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Hyperkahler manifolds

DEFINITION: A hypercomplex manifold is a manifold M equipped with
three complex structure operators I, J, K, satisfying quaternionic relations

[J=—-JI=K, [°=J°=K?=—1Idpy

DEFINITION: A hyperkahler manifold is a hypercomplex manifold equipped
with a metric g which is Kahler with respect to I, J, K.

REMARK: This is equivalent to VI =VJ = VK = 0: the parallel translation
along the connection preserves I, J, K.

DEFINITION: Let M be a Riemannian manifold, x € M a point. The
subgroup of GL(T,M) generated by parallel translations (along all paths) is
called the holonomy group of M.

REMARK: A hyperkahler manifold can be defined as a manifold which
has holonomy in Sp(n) (the group of all endomorphisms preserving I, J, K).
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Holomorphically symplectic manifolds

DEFINITION: A holomorphically symplectic manifold is a complex manifold
equipped with non-degenerate, holomorphic (2,0)-form.

THEOREM: (Calabi-Yau) A compact, Kahler, holomorphically symplectic
manifold admits a unique hyperkahler metric in any Kahler class.

DEFINITION: For the rest of this talk, a hyperkahler manifold is a com-
pact, Kahler, holomorphically symplectic manifold.

DEFINITION: A hyperkahler manifold M is called maximal holonomy, or
IHS if 71(M) =0, H>%(M) = C.

Bogomolov’s decomposition: Any hyperkahler manifold admits a finite cov-
ering which is a product of a torus and several simple hyperkahler manifolds.

Further on, all hyperkahler manifolds are assumed to be of maximal
holonomy.
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Gromov-Hausdorff metrics

DEFINITION: Let X C M be a subset of a metric space, and y € M a point.
Distance from a y to X is inf,.cxd(z,y). Hausdorff distance dgy(X,Y)
between to subsets X,Y C M of a metric space is

max(sup d(x,Y),supd(y, X)).
xeX yeyY
Gromov-Hausdorff distance between complete metric spaces X,Y of diam-

eter < dis an infimum of dg(p(X),4¥(Y)) taken over all isometric embeddings
. X —Z7Z,¢v:. Y — Z to a third metric space.

REMARK: It is not hard to see that a converging sequence of Riemannian
metrics converges in Gromov-Hausdorff topology.
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Gromov’'s compactness theorem

DEFINITION: A subset X C M is called precompact if its closure in M is
compact.

DEFINITION: We say that Ricci curvature of a Riemannian manifold
(M, g) is bounded from below by c if the symmetric form Ricy, —cg € Sym? T'x
M is positive definite.

THEOREM: (Gromov’'s compactness theorem)

Let W, be the Gromov's space of all metric spaces of diameter d, and X, 5 C
W, the space of all Riemannian manifolds with Ricci curvature bounded from
below by c¢. Then X, Is precompact.

QUESTION: Let Hyp, be the space of all hyperkahler metrics of diameter d
considered as a subset in W,;. What is the shape of Hyp,; and its closure?
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Space of hyperkahler metrics and its closure

THEOREM: Let (M,I) be a hyperkahler manifold with ergodic complex
structure, and V; the Gromov-Hausdorff closure of the space V; of all hy-
perkdhler metrics on M. Then V; contains the space Hyp of all hy-
perkahler metrics on M obtained by deformation from V7.

REMARK: dimV; =b, — 2, and dim Hyp = 3bo, — 8. much bigger!

Related question: Consider hyperkahler forms w; as currents on (M, ), and
let Hyp.,, be its closure in the space of currents. Is it related by Hyp,;?

THEOREM: Let [wg] € HY1(M, I) be a nef class such that [wg] - NH2(M, Q) =
0. Then for any sequence of Kahler forms w; on (M, I) such that with [w;] con-
verges to [wg] € H11 (M), the sequence w,; converges to a unique positive
current.
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Currents and generalized functions

DEFINITION: Let F be a Hermitian bundle with connection V, on a Rie-
mannian manifold M with Levi-Civita connection, and

. k
I £l = sup (IF+ V14 ..+ V57)

the corresponding C*-norm defined on smooth sections with compact sup-
port. The Ck—topology IS independent from the choice of connection
and metrics.

DEFINITION: A deneralized function is a functional on top forms with
compact support, which is continuous in one of C'*topologies.

DEFINITION: A k-current is a functional on (dim M — k)-forms with com-
pact support, which is continuous in one of C*-topologies.

