Hypercomplex manifolds of quaternionic dimension 2 and HKT-structures

Misha Verbitsky

Tel-Aviv University

July 15, 2014.

Joint work with Geo Grantcharov and Mehdi Lejmi

Hypercomplex manifolds

DEFINITION: Let M be a smooth manifold equipped with endomorphisms $I, J, K : TM \longrightarrow TM$, satisfying the quaternionic relation $I^2 = J^2 = K^2 = IJK = -\text{Id}$. Suppose that I, J, K are integrable almost complex structures. Then (M, I, J, K) is called a hypercomplex manifold.

THEOREM: (Obata, 1955) On any hypercomplex manifold there exists a unique torsion-free connection ∇ such that $\nabla I = \nabla J = \nabla K$.

DEFINITION: Such a connection is called **the Obata connection**.

REMARK: The holonomy of Obata connection lies in $GL(n, \mathbb{H})$.

REMARK: A torsion-free connection ∇ on M with $\mathcal{H}ol(\nabla) \subset GL(n,\mathbb{H})$ defines a hypercomplex structure on M.

Examples of hypercomplex manifolds

EXAMPLE: A Hopf surface $M = \mathbb{H} \setminus 0/\mathbb{Z} \cong S^1 \times S^3$. The holonomy of Obata connection $\mathcal{H}ol(M) = 0$.

EXAMPLE: Compact holomorphically symplectic manifolds are hyperkähler (by Calabi-Yau theorem), hence hypercomplex. Here $Hol(M) \subset Sp(n)$ (this is equivalent to being hyperkähler).

PROPOSITION: A compact hypercomplex manifold (M, I, J, K) with (M, I) of Kähler type also admits a hyperkähler structure.

REMARK: In dimension 1, compact hypercomplex manifolds are classified (C. P. Boyer, 1988). This is the complete list: **torus, K3 surface, Hopf surface**.

Examples of hypercomplex manifolds (2)

EXAMPLE: The Lie groups

$$SU(2l+1), \quad T^{1} \times SU(2l), \quad T^{l} \times SO(2l+1),$$

$$T^{2l} \times SO(4l), \quad T^{l} \times Sp(l), \quad T^{2} \times E_{6},$$

$$T^{7} \times E^{7}, \quad T^{8} \times E^{8}, \quad T^{4} \times F_{4}, \quad T^{2} \times G_{2}.$$

Some other homogeneous spaces (D. Joyce and physicists Ph. Spindel, A. Sevrin, W. Troost, A. Van Proeyen). Holonomy unknown (but likely $GL(n, \mathbb{H})$).

THEOREM: (A. Soldatenkov) **Holonomy of Obata connection on** SU(3) is $GL(2, \mathbb{H})$.

EXAMPLE: Many **nilmanifolds** (quotients of a nilpotent Lie group by a cocompact lattice) admit hypercomplex structures. In this case $Hol(M) \subset SL(n, \mathbb{H})$.

Quaternionic Hermitian structures

DEFINITION: Let (M, I, J, K) be a hypercomplex manifold, and g a Riemannian metric. We say that g is **quaternionic Hermitian** if I, J, K are orthogonal with respect to g.

CLAIM: Quaternionic Hermitian metrics always exist.

Proof: Take any Riemannian metric g and **consider its average** $Av_{SU(2)}g$ with respect to $SU(2) \subset \mathbb{H}^*$.

Given a quaternionic Hermitian metric g on (M, I, J, K), consider its Hermitian forms

$$\omega_I(\cdot, \cdot) = g(\cdot, I \cdot), \omega_J, \omega_K$$

(real, but *not closed*). Then $\Omega = \omega_J + \sqrt{-1} \omega_K$ is of Hodge type (2,0) with respect to *I*.

If $d\Omega = 0$, (M, I, J, K, g) is hyperkähler (this is one of the definitions).

Consider a weaker condition:

$$\partial \Omega = 0, \quad \partial : \Lambda^{2,0}(M,I) \longrightarrow \Lambda^{3,0}(M,I)$$

HKT structures

DEFINITION: (Howe, Papadopoulos, 1998)

Let (M, I, J, K) be a hypercomplex manifold, g a quaternionic Hermitian metric, and $\Omega = \omega_J + \sqrt{-1} \omega_K$ the corresponding (2,0)-form. We say that g is **HKT** ("hyperkähler with torsion") if $\partial \Omega = 0$..

HKT-metrics play in hypercomplex geometry the same role as Kähler metrics play in complex geometry.

