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Hyperkähler manifolds

DEFINITION: A hypercomplex manifold is a manifold M equipped with

three complex structure operators I, J,K, satisfying quaternionic relations

IJ = −JI = K, I2 = J2 = K2 = − IdTM

DEFINITION: A hyperkähler manifold is a hypercomplex manifold equipped

with a metric g which is Kähler with respect to I, J,K.

REMARK: This is equivalent to ∇I = ∇J = ∇K = 0: the parallel translation

along the connection preserves I, J,K.

DEFINITION: Let M be a Riemannian manifold, x ∈ M a point. The

subgroup of GL(TxM) generated by parallel translations (along all paths) is

called the holonomy group of M .

REMARK: A hyperkähler manifold can be defined as a manifold which

has holonomy in Sp(n) (the group of all endomorphisms preserving I, J,K).
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Holomorphically symplectic manifolds

DEFINITION: A holomorphically symplectic manifold is a complex manifold

equipped with non-degenerate, holomorphic (2,0)-form.

THEOREM: (Calabi-Yau) A compact, Kähler, holomorphically symplectic

manifold admits a unique hyperkähler metric in any Kähler class.

DEFINITION: For the rest of this talk, a hyperkähler manifold is a com-

pact, Kähler, holomorphically symplectic manifold.

DEFINITION: A hyperkähler manifold M is called maximal holonomy, or

IHS if π1(M) = 0, H2,0(M) = C.

Bogomolov’s decomposition: Any hyperkähler manifold admits a finite cov-

ering which is a product of a torus and several simple hyperkähler manifolds.

Further on, all hyperkähler manifolds are assumed to be of maximal

holonomy.
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Gromov-Hausdorff metrics

DEFINITION: Let X ⊂M be a subset of a metric space, and y ∈M a point.

Distance from a y to X is infx∈X d(x, y). Hausdorff distance dH(X,Y )

between to subsets X,Y ⊂M of a metric space is

max(sup
x∈X

d(x, Y ), sup
y∈Y

d(y,X)).

Gromov-Hausdorff distance between complete metric spaces X,Y of diam-

eter 6 d is an infimum of dH(ϕ(X), ψ(Y )) taken over all isometric embeddings

ϕ : X −→ Z, ψ : Y −→ Z to a third metric space.

REMARK: It is not hard to see that a converging sequence of Riemannian

metrics converges in Gromov-Hausdorff topology.
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Gromov’s compactness theorem

DEFINITION: A subset X ⊂ M is called precompact if its closure in M is

compact.

DEFINITION: We say that Ricci curvature of a Riemannian manifold

(M, g) is bounded from below by c if the symmetric form Ricg−cg ∈ Sym2 T ∗
M is positive definite.

THEOREM: (Gromov’s compactness theorem)

Let Wd be the Gromov’s space of all metric spaces of diameter d, and Xc,d ⊂
Wd the space of all Riemannian manifolds with Ricci curvature bounded from

below by c. Then Xc,d is precompact.

QUESTION: Let Hypd be the space of all hyperkähler metrics of diameter d

considered as a subset in Wd. What is the shape of Hypd and its closure?
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Space of hyperkähler metrics and its closure

THEOREM: Let (M, I) be a hyperkähler manifold with ergodic complex

structure, and V I the Gromov-Hausdorff closure of the space VI of all hy-

perkähler metrics on M . Then V I contains the space Hyp of all hy-

perkähler metrics on M obtained by deformation from VI.

REMARK: dimVI = b2 − 2, and dim Hyp = 3b2 − 8: much bigger!

Related question: Consider hyperkähler forms ωI as currents on (M, I), and

let Hypcur be its closure in the space of currents. Is it related by Hypd?

THEOREM: Let [ω0] ∈ H1,1(M, I) be a nef class such that [ω0]⊥∩H2(M,Q) =

0. Then for any sequence of Kähler forms ωi on (M, I) such that with [ωi] con-

verges to [ω0] ∈ H1,1(M), the sequence ωi converges to a unique positive

current.
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Currents and generalized functions

DEFINITION: Let F be a Hermitian bundle with connection ∇, on a Rie-

mannian manifold M with Levi-Civita connection, and

‖f‖Ck := sup
x∈M

(
|f |+ |∇f |+ ...+ |∇kf |

)
the corresponding Ck-norm defined on smooth sections with compact sup-

port. The Ck-topology is independent from the choice of connection

and metrics.

DEFINITION: A generalized function is a functional on top forms with

compact support, which is continuous in one of Ci-topologies.

DEFINITION: A k-current is a functional on (dimM − k)-forms with com-

pact support, which is continuous in one of Ci-topologies.