REMARK: Currents are forms with coefficients in generalized functions.
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Currents on complex manifolds

DEFINITION: The space of currents is equipped with weak topology (a
sequence of currents converges if it converges on all forms with compact sup-
port). The space of currents with this topology is a Montel space (barrelled,
locally convex, all bounded subsets are precompact). Montel spaces are re-
flexive (the map to its double dual with strong topology is an isomorphism).

CLAIM: De Rham differential is continuous on currents, and the Poincare
lemma holds. Hence, the cohomology of currents are the same as coho-
mology of smooth forms.

DEFINITION: On an complex manifold, (p, q)-currents are (p, g)-forms with
coefficients in generalized functions

REMARK: In the literature, this is sometimes called (n — p,n — q)-
currents.

CLAIM: The Dolbeault lemma holds on (p, g)-currents, and the -cohomology
are the same as for forms.
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Positive currents and measures

DEFINITION: We inter[ret sections of A*~1.n=1(A1) as Vol -valued pseudo-
Hermitian forms on T*M. A form n € A"~ 1n=1(A1) is positive if for any
x € T*M, one has n(x,Ix) > 0.

DEFINITION: A positive (1,1)-current is a current taking non-negative
values on positive compactly supported (n — 1,n — 1)-forms.

DEFINITION: A positive generalized function is a generalized function
taking non-negative values on all positive volume forms.

REMARK: Positive generalized functions are CO-continuous. A positive gen-
eralized function multiplied by a positive volume form gives a measure on
a manifold, and all measures are obtained this way.

DEFINITION: A mass of a positive (1,1)-current n on a Hermitian n-
manifold (M,w) is a measure n A w™ 1. It is non-negative, and positive

if n=0.
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Positive currents: compactness theorem

Theorem: The space of positive (1, 1)-currents with bounded mass is
(weakly) compact.

Proof: Follows from precompactness of the space of bounded measures in
weak-*-topology. =
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Rigid currents
DEFINITION: A nef class is a limit of Kihler (1,1)-classes in HL1(M).

DEFINITION: A nef current is a limit of positive, closed (1,1)-forms in
the space of currents.

REMARK: All nef classes can be represented by nef currents (by com-
pactnes).

DEFINITION: A nef class is called rigid if it has a unique positive, closed
representative in the space of currents.

THEOREM: (Sibony, V.)

Let n be a nef class on a hyperkahler manifold M, dimg M = 2n. Assume that
Iy 2™ =0, and n-N H?(M,Q) = 0. Then the corresponding nef current
IS rigid.

11
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Hyperbolic automorphisms

DEFINITION: An automorphism of a hyperkahler manifold is called hyper-
bolic if it acts on HL1(M) with eigenvalue a € R, where o > 1.

REMARK: The corresponding eigenspace is 1-dimensional.

THEOREM: (Amerik, V.) Every hyperkdahler manifold with b5, > 4 has a
deformation which admits a hyperbolic automorphism.

DEFINITION: A class v € HY1(M) on a hyperkdhler manifold is called

hyperbolic if M admits a hyperbolic automorphism 1, and v is its eigenvector
with eigenvalue o > 1.
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Rigidiy of hyperbolic currents

THEOREM: (Cantat, Dinh-Sibony)

Let v € HLI(M) be a hyperbolic class. Then v is nef and rigid.

Proof. Step 1: The class v is nef. Indeed, Iim 7;;;" = v for any w ¢ V, where
V ¢ HL1(M,R) is a subspace of positive codimension. Taking w Kahler (the
Kahler cone is open, hence we can assume that w ¢ V'), we obtain that v is
nef.

Step 2: It remains to prove uniqueness of the positive representative n of
v. Suppose that there are two positive representatives n1,no, with n; —no =
dd®y by dd°-lemma. The generalized function 1 is determined by this equation
uniquely up to a constant, because a dd‘-closed dgeneralized function is
constant. Then Ty = ay + C, where C is a real constant. Since the
canonical bundle Ky, is trivial, M has a T-invariant volume form Vol. Consider
the pushforward 4« Vol as a measure on R. Then . Vol is mapped to itself
by t — ax + C. This is impossible, however, because such a measure must
be atomic, and % is non-constant. m
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Teichmuller spaces

DEFINITION: Let M be a smooth manifold. A complex structure on M is
an endomorphism I € End T M, I? = —1Idp),; such that the eigenspace bundles
of I are involutive, that is, satisfy satisfy [T1:O0M, T1.O0M] ¢ T1OM. Denote
by Comp the space of such tensors equipped with a topology of convergence
of all derivatives.