1. They admit a smooth potential (locally). There is a notion of an "HKT-class" (similar to Kähler class) in a certain finite-dimensional coholology group. Two metrics in the same HKT-class differ by a potential, which is a function.

2. When (M, I) has trivial canonical bundle, a version of Hodge theory is established giving an $\mathfrak{sl}(2)$ -action on holomorphic cohomology $H^*(M, \mathcal{O}_{(M,I)})$ and analogue of Hodge decomposition and dd^c -lemma.

3. Not all compact hypercomplex manifolds are HKT (Fino, Grantcharov).

Buchsdahl-Lamari theorem and its hypercomplex analogue

THEOREM: (Buchsdahl-Lamari)

Let M be a compact complex surface. Then M is Kähler if and only if $b_1(M)$ is even.

DEFINITION: A compact hypercomplex manifold with Obata holonomy in $SL(n, \mathbb{H}) \subset GL(n, \mathbb{H})$ is called $SL(n, \mathbb{H})$ -manifold.

THEOREM: (Grantcharov-Lejmi-V.)

Let *M* be an $SL(2, \mathbb{H})$ -manifold. Then *M* is **HKT** if and only if $h^1(\mathcal{O}_{M,I})$ is even.

REMARK: Using the Hodge decomposition on $H^*(\mathcal{O}_{M,I})$, one can show that $h^1(\mathcal{O}_{M,I})$ is even for any $SL(n, \mathbb{H})$ -manifold admitting an HKT structure.

Plan of this talk:

- 1. Introduce Hodge theory on hypercomplex manifolds.
- a. HKT-structures.
- b. Canonical bundle.
- c. Quaternionic Dolbeault complex.
- d. Laplacians and cohomology.
- 2. Explain Harvey-Lawson and Lamari's ideas used in the proof of Buchsdahl-Lamari theorem.
- 3. Deduce the main result from an HKT-analogue of dd^c -lemma.

dd^c-lemma and its applications

LEMMA: Let (M, ω) be a compact Kähler manifold, and ηd^c -closed, d-exact form. Then $\eta \in \operatorname{im} dd^c$, where $d^c = IdI$.

Proof. Step 1: Kodaira identities gives $\Delta = \{d, d^*\} = \{d^c, (d^c)^*\}$, where d^c is an anticommutator. Denote by $\Lambda = *L*$ the Hermitian conjugate of $L(\alpha) = \alpha \wedge \omega$. The Laplacian identity is deduced from $(d^c)^* = -[\Lambda, d]$ and $d^* = [\Lambda, d^c]$. Then, for any d, d^c -closed form α , this gives $\Delta(\alpha) = dd^c \Lambda \alpha$.

Step 2: Let G_{Δ} be the Green operator, equal to Δ^{-1} on orthogonal complement to ker Δ , and vanishing on ker Δ . Then G_{Δ} commutes with all operators commuting with Δ . Now, η is *d*-exact, hence orthogonal to ker Δ . This gives $\eta = G_{\Delta} \Delta \eta = G_{\Delta} dd^c \Lambda \eta = dd^c G_{\Delta} \Lambda \eta =$

Applications of *dd^c*-lemma:

- 1. Formality in rational homotopy.
- 2. Unobstructedness of deformations.

3. Existence of a metric on a holomorphic line bundle with prescribed curvature.

HKT potential

Defining Kähler metric via Kähler potentials: A Kähler metric on (M, I) is one which is locally given as

$$g(\cdot, \cdot) = \sqrt{-1} \,\partial \overline{\partial} \varphi(\cdot, I \cdot)$$

where φ is a function called **a Kähler potential**.

Defining HKT metric through HKT potentials: An HKT metric on (M, I) is one which is locally given as

$$g(\cdot, \cdot) = D(\varphi)$$
, where $D(\varphi) := \operatorname{Av}_{SU(2)}(\sqrt{-1} \partial \overline{\partial} \varphi(\cdot, I \cdot))$

and φ is a function called **an HKT potential**.

THEOREM: (Banos-Swann) **This definition is equivalent to the usual one.**

DEFINITION: A function which is an HKT potential of some HKT metric is called **strictly** \mathbb{H} -**plurisubharmonic**, or \mathbb{H} -psh.

REMARK: For any \mathbb{H} -psh function φ , φ is subharmonic with respect to any quaternionic Hermitian metric. Therefore, there are no globally defined \mathbb{H} -psh functions on compact manifolds.

