstein-Marsden theorem

DEFINITION: (Weinstein-Marsden) (M, ω) be a symplectic manifold, G a compact Lie group acting on M by symplectomorphisms, $M \xrightarrow{\mu} \mathfrak{g}^*$ an equivariant moment map, and $c \in \mathfrak{g}^*$ a central element. The quotient $\mu^{-1}(c)/G$ is called symplectic reduction of M, denoted by $M/\!\!/G$.

CLAIM: The symplectic quotient $M/\!\!/G$ is a symplectic manifold of dimension dim $M - 2 \dim G$.

Proof. Step 1: $T_x(\mu^{-1}(c)) = d\mu^{-1}(0)$, however, $d\mu$ is ω -dual to the space $\tau(\mathfrak{g})$ of vector fields tangent to the *G*-action, hence $d\mu^{-1}(0) = \tau(\mathfrak{g})^{\perp}$.

Step 2: Since μ is *G*-equivariant, *G* preserves $\mu^{-1}(c)$, hence $\tau(\mathfrak{g}) \subset d\mu^{-1}(0)$. This implies that $\tau(\mathfrak{g}) \subset TM$ is isotropic (that is, $\omega|_{\tau(\mathfrak{g})} = 0$.) Its ω -orthogonal complement in T_xM is $T_x(\mu^{-1}(c))$ (Step 1).

Step 3: Consider the characteristic foliation \mathcal{F} on $\mu^{-1}(c)$, that is, the set of all $v \in T_x(\mu^{-1}(c))$ such that $\omega(v, w) = 0$ for all $w \in T_x(\mu^{-1}(c))$ From Step 2 we obtain that $\mathcal{F} = \tau(\mathfrak{g})$.

Step 4: Since $\omega|_{\mu^{-1}(c)}$ is closed, it satisfies $\operatorname{Lie}_v(\omega) = 0$ for all $v \in \mathcal{F}$. This implies that it is lifted from the leaf space of characteristic foliation, identified with $M/\!\!/G$.

Symplectic reduction and GIT

THEOREM: Let (M, I, ω) be a Kähler manifold, $G_{\mathbb{C}}$ a complex reductive Lie group acting on M by holomorphic automorphisms, and G its compact form acting isometrically. Then $M/\!\!/G$ is a Kähler manifold.

Proof: Since the orbits of the $G_{\mathbb{C}}$ -action are complex subvarieties, they are symplectic. Since the orbits of $G \subset G_{\mathbb{C}}$ are isotropic, and their dimension is half of dimension of orbits of $G_{\mathbb{C}}$, they are actially Lagrangian subvarieties in orbits of $G_{\mathbb{C}}$. Therefore, $\mu^{-1}(c)$ intersects each orbit of $G_{\mathbb{C}}$ in a *G*-orbit. We have identified $M/\!\!/G$ with a space of $G_{\mathbb{C}}$ -orbits which intersect $\mu^{-1}(c)$.

REMARK: In such a situation, $M/\!\!/G$ is called **the Kähler quotient**, or **GIT quotient**. The choice of a central element $c \in \mathfrak{g}^*$ is known as a choice of stability data.

REMARK: The points of $M/\!/G$ are in bijective correspondence with the orbits of $G_{\mathbb{C}}$ which intersect $\mu^{-1}(c)$. Such orbits are called **polystable**, and the intersection of a $G_{\mathbb{C}}$ -orbit with $\mu^{-1}(c)$ is a *G*-orbit.

Kähler reduction and a Kähler potential

DEFINITION: Kähler potential on a Kähler manifold (M, ω) is a function ψ such that $dd^c\psi = \omega$.

PROPOSITION: Let G be a real Lie group acting on a Kähler manifold M by holomorphic isometries, and ψ be a G-invariant Kähler potential. Then the moment map $\mathfrak{g} \times M \xrightarrow{\mu_g} \mathbb{R}$ can be written as $g, m \longrightarrow -\operatorname{Lie}_{Iv} \psi$, where $v = \tau(g) \in TM$ is the tangent vector field associated with $g \in \mathfrak{g}$.

Proof: Since ψ is *G*-invariant, and *I* is *G*-invariant, we have $0 = \operatorname{Lie}_v d^c \psi = (dd^c \psi) \lrcorner v + d(\langle d^c \psi, v \rangle)$. Using $\omega = dd^c \psi$, we rewrite this equation as $\omega \lrcorner v = -d(\langle d^c \psi, v \rangle)$, giving an equation for the moment map $\mu_g = -\langle d^c \psi, v \rangle$. Acting by *I* on both sides, we obtain $\mu_g = -\langle d\psi, Iv \rangle = -\operatorname{Lie}_{Iv} \psi$.

COROLLARY: Let *V* be a Hermitian representation of a compact Lie group *G*. Then the corresponding moment map can be written as $\mu_g(v) = -\text{Lie}_{Ig} |v|^2 = -\frac{1}{2} \langle v, Ig(v) \rangle$.

