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Plan

1. Symplectic reduction and GIT

2. Hyperkähler reduction

3. Moment map for the gauge group action.

Conventions: Further on, G is a compact, connected Lie group, GC its

complexification, g and gC the corresponding Lie algebras. Central element

of g∗ is one which is fixed by the adjoint action of G.
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Cartan’s formula and symplectomorphisms

We denote the Lie derivative along a vector field as Liex : ΛiM −→ ΛiM , and

contraction with a vector field by ix : ΛiM −→ Λi−1M .

Cartan’s formula: d ◦ ix + ix ◦ d = Liex.

REMARK: Let (M,ω) be a symplectic manifold, G a Lie group acting on M

by symplectomorphisms, and g its Lie algebra. For any g ∈ g, denote by ρg

the corresponding vector field. Then Lieρg ω = 0, giving d(iρg(ω)) = 0. We

obtain that iρg(ω) is closed, for any g ∈ g.

DEFINITION: A Hamiltonian of g ∈ g is a function h on M such that

dh = iρg(ω).
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Moment maps

DEFINITION: (M,ω) be a symplectic manifold, G a Lie group acting on M
by symplectomorphisms. A moment map µ of this action is a linear map
g−→ C∞M associating to each g ∈ G its Hamiltonian.

REMARK: It is more convenient to consider µ as an element of g∗⊗RC
∞M ,

or (and this is most standard) as a function with values in g∗.

REMARK: Moment map always exists if M is simply connected.

DEFINITION: A moment map M −→ g∗ is called equivariant if it is equiv-
ariant with respect to the coadjoint action of G on g∗.

REMARK: M
µ−→ g∗ is a moment map iff for all g ∈ g, 〈dµ, g〉 = iρg(ω).

Therefore, a moment map is defined up to a constant g∗-valued func-
tion. An equivariant moment map is is defined up to a constant g∗-valued
function which is G-invariant, that is, up to addition of a central vector
c ∈ g∗.

CLAIM: An equivariant moment map exists whenever H1(G, g∗) = 0.
In particular, when G is reductive and M is simply connected, an equivariant
moment map exists. Further on, all moment maps will be tacitly considered
equivariant.
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Weinstein-Marsden theorem

DEFINITION: (Weinstein-Marsden) (M,ω) be a symplectic manifold, G a
compact Lie group acting on M by symplectomorphisms, M

µ−→ g∗ an equiv-
ariant moment map, and c ∈ g∗ a central element. The quotient µ−1(c)/G is
called symplectic reduction of M , denoted by M//G.

CLAIM: The symplectic quotient M//G is a symplectic manifold of di-
mension dimM − 2 dimG.

Proof. Step 1: Tx(µ−1(c)) = dµ−1(0), however, dµ is ω-dual to the space
τ(g) of vector fields tangent to the G-action, hence dµ−1(0) = τ(g)⊥.

Step 2: Since µ is G-equivariant, G preserves µ−1(c), hence τ(g) ⊂ dµ−1(0).
This implies that τ(g) ⊂ TM is isotropic (that is, ω

∣∣∣τ(g) = 0.) Its ω-

orthogonal complement in TxM is Tx(µ−1(c)) (Step 1).

Step 3: Consider the characteristic foliation F on µ−1(c), that is, the set
of all v ∈ Tx(µ−1(c)) such that ω(v, w) = 0 for all w ∈ Tx(µ−1(c)) From Step
2 we obtain that F = τ(g).

Step 4: Since ω
∣∣∣µ−1(c) is closed, it satisfies Liev(ω) = 0 for all v ∈ F. This

implies that it is lifted from the leaf space of characteristic foliation, identified
with M//G.
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Symplectic reduction and GIT

THEOREM: Let (M, I, ω) be a Kähler manifold, GC a complex reductive Lie

group acting on M by holomorphic automorphisms, and G its compact form

acting isometrically. Then M//G is a Kähler manifold.

Proof: Since the orbits of the GC-action are complex subvarieties, they are

symplectic. Since the orbits of G ⊂ GC are isotropic, and their dimension is

half of dimension of orbits of GC, they are actially Lagrangian subvarieties in

orbits of GC. Therefore, µ−1(c) intersects each orbit of GC in a G-orbit. We

have identified M//G with a space of GC-orbits which intersect µ−1(c).