HKT-forms

DEFINITION: Let g be an HKT metric. The corresponding (2,0)-form $\Omega = \omega_J + \sqrt{-1} \omega_K$ is called an HKT-form.

CLAIM: Consider the multiplicative action of J on $\Lambda^*(M)$. Then J maps $\Lambda^{p,q}(M)$) to $\Lambda^{q,p}(M)$).

Proof: I and J anticommute.

DEFINITION: A (2,0)-form Ω on (M,I) is called **real** if $J(\Omega) = \overline{\Omega}$ and **strictly positive** if $\Omega(x, J(\overline{x})) > 0$ for each non-zero $x \in T_I^{1,0}(M)$.

CLAIM: Any HKT-form is strictly positive and real. Moreover, any ∂ closed strictly positive real form $\Omega \in \Lambda_I^{2,0}(M)$ defines an HKT-metric $g(x,y) := \Omega(x, J(\overline{y})).$

Canonical bundle of a hypercomplex manifold.

- 0. Quaternionic Hermitian structure always exists.
- 1. Complex dimension is even.

2. The canonical line bundle $\Lambda^{n,0}(M,I)$ of (M,I) is always trivial topologically. Indeed, a non-degenerate section of canonical line bundle is provided by top power of a form Ω associated with some quaternionic Hermitian strucure. In particular, $c_1(M,I) = 0$.

3. Canonical bundle is non-trivial holomorphically in many cases. However, when M is a nilmanifold, $\Lambda^{n,0}(M,I)$ is trivial, and holonomy of Obata connection lies in $SL(n,\mathbb{H})$ (Barberis-Dotti-V., 2007)

4. If $\mathcal{H}ol(M)$ lies in $SL(n, \mathbb{H})$, canonical bundle is trivial. The converse is true when M is compact and HKT (V., 2004): an HKT manifold with holomorphically trivial canonical bundle satisfies $\mathcal{H}ol(M) \subset SL(n, \mathbb{H})$.

SU(2)-action on $\Lambda^*(M)$

The group SU(2) of unitary quaternions acts on TM, because quaternion algebra acts. By multilinearity, this action is extended to $\Lambda^*(M)$.

1. The Hodge decomposition $\Lambda^*(M) = \bigoplus \Lambda^{p,q}(M)$ is recovered from this SU(2)-action. "Hypercomplex analogue of the Hodge decomposition".

2. $\langle \omega_I, \omega_J, \omega_K \rangle$ is an irreducible 3-dimensional representation of SU(2), for any quaternionic Hermitian structure ("representation of weight 2").

WEIGHT of a representation.

We say that an irreducible SU(2)-representation W has weight i if dim W = i + 1. A representation is said to be **pure of weight** i if all its irreducible components have weight i. If all irreducible components of a representation W_1 have weight $\leq i$, we say that W_1 is a representation of weight $\leq i$. In a similar fashion one defines representations of weight $\geq i$.

Quaternionic Dolbeault algebra

The weight is multiplicative, in the following sense: a tensor product of representations of weights $\leq i$ and $\leq j$ has weight $\leq i + j$.

Clearly, $\Lambda^1(M)$ has weight 1. Therefore, $\Lambda^i(M)$ has weight $\leq i$.

Let $V^i \subset \Lambda^i(M)$ be the maximal SU(2)-invariant subspace of weight < i.

By multiplicativity, $V^* = \bigoplus_i V^i$ is an ideal in $\Lambda^*(M)$. We also have $V^i = \Lambda^i(M)$ for i > 2n. Also, $dV^i \subset V^{i+1}$, hence $V^* \subset \Lambda^*(M)$ is a differential ideal in $(\Lambda^i(M), d)$.

Denote by $(\Lambda_+^*(M), d_+)$ the quotient algebra $\Lambda^*(M)/V^*$. We call it the quaternionic Dolbeault algebra (qD-algebra) of M.

A similar construction was given by Salamon in a more general situation.

The Hodge decomposition of quaternionic Dolbeault algebra.

The Hodge decomposition is induced from the SU(2)-action, hence it is **compatible with weights**: $\Lambda^i_+(M) = \bigoplus_{p+q=i} \Lambda^{p,q}_{+,I}(M)$.