Hyperkähler manifolds

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian structure g and a triple of complex structures I, J, K, satisfying quaternionic relations $I \circ J = -J \circ I = K$, such that g is Kähler for I, J, K.

REMARK: A hyperkähler manifold has three symplectic forms $\omega_I := g(I, \cdot), \ \omega_J := g(J, \cdot), \ \omega_K := g(K, \cdot).$

REMARK: This is equivalent to $\nabla I = \nabla J = \nabla K = 0$: the parallel transport along the connection preserves I, J, K.

REMARK:

The form $\Omega := \omega_J + \sqrt{-1} \omega_K$ is holomorphic and symplectic on (M, I).

Hyperkähler reduction

DEFINITION: Let G be a compact Lie group, ρ its action on a hyperkähler manifold M by hyperkähler isometries, and \mathfrak{g}^* a dual space to its Lie algebra. A hyperkähler moment map is a G-equivariant smooth map $\mu : M \to \mathfrak{g}^* \otimes \mathbb{R}^3$ such that $\langle \mu_i(v), g \rangle = \omega_i(v, d\rho(g))$, for every $v \in TM$, $g \in \mathfrak{g}$ and i = 1, 2, 3, where ω_i is one three Kähler forms associated with the hyperkähler structure.

DEFINITION: Let ξ_1, ξ_2, ξ_3 be three *G*-invariant vectors in \mathfrak{g}^* . The quotient manifold $M/\!\!/ G := \mu^{-1}(\xi_1, \xi_2, \xi_3)/G$ is called **the hyperkähler quotient** of *M*.

THEOREM: (Hitchin, Karlhede, Lindström, Roček) **The quotient** $M/\!\!/ G$ is hyperkaehler.

Holomorphic moment map

Let $\Omega := \omega_J + \sqrt{-1}\omega_K$. This is a holomorphic symplectic (2,0)-form on (M, I).

The proof of HKLR theorem. Step 1: Let μ_J, μ_K be the moment map associated with ω_J, ω_K , and $\mu_{\mathbb{C}} := \mu_J + \sqrt{-1} \mu_K$. Then $\langle d\mu_{\mathbb{C}}, g \rangle = i_{\rho_g}(\Omega)$. Therefore, $d\mu_{\mathbb{C}} \in \Lambda^{1,0}(M, I) \otimes \mathfrak{g}^*$.

Step 2: This implies that the map $\mu_{\mathbb{C}}$ is holomorphic. It is called **the** holomorphic moment map.

Step 3: By definition, $M/\!\!/ G = \mu_{\mathbb{C}}^{-1}(c)/\!/ G$, where $c \in \mathfrak{g}^* \otimes_{\mathbb{R}} \mathbb{C}$ is a central element. **This is a Kähler manifold**, because it is a Kähler quotient of a Kähler manifold.

Step 4: We obtain 3 complex structures I, J, K on the hyperkähler quotient $M/\!\!/ G$. They are compatible in the usual way (an easy exercise).

Gauge group

DEFINITION: Let G be a Lie group, and P a principal G-bundle on M. The gauge group of P is the group of G-invariant automorphisms of P.

REMARK: Let $G_{\mathbb{C}}$ be a complex Lie group, P a principal $G_{\mathbb{C}}$ -bundle, \mathcal{A} the space of all $G_{\mathbb{C}}$ -invariant connections on P, and $\mathfrak{P}_{\mathbb{C}}$ the bundle of G-invariant vector fields tangent to the fibers of P. Then \mathcal{A} is a complex affine vector space with linearization $\Lambda^1 M \otimes \mathfrak{P}_{\mathbb{C}}$. It is equipped with the gauge group action.

DEFINITION: Let P_G be a reduction of the principal $G_{\mathbb{C}}$ -bundle P to G, and $g \longrightarrow g^t$ be the corresponding real structure operator on $\mathfrak{P}_{\mathbb{C}}$. Then $\operatorname{Aut}(P_G)$ is called **the real gauge group**, and $\operatorname{Aut}(P)$ **the complex gauge group**. The Killing form on $\mathfrak{P}_{\mathbb{C}}$ is denoted as $a, b \longrightarrow \operatorname{Tr}(ab) \in C^{\infty}M$.

Hyperkähler structure on the space of connections

CLAIM: Let $P_{\mathbb{C}}$ be a complexification of a principal *G*-bundle *P* on a compact Riemann surface *M*, and $\nabla \in \mathcal{A}$ a connection in $P_{\mathbb{C}}$. Denote by $g \longrightarrow g^t$ the real involution on $\mathfrak{P}_{\mathbb{C}}$ fixing \mathfrak{P} . Then the tangent space $T_{\nabla}\mathcal{A}$ is equipped with a real gauge invariant Hermitian form $g(a,b) = \int_M \operatorname{Re} \operatorname{Tr}(a \wedge b^t)$ and a complex linear 2-form $\Omega(u,v) := \int_M \operatorname{Tr}(u \wedge v)$.

DEFINITION: Define quaternionic structure on $T_{\nabla}A$ as follows. The complex structure *I* comes from the complex structure on $\mathfrak{P}_{\mathbb{C}}$, and *J* comes from Re $\Omega(x, Jy) = g(a, b)$.