REMARK: In such a situation, M//G is called the Kähler quotient, or GIT

quotient. The choice of a central element c ∈ g∗ is known as a choice of

stability data.

REMARK: The points of M//G are in bijective correspondence with the

orbits of GC which intersect µ−1(c). Such orbits are called polystable, and

the intersection of a GC-orbit with µ−1(c) is a G-orbit.
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Kähler reduction and a Kähler potential

DEFINITION: Kähler potential on a Kähler manifold (M,ω) is a function

ψ such that ddcψ = ω.

PROPOSITION: Let G be a real Lie group acting on a Kähler manifold M

by holomorphic isometries, and ψ be a G-invariant Kähler potential. Then

the moment map g×M
µg−→ R can be written as g,m−→ −LieIv ψ, where

v = τ(g) ∈ TM is the tangent vector field associated with g ∈ g.

Proof: Since ψ is G-invariant, and I is G-invariant, we have 0 = Liev dcψ =

(ddcψ)yv + d(〈dcψ, v〉). Using ω = ddcψ, we rewrite this equation as ωyv =

−d(〈dcψ, v〉), giving an equation for the moment map µg = −〈dcψ, v〉. Acting

by I on both sides, we obtain µg = −〈dψ, Iv〉 = −LieIv ψ.

COROLLARY: Let V be a Hermitian representation of a compact Lie group

G. Then the corresponding moment map can be written as µg(v) =

−LieIg |v|2 = −1
2〈v, Ig(v)〉.
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Hyperkähler manifolds

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian

structure g and a triple of complex structures I, J,K, satisfying quaternionic

relations I ◦ J = −J ◦ I = K, such that g is Kähler for I, J,K.

REMARK: A hyperkähler manifold has three symplectic forms

ωI := g(I·, ·), ωJ := g(J ·, ·), ωK := g(K·, ·).

REMARK: This is equivalent to ∇I = ∇J = ∇K = 0: the parallel transport

along the connection preserves I, J,K.

REMARK:

The form Ω := ωJ +
√
−1 ωK is holomorphic and symplectic on (M, I).
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Hyperkähler reduction

DEFINITION: Let G be a compact Lie group, ρ its action on a hyperkähler

manifold M by hyperkähler isometries, and g∗ a dual space to its Lie algebra. A

hyperkähler moment map is a G-equivariant smooth map µ : M → g∗ ⊗ R3

such that 〈µi(v), g〉 = ωi(v, dρ(g)), for every v ∈ TM , g ∈ g and i = 1,2,3,

where ωi is one three Kähler forms associated with the hyperkähler structure.

DEFINITION: Let ξ1, ξ2, ξ3 be three G-invariant vectors in g∗. The quotient

manifold M///G := µ−1(ξ1, ξ2, ξ3)/G is called the hyperkähler quotient of M .

THEOREM: (Hitchin, Karlhede, Lindström, Roček)

The quotient M///G is hyperkaehler.
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Holomorphic moment map

Let Ω := ωJ+
√
−1ωK. This is a holomorphic symplectic (2,0)-form on (M, I).

The proof of HKLR theorem. Step 1: Let µJ , µK be the moment map

associated with ωJ , ωK, and µC := µJ +
√
−1 µK. Then 〈dµC, g〉 = iρg(Ω).

Therefore, dµC ∈ Λ1,0(M, I)⊗ g∗.

Step 2: This implies that the map µC is holomorphic. It is called the

holomorphic moment map.

Step 3: By definition, M///G = µ−1
C (c)//G, where c ∈ g∗ ⊗R C is a central

element. This is a Kähler manifold, because it is a Kähler quotient of a

Kähler manifold.

Step 4: We obtain 3 complex structures I, J,K on the hyperkähler quotient

M///G. They are compatible in the usual way (an easy exercise).
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Gauge group

DEFINITION: Let G be a Lie group, and P a principal G-bundle on M . The

gauge group of P is the group of G-invariant automorphisms of P .

REMARK: Let GC be a complex Lie group, P a principal GC-bundle, A the

space of all GC-invariant connections on P , and PC the bundle of G-invariant

vector fields tangent to the fibers of P . Then A is a complex affine vector

space with linearization Λ1M ⊗ PC. It is equipped with the gauge group

action.