REMARK: Currents are forms with coefficients in generalized functions.
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Currents on complex manifolds

DEFINITION: The space of currents is equipped with weak topology (a

sequence of currents converges if it converges on all forms with compact sup-

port). The space of currents with this topology is a Montel space (barrelled,

locally convex, all bounded subsets are precompact). Montel spaces are re-

flexive (the map to its double dual with strong topology is an isomorphism).

CLAIM: De Rham differential is continuous on currents, and the Poincare

lemma holds. Hence, the cohomology of currents are the same as coho-

mology of smooth forms.

DEFINITION: On an complex manifold, (p, q)-currents are (p, q)-forms with

coefficients in generalized functions

REMARK: In the literature, this is sometimes called (n − p, n − q)-

currents.

CLAIM: The Dolbeault lemma holds on (p, q)-currents, and the ∂-cohomology

are the same as for forms.
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Positive currents and measures

DEFINITION: We inter[ret sections of Λn−1,n−1(M) as VolM-valued pseudo-

Hermitian forms on T ∗M . A form η ∈ Λn−1,n−1(M) is positive if for any

x ∈ T ∗M , one has η(x, Ix) > 0.

DEFINITION: A positive (1,1)-current is a current taking non-negative

values on positive compactly supported (n− 1, n− 1)-forms.

DEFINITION: A positive generalized function is a generalized function

taking non-negative values on all positive volume forms.

REMARK: Positive generalized functions are C0-continuous. A positive gen-

eralized function multiplied by a positive volume form gives a measure on

a manifold, and all measures are obtained this way.

DEFINITION: A mass of a positive (1,1)-current η on a Hermitian n-

manifold (M,ω) is a measure η ∧ ωn−1. It is non-negative, and positive

if η 6= 0.
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Positive currents: compactness theorem

Theorem: The space of positive (1,1)-currents with bounded mass is

(weakly) compact.

Proof: Follows from precompactness of the space of bounded measures in

weak-*-topology.
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Rigid currents

DEFINITION: A nef class is a limit of Kähler (1,1)-classes in H1,1(M).

DEFINITION: A nef current is a limit of positive, closed (1,1)-forms in

the space of currents.

REMARK: All nef classes can be represented by nef currents (by com-

pactnes).

DEFINITION: A nef class is called rigid if it has a unique positive, closed

representative in the space of currents.

THEOREM: (Sibony, V.)

Let η be a nef class on a hyperkähler manifold M , dimCM = 2n. Assume that∫
M η2n = 0, and η⊥ ∩H2(M,Q) = 0. Then the corresponding nef current

is rigid.
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Hyperbolic automorphisms

DEFINITION: An automorphism of a hyperkähler manifold is called hyper-

bolic if it acts on H1,1(M) with eigenvalue α ∈ R, where α > 1.

REMARK: The corresponding eigenspace is 1-dimensional.

THEOREM: (Amerik, V.) Every hyperkähler manifold with b2 > 4 has a

deformation which admits a hyperbolic automorphism.

DEFINITION: A class v ∈ H1,1(M) on a hyperkähler manifold is called

hyperbolic if M admits a hyperbolic automorphism T , and v is its eigenvector

with eigenvalue α > 1.
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Rigidiy of hyperbolic currents

THEOREM: (Cantat, Dinh-Sibony)

Let v ∈ H1,1(M) be a hyperbolic class. Then v is nef and rigid.

Proof. Step 1: The class v is nef. Indeed, lim Tnω
αn = v for any ω /∈ V , where

V ⊂ H1,1(M,R) is a subspace of positive codimension. Taking ω Kähler (the

Kähler cone is open, hence we can assume that ω /∈ V ), we obtain that v is

nef.

Step 2: It remains to prove uniqueness of the positive representative η of

v. Suppose that there are two positive representatives η1, η2, with η1 − η2 =

ddcψ by ddc-lemma. The generalized function ψ is determined by this equation

uniquely up to a constant, because a ddc-closed generalized function is

constant. Then T ∗ψ = αψ + C, where C is a real constant. Since the

canonical bundle KM is trivial, M has a T -invariant volume form Vol. Consider

the pushforward ψ∗Vol as a measure on R. Then ψ∗Vol is mapped to itself

by x−→ αx + C. This is impossible, however, because such a measure must

be atomic, and ψ is non-constant.
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Teichmüller spaces

DEFINITION: Let M be a smooth manifold. A complex structure on M is

an endomorphism I ∈ EndTM , I2 = − IdTM such that the eigenspace bundles

of I are involutive, that is, satisfy satisfy [T1,0M,T1,0M ] ⊂ T1,0M . Denote

by Comp the space of such tensors equipped with a topology of convergence

of all derivatives.

DEFINITION: Let M be a compact complex manifold, Diff0(M) a connected

component of its diffeomorphism group Diff(M) (the group of isotopies).