DEFINITION: Let M be a compact complex manifold, Diff5(M) a connected
component of its diffeomorphism group Diff(M) (the group of isotopies).
Let Teich := Comp /Diffg(M). We call it the Teichmiller space.

DEFINITION: The group I := Diff(M)/ Diffg(M) is called the mapping
class group; it acts on Teich in a natural way, and the quotient set is the
set of all complex structures on M up to equivalence.

REMARK: Working with hyperkahler manifolds, we shall restrict ourself to
an open subset of Teich consisting of all complex structures compatible
with a hyperkahler structure.

14
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Computation of the mapping class group

THEOREM: (Fujiki). Let n € H2(M), and dimM = 2n, where M is hy-
perkidhler. Then [,;n°" = cq(n,n)", for some primitive integer quadratic
form ¢ on H2(M,Z), and ¢ > 0 a rational number.

DEFINITION: The form ¢ is called Bogomolov-Beauville-Fujiki form. It
has signature (3,b> — 3).

THEOREM: (V., 1996, 2009) Let M be a maximal holonomy, compact
hyperkahler manifold, and g = Aut(H*(M,Z),p1,...,pn). Then

() I‘O)HQ(M,Z) is a finite index subgroup of O(H?2(M,7Z),q).

(ii) The map My — O(H?2(M,Z), q) has finite kernel.

(iii) The tautological map I' — ' has finite kernel and its image has
finite index, where ' is a mapping class group.

15
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The period map

REMARK: To simplify the language, we redefine Teich and Comp for hy-
perkahler manifolds, admitting only complex structures of Kahler type. Since
the Hodge numbers are constant in families of Kahler manifolds, for any
J € Teich, (M, J) is also a simple hyperkahler manifold, hence H29(M, J)
IS one-dimensional.

Definition: Let Per : Teich — PH?2(M,C) map J to a line H29(M,J) €
PH2(M,C). The map Per: Teich — PH2(M, C) is called the period map.
REMARK: Per maps Teich into an open subset of a quadric, defined by

Per := {l € PH?(M,C) | q(l,1) =0,q(l,1) > 0}.
It is called the period space of M.

REMARK: Per = SO(by — 3,3)/50(2) x SO(bp — 3,1). Indeed, the group
SO(H?(M,R),q) = SO(by — 3,3) acts transitively on Per, and SO(2) x SO(by —
3,1) is a stabilizer of a point.
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Birational Teichmuller moduli space

DEFINITION: Let M be a topological space. We say that =,y € M are non-
separable (denoted by x ~ y) if for any open sets V3 z, U >y, UNV # 0.

THEOREM: (Huybrechts, 2001) Two points I, I’ € Teich are non-separable
if and only if there exists a bimeromorphism (M, 1) — (M, I") which is
non-singular in codimension 2 and acts as identity on H2(M).

REMARK: This is possible only if (M,I) and (M, I") contain a rational curve.
General hyperkahler manifold has no curves; ones which have belong to
a countable union of divisors in Teich.

DEFINITION: The space Teich, := Teich / ~ is called the birational Te-
ichmuller space of M.

THEOREM: The period map Teichy Pe Per is an iIsomorphism, for each

connected component of Teichy,.

17



Rigid currents in hyperkahler geometry M. Verbitsky

Uniqueness of positive representative

THEOREM: Let (M, I) be a hyperkahler manifold with Pic(M) non-maximal.
Assume that a deformation of M admits a hyperbolic automorphism. Consider
a nef class p € HLI (M), with pt N H2(M,Q) = 0. Then u is rigid.

Proof. Step 1: Let S; be the set of all positive currents representing a
cohomology class z € HLY(M). This is a compact set. By dd-lemma, for
all n,n’ € Sz, one has n — n’ = dd°f for some generalized function f. The
function f is unique up to a constant; we chose the constant in such
a way that [y, fVoly, = 0. Let 6(z) := sup, v [ [f|Volp. This number is
bounded by compactness of the space of positive currents, and §(x) = O if
and only if z is a rigid current.

Step 2: Let Teich, be the Teichmiller space of pairs (M,I,n) where n €
HLY(M, 1) is a nef class with s 772” = 0. The mapping class group [ acts on
each component of Teich, with dense orbits, and the function (I,n) — (n)
IS upper semi-continuous. Therefore, it reaches its minimum on any dense
orbit of [.

Step 3: The orbit of (M,I,u) is dense in Teich, by Ratner theorem.
On the other hand, §(v) = 0 for any hyperbolic class v € HLI(M). Then
o(p) =0. m
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