REMARK: For $\lambda \otimes a \in T_{\nabla} \mathcal{A} = \Lambda^1(M) \otimes_{\mathbb{C}} \mathfrak{g}_C$, we can write $J(\lambda \otimes a) = I_M(\lambda) \otimes a^t$, where I_M is a complex structure operator on M acting on $\Lambda^1(M)$.

COROLLARY: The manifold \mathcal{A} is equipped with a natural real gauge invariant flat hyperkähler structure.

M. Verbitsky

Hyperkähler moment map

REMARK: The tangent space to the gauge group Aut(P) can be identified with $\mathfrak{P}_{\mathbb{C}}$. Therefore, **the gauge moment map takes values in** $\mathfrak{P}_{\mathbb{C}}^* = \mathfrak{P}_{\mathbb{C}}$.

THEOREM: Let (M, I, ω) be a Riemannian surface equipped with a Hermitian form ω , P a principal $G_{\mathbb{C}}$ -bundle, \mathcal{A} the space of connections on P, and $G \subset G_{\mathbb{C}}$. a compact real form. Consider the hyperkähler structure on \mathcal{A} defined above. Then the holomorphic moment map associated with the gauge action can be written as $\nabla \to -\frac{\Theta_{\nabla}}{\omega}$, where $\Theta_{\nabla} \in \Lambda^2 M \otimes \mathfrak{P}_{\mathbb{C}}$ is the curvature of ∇ .

Proof. Step 1: If $\nabla_1 = \nabla + A$, we have $\theta_{\nabla_1} = \Theta_{\nabla} + \nabla(A) + A \wedge A$. Therefore, differential of Θ_{∇} takes $A \in \Lambda^1 M \otimes \mathfrak{P}_{\mathbb{C}}$ to $\int_M \nabla(A)$. If we pair this to $b \in \mathfrak{P}_{\mathbb{C}}$, we obtain $A \longrightarrow \int_M \operatorname{Tr}(b\nabla(A))$. This is the differential of a moment map evaluated in ∇, b .

Step 2: The holomorphic symplectic form on \mathcal{A} is expressed as $\Omega(A, B) = \int_M \operatorname{Tr}(A \wedge B)$. For any $b \in \mathfrak{P}_{\mathbb{C}}$, the corresponding vector field on \mathcal{A} is written as $\nabla(b)$, and the corresponding 1-form as $\Omega(\nabla(b), A) = \int_M \operatorname{Tr}(\nabla(b) \wedge A)$. Here $A \in T\mathcal{A}$ is a tangent vector, and $\Omega(\nabla(b), \cdot)$ is considered as a 1-form on \mathcal{A} .

Step 3: It remains to compare the 1-forms obtained in Step 1 and Step 2: $\int_M \text{Tr}(\nabla(b) \wedge A) = -\int_M \text{Tr}(b\nabla(A)).$

Space of flat connections

THEOREM: The space of stable flat connections on a compact Riemann surface up to (complex) gauge equivalence is obtained as $\mathcal{M} = \mathcal{A}/\!\!/\mathcal{G}$, where \mathcal{G} is the real gauge group. In particular, \mathcal{M} is hyperkähler.

Proof: Denote the space of flat connections by $\mathcal{A}_{fl} \subset \mathcal{A}$. Flatness is vanishing of the holomorphic moment map, hence $\mathcal{A}_{fl}/\!\!/G = \mathcal{A}/\!\!/\mathcal{G}$. However, $\mathcal{A}_{fl}/\!\!/G$ is precisely the space of stable flat connections up to complex gauge equivalence.

Addendum: Real moment map

PROPOSITION: Since the Hermitian form on \mathcal{A} is fixed by affine transforms, it can be written as dd^c of a quadratic function which is its Kähler potential. The latter can be written as $\psi(\nabla) = \int_M \text{Tr}[\nabla, \nabla^t]$ (here ∇^t is a connection operator which is real conjugate to ∇).

Proof: Second derivative of this quadratic map is $\text{Hess}(x, y) = \int_M \text{Re}(x \wedge y^t)$.

PROPOSITION: The real moment map for gauge action on the space of connections is $\frac{[\nabla, \nabla^t]}{\omega}$.

Proof: The gauge Lie algebra action is written as $g(\nabla) = \nabla + \nabla(g)$, for all $g \in \mathfrak{P}_{\mathbb{C}}$. This gives an expression for the real moment map:

$$\mu_g(\nabla) = \frac{d}{dg} \int_M \operatorname{Tr}[\nabla + \sqrt{-1} \nabla(g), \nabla^t - \sqrt{-1} \nabla^t(g)] = \int_M \operatorname{Tr}([\nabla, \nabla^t](g))$$

We obtain that the real moment map $\mu : \mathcal{A} \longrightarrow \mathfrak{P}_{\mathbb{C}}$ takes ∇ and puts it to $[\nabla, \nabla^t]_{(\mathcal{A})}$.