DEFINITION: Let PG be a reduction of the principal GC-bundle P to G, and

g −→ gt be the corresponding real structure operator on PC. Then Aut(PG) is

called the real gauge group, and Aut(P ) the complex gauge group. The

Killing form on PC is denoted as a, b−→ Tr(ab) ∈ C∞M .
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Hyperkähler structure on the space of connections

CLAIM: Let PC be a complexification of a principal G-bundle P on a compact

Riemann surface M , and ∇ ∈ A a connecion in PC. Denote by g −→ gt the

real involution on PC fixing P. Then the tangent space T∇A is equipped

with a real gauge invariant Hermitian form g(a, b) =
∫
M Re Tr(a ∧ bt) and

a complex linear 2-form Ω(u, v) :=
∫
M Tr(u ∧ v).

DEFINITION: Define quaternionic structure on T∇A as follows. The com-

plex structure I comes from the complex structure on PC, and J comes from

Re Ω(x, Jy) = g(a, b).

REMARK: For λ⊗a ∈ T∇A = Λ1(M)⊗CgC, we can write J(λ⊗a) = IM(λ)⊗at,
where IM is a complex structure operator on M acting on Λ1(M).

COROLLARY: The manifold A is equipped with a natural real gauge

invariant flat hyperkähler structure.
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Hyperkähler moment map

REMARK: The tangent space to the gauge group Aut(P ) can be identified
with PC. Therefore, the gauge moment map takes values in P∗C = PC.

THEOREM: Let (M, I, ω) be a Riemannian surface equipped with a Her-
mitian form ω, P a principal GC-bundle, A the space of connections on P ,
and G ⊂ GC. a compact real form. Consider the hyperkähler structure on A
defined above. Then the holomorphic moment map associated with the
gauge action can be written as ∇−→ −Θ∇

ω , where Θ∇ ∈ Λ2M ⊗PC is the
curvature of ∇.

Proof. Step 1: If ∇1 = ∇+A, we have θ∇1
= Θ∇+∇(A)+A∧A. Therefore,

differential of Θ∇ takes A ∈ Λ1M ⊗PC to
∫
M ∇(A). If we pair this to b ∈ PC,

we obtain A−→
∫
M Tr(b∇(A)). This is the differential of a moment map

evaluated in ∇, b.

Step 2: The holomorphic symplectic form on A is expressed as Ω(A,B) =∫
M Tr(A ∧B). For any b ∈ PC, the corresponding vector field on A is written

as ∇(b), and the corresponding 1-form as Ω(∇(b), A) =
∫
M Tr(∇(b)∧A). Here

A ∈ TA is a tangent vector, and Ω(∇(b), ·) is considered as a 1-form on A.

Step 3: It remains to compare the 1-forms obtained in Step 1 and Step 2:∫
M Tr(∇(b) ∧A) = −

∫
M Tr(b∇(A)).
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Space of flat connections

THEOREM: The space of stable flat connections on a compact Riemann

surface up to (complex) gauge equivalence is obtained as M = A///G, where

G is the real gauge group. In particular, M is hyperkähler.

Proof: Denote the space of flat connections by Afl ⊂ A. Flatness is vanishing

of the holomorphic moment map, hence Afl//G = A///G. However, Afl//G is

precisely the space of stable flat connections up to complex gauge equivalence.
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Addendum: Real moment map

PROPOSITION: Since the Hermitian form on A is fixed by affine trans-

forms, it can be written as ddc of a quadratic function which is its

Kähler potential. The latter can be written as ψ(∇) =
∫
M Tr[∇,∇t] (here

∇t is a connection operator which is real conjugate to ∇).

Proof: Second derivative of this quadratic map is Hess(x, y) =
∫
M Re(x∧ yt).

PROPOSITION: The real moment map for gauge action on the space

of connections is [∇,∇t]
ω .

Proof: The gauge Lie algebra action is written as g(∇) = ∇+∇(g), for all

g ∈ PC. This gives an expression for the real moment map:

µg(∇) =
d

dg

∫
M

Tr[∇+
√
−1∇(g),∇t −

√
−1∇t(g)] =

∫
M

Tr([∇,∇t](g))

We obtain that the real moment map µ : A−→PC takes ∇ and puts it to
[∇,∇t]
ω .
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