Let Teich := Comp /Diff0(M). We call it the Teichmüller space.

DEFINITION: The group Γ := Diff(M)/Diff0(M) is called the mapping

class group; it acts on Teich in a natural way, and the quotient set is the

set of all complex structures on M up to equivalence.

REMARK: Working with hyperkähler manifolds, we shall restrict ourself to

an open subset of Teich consisting of all complex structures compatible

with a hyperkähler structure.
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Computation of the mapping class group

THEOREM: (Fujiki). Let η ∈ H2(M), and dimM = 2n, where M is hy-

perkähler. Then
∫
M η2n = cq(η, η)n, for some primitive integer quadratic

form q on H2(M,Z), and c > 0 a rational number.

DEFINITION: The form q is called Bogomolov-Beauville-Fujiki form. It

has signature (3, b2 − 3).

THEOREM: (V., 1996, 2009) Let M be a maximal holonomy, compact

hyperkähler manifold, and Γ0 = Aut(H∗(M,Z), p1, ..., pn). Then

(i) Γ0

∣∣∣H2(M,Z) is a finite index subgroup of O(H2(M,Z), q).

(ii) The map Γ0 −→O(H2(M,Z), q) has finite kernel.

(iii) The tautological map Γ−→ Γ0 has finite kernel and its image has

finite index, where Γ is a mapping class group.
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The period map

REMARK: To simplify the language, we redefine Teich and Comp for hy-

perkähler manifolds, admitting only complex structures of Kähler type. Since

the Hodge numbers are constant in families of Kähler manifolds, for any

J ∈ Teich, (M,J) is also a simple hyperkähler manifold, hence H2,0(M,J)

is one-dimensional.

Definition: Let Per : Teich −→ PH2(M,C) map J to a line H2,0(M,J) ∈
PH2(M,C). The map Per : Teich −→ PH2(M,C) is called the period map.

REMARK: Per maps Teich into an open subset of a quadric, defined by

Per := {l ∈ PH2(M,C) | q(l, l) = 0, q(l, l) > 0}.

It is called the period space of M .

REMARK: Per = SO(b2 − 3,3)/SO(2) × SO(b2 − 3,1). Indeed, the group

SO(H2(M,R), q) = SO(b2−3,3) acts transitively on Per, and SO(2)×SO(b2−
3,1) is a stabilizer of a point.
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Birational Teichmüller moduli space

DEFINITION: Let M be a topological space. We say that x, y ∈M are non-

separable (denoted by x ∼ y) if for any open sets V 3 x, U 3 y, U ∩ V 6= ∅.

THEOREM: (Huybrechts, 2001) Two points I, I ′ ∈ Teich are non-separable

if and only if there exists a bimeromorphism (M, I)−→ (M, I ′) which is

non-singular in codimension 2 and acts as identity on H2(M).

REMARK: This is possible only if (M, I) and (M, I ′) contain a rational curve.

General hyperkähler manifold has no curves; ones which have belong to

a countable union of divisors in Teich.

DEFINITION: The space Teichb := Teich / ∼ is called the birational Te-

ichmüller space of M .

THEOREM: The period map Teichb
Per−→ Per is an isomorphism, for each

connected component of Teichb.

17



Rigid currents in hyperkähler geometry M. Verbitsky

Uniqueness of positive representative

THEOREM: Let (M, I) be a hyperkähler manifold with Pic(M) non-maximal.
Assume that a deformation of M admits a hyperbolic automorphism. Consider
a nef class µ ∈ H1,1(M), with µ⊥ ∩H2(M,Q) = 0. Then µ is rigid.

Proof. Step 1: Let Sx be the set of all positive currents representing a
cohomology class x ∈ H1,1(M). This is a compact set. By ddc-lemma, for
all η, η′ ∈ Sx, one has η − η′ = ddcf for some generalized function f . The
function f is unique up to a constant; we chose the constant in such
a way that

∫
M f VolM = 0. Let δ(x) := supη,η′

∫
M |f |VolM . This number is

bounded by compactness of the space of positive currents, and δ(x) = 0 if
and only if x is a rigid current.

Step 2: Let Teichp be the Teichmüller space of pairs (M, I, η) where η ∈
H1,1(M, I) is a nef class with

∫
M η2n = 0. The mapping class group Γ acts on

each component of Teichη with dense orbits, and the function (I, η)−→ δ(η)
is upper semi-continuous. Therefore, it reaches its minimum on any dense
orbit of Γ.

Step 3: The orbit of (M, I, µ) is dense in Teichp by Ratner theorem.
On the other hand, δ(v) = 0 for any hyperbolic class v ∈ H1,1(M). Then
δ(µ) = 0.
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