Let $\sqrt{-1}\mathcal{I}$ be an element of the Lie algebra $\mathfrak{su}(2) \otimes \mathbb{C}$ acting as $\sqrt{-1}(p-q)$ on $\Lambda^{p,q}(M)$. This vector generates the Cartan algebra of $\mathfrak{su}(2)$. The $\mathfrak{su}(2)$ -action induces an isomorphism of $\Lambda^{p,q}_{+,I}(M)$ for all $\{p,q \mid p+q=k, p,q \ge 0\}$. This gives

Theorem: $\Lambda^{p,q}_{+,I}(M) \cong \Lambda^{0,p+q}(M,I).$

This isomorphism is provided by the $\mathfrak{su}(2) \otimes \mathbb{C}$ -action.

Differentials in the qD-complex

We extend $J : \Lambda^1(M) \longrightarrow \Lambda^1(M)$ to $\Lambda^*(M)$ by multiplicativity. Since I and J anticommute on $\Lambda^1(M)$, we have $J(\Lambda^{p,q}(M,I)) = \Lambda^{q,p}(M,I)$.

Denote by $\partial_J : \Lambda^{p,0}(M,I) \longrightarrow \Lambda^{p,0}(M,I)$ **the operator** $J \circ \overline{\partial} \circ J$, where $\overline{\partial} : \Lambda^{0,p}(M,I) \longrightarrow \Lambda^{0,p}(M,I)$ is the standard Dolbeault differential. Then ∂ , ∂_J anticommute. Moreover, **there exists a multiplicative isomorphism of bicomplexes**.

Potentials for HKT-metrics

A quaternionic Hermitian metric can be recovered from the corresponding (2,0)-form: $\omega_I(x,\overline{y}) = \frac{1}{2}\Omega(x,J(\overline{y}))$, where $x,y \in T^{1,0}(M)$. The HKTstructures uniquely correspond to (2,0)-forms which are

- **1. Real:** $J(\Omega) = \overline{\Omega}$
- **2.** Closed: $\partial \Omega = 0$.
- **2.** Positive: $\Omega(x, J(\overline{x})) > 0$, for any non-zero $x \in T^{1,0}(M)$

Locally, any HKT-metric is given by a potential: $\Omega = \partial \partial_J \varphi$ where φ is a smooth function.

Any convex, and any strictly plurisubharmonic function is a potential of some HKT-structure. Therefore, HKT-structures locally always exist (Grantcharov, Poon).

DEFINITION: Quaternionic Hessian of $f \in C^{\infty}M$ is a form $x, y \longrightarrow \partial \partial_J \varphi(x, J(\overline{x}))$. It is equal to the usual Hessian averaged with SU(2). A function is **quaternionic plurisubharmonic** if its \mathbb{H} -Hessian is positive; equivalently, if $\partial \partial_J f$ is a positive (2,0)-form.

Hodge theory on HKT-manifolds with holonomy in $SL(n, \mathbb{H})$

DEFINITION: Let Φ be a non-degenerate, real, Obata-parallel section of $\Lambda^{n,0}(M,I)$. Then (M,J,J,K,Φ) is called **an** $SL(n,\mathbb{H})$ -manifold.

DEFINITION: Let M be a compact HKT-manifold with holonomy in $SL(n, \mathbb{H})$, and $\Delta_{\overline{\partial}} := \overline{\partial}\overline{\partial}^* + \overline{\partial}^*\overline{\partial}$. Then ker $\Delta_{\overline{\partial}}|_{\Lambda^{0,*}(M)} = H^*(M, \mathcal{O}_{(M,I)})$.

THEOREM: $\Delta_{\overline{\partial}}$ commutes with the multiplication by the HKT-form $\overline{\Omega}$, and with the operator $\eta \longrightarrow J(\overline{\eta})$. In particular, **there is a Lefschetz-like** $\mathfrak{sl}(2)$ -action on $H^*(M, \mathcal{O}_{(M,I)})$.

REMARK: To simplify notation, it is more convenient to consider the ∂ and ∂_J -Laplacian, and to identify $H^*(M, \mathcal{O}_{(M,I)})$ with the cohomology of ∂ .

THEOREM: The Laplacians Δ_{∂} and Δ_{∂_J} are equal. In particular, $\eta \longrightarrow J(\overline{\eta})$ defines a complex structure on Δ_{∂} -harmonic (k, 0)-forms for odd k, and real structure for odd k.

Theorem (" $\partial \partial_J$ -lemma") Let η be a ∂_J -closed, ∂ -exact form on an HKT $SL(n, \mathbb{H})$ -manifold. Then η is $\partial \partial_J$ -exact: $\eta \in \operatorname{im} \partial \partial_J \eta$.

Hahn-Banach separation theorem and its applications

THEOREM: Let V be a locally convex topological vector space, $W \subset V$ a closed subspace, and $A \subset V$ an open, convex subset, not intersecting A. **Then there exists a continuous linear functional** $\xi \in V^*$ **vanishing on** W **and positive on** A.

THEOREM: (Harvey, Lawson):

Let M be a compact complex non-Kähler manifold. Then there exists a positive (n-1, n-1)-current ξ which is a (n-1, n-1)-part of an exact current.

Idea of a proof: Hahn-Banach separation theorem is applied to the set A of strictly positive (1,1)-forms, and the set W of closed (1,1)-forms, obtaining a current $\xi \in D^{n-1,n-1}(M) = \Lambda^{1,1}(M)^*$ positive on A (that is, positive) and vanishing on W. The latter condition is equivalent to "(n-1,n-1)-part of an exact current".

Lamari's proof of Buchsdahl-Lamari theorem

THEOREM: (Buchsdahl-Lamari)

Let M be a compact complex surface. Then M is Kähler if and only if $b_1(M)$ is even.

Scheme of Lamari's proof:

Step 1: Evenness of $b_1(M)$ is equivalent to dd^c -lemma.

Step 2: Using regularization of positive currents (Demailly), one proves that existence of **Kähler current** (positive, closed current ξ , such that $\xi - \omega$ is positive for some Hermitian form ω) is equivalent to existence of a Kähler form.

Step 3: Existence of a Kähler current is equivalent to non-existence of a positive current ξ which is a limit of dd^c -closed positive forms and equal to an (1, 1)-part of an exact current.

Step 4: Non-existence of such ξ is implied by dd^c -lemma.

For HKT-manifolds, dd^c -lemma is the only non-trivial step.

Harvey-Lawson for HKT-structures

THEOREM: Let (M, I, J, K, Φ) be an $SL(2, \mathbb{H})$ -manifold, not admitting an HKT-metric. Then M admits a ∂ -exact, positive (2, 0)-current.

Proof. Step 1: Apply Hahn-Banach separation theorem to the space A of positive, real (2,0)-forms and W of ∂ -closed real (2,0)-forms to **obtain** a current $\xi \in \Lambda_{\mathbb{R}}^{2,0}(M,I)^*$ which is positive on A (hence, real and positive) and vanishes on W.

Step 2: Consider the pairing $\langle \eta, \nu \rangle = \int_M \eta \wedge \nu \wedge \overline{\Phi}$ on (p, 0)-forms. This pairing is compatible with ∂ and ∂_J and allows one to identify the currents $\Lambda^{p,0}_{\mathbb{R}}(M,I)^*$ with $\Lambda^{n-p,0}_{\mathbb{R}}(M,I) \otimes C\infty(M)^*$, where $C\infty(M)^*$ denotes generalized functions. This identification is compatible with ∂ and ∂_J ; cohomology of currents are the same as cohomology of forms.

Step 3: Since $\langle \xi, W \rangle = 0$, for each η one has $0 = \langle \xi, \partial \eta \rangle = \langle \partial \xi, \eta \rangle$, giving $\partial \xi = 0$. It remains to show that the cohomology class of ξ in $H^2_{\partial}(\Lambda^{*,0}(M))$ vanishes

Step 4: The Serre's duality gives a non-degenerate pairing $\langle [\xi], [\nu] \rangle \longrightarrow \mathbb{R}$ on cohomology classes in $H^2_{\partial}(\Lambda^{*,0}(M))$. Since $\langle [\xi], [\nu] \rangle = 0$ for each ∂ -closed nu, the cohomology class of ξ also vanishes.

HKT metrics from $\partial \partial_J$ -lemma

THEOREM: Let (M, I, J, K, Φ) be a compact $SL(2, \mathbb{H})$ -manifold. Assume that $\partial \partial_J$ -lemma holds on $\Lambda^{2,0}(M)$. Then M is HKT.

Proof: Indeed, if *M* is not HKT, *M* admits a ∂ -exact positive, real (2,0)current ξ . By $\partial \partial_J$ -lemma this current would be $\partial \partial_J$ -exact: $\xi = \partial \partial_J f$. Then *f* is a globally defined \mathbb{H} -plurisubharmonic function, hence subharmonic, hence constant.

To finish the proof of main theorem, it remains to prove the $\partial \partial_J$ -lemma for even $h^1(\mathcal{O}_M)$.

APPENDIX: $\partial \partial_J$ -lemma for HKT manifolds

Quaternionic Gauduchon metrics

DEFINITION: A Hermitian metric ω on a complex n manifold is called **Gauduchon** if $\partial \overline{\partial} \omega^{n-1} = 0$.

THEOREM: (P. Gauduchon, 1978) Let M be a compact, complex manifold, and h a Hermitian form. Then there exists a Gauduchon metric conformally equivalent to h, and it is unique, up to a constant multiplier.

DEFINITION: A quaternionic Hermitian form g in a hypercomplex manifold M, dim_H M = n. is called **quaternionic Gauduchon**, if $\partial \partial_J \Omega^{n-1} = 0$, where $\Omega = \omega_J + \sqrt{-1} \omega_K$ is the corresponding positive (2,0)-form.

PROPOSITION: Let (M, I, J, K, Φ) be an $SL(n, \mathbb{H})$ -manifold equipped with a quaternionic Hermitian form g, and $|\Phi|^2 := \Phi \wedge \overline{\Phi} / \omega_I^{2n}$. Then g is quaternionic Gauduchon if and only if the Hermitian metric $|\Phi|^{-1}g$ is Gauduchon on (M, I).

Proof: A simple linear algebra argument, left as an exercise.

COROLLARY: Quaternionic Gauduchon metrics always exist.

Surjectivity of $f \longrightarrow \Omega^{n-1} \wedge \partial \partial_J f$.

Theorem (*): $(M, I, J, K, \Omega, \Phi)$ be a compact quaternionic Hermitian $SL(n, \mathbb{H})$ -manifold. Assume that Ω is \mathbb{H} -Gauduchon. Consider the map $D: C^{\infty}M \longrightarrow \Lambda^{4n}(M)$,

$$D(f) = \partial \partial_J f \wedge \Omega^{n-1} \wedge \Phi.$$

Then *D* induces a bijection between $C^{\infty}M/const$ and the space of all exact 4n-forms on *M*.

Proof. Step 1: Clearly, *D* is elliptic, and has index 0, because it has the same symbol as Laplacian which is self-adjoint.

Step 2: Hopf maximum principle implies that ker D = const. Therefore, coker D is 1-dimensional. It remains to show that im D consists of exact 4n-forms.

Step 3:

$$\int_{M} \partial \partial_{J} f \wedge \Omega^{n-1} \wedge \Phi = -\int_{M} f \wedge \partial \partial_{J}(\Omega^{n-1}) \wedge \Phi = 0$$

because Ω is \mathbb{H} -Gauduchon.

Quaternionic Aeppli and Bott-Chern cohomology.

DEFINITION: Let (M, I, J, K) be a hypercomplex manifold. Define **quaternionic Bott-Chern cohomology** as

$$H^{p}_{BC}(M) := \frac{\ker \partial \cap \ker \partial_{J}|_{\Lambda^{p,0}(M)}}{\partial \partial_{J}(\Lambda^{p-2,0}(M))},$$

and quaternionic Aeppli cohomology as

$$H^{p}_{AE}(M) := \frac{\ker \partial \ker \partial_{J}|_{\Lambda^{p,0}(M)}}{\partial(\Lambda^{p-2,0}(M)) + \partial_{J}(\Lambda^{p-2,0}(M))}$$

REMARK: These spaces are finite-dimensional. Moreover, $H_{BC}^{p}(M)$ is dual to $H_{AE}^{2n-p}(M)$. The proof is the same as for the usual Bott-Chern and Aeppli cohomology.

CLAIM: $\partial \partial_J$ lemma for $\Lambda^{2,0}$ is equivalent to vanishing of the map $\partial : H^1_{AE}(M) \longrightarrow H^2_{BC}(M)$.

Degree map for Aeppli cohomology

DEFINITION: Let $(M, I, J, K, \Omega, \Phi)$ be a compact quaternionic Gauduchon $SL(n, \mathbb{H})$ -manifold. Consider the map deg $H^1_{AE}(M) \longrightarrow \mathbb{C}$ putting α to $\int \partial \alpha \wedge \Omega^{n-1} \wedge \overline{\Phi}$. Since Ω is \mathbb{H} -Gauduchon, deg α is independent from the choince of α in its cohomology class.

THEOREM: Let $(M, I, J, K, \Omega, \Phi)$ be a compact quaternionic Gauduchon $SL(2, \mathbb{H})$ -manifold. Then the sequence $0 \longrightarrow H^1_{\partial}(M) \longrightarrow H^1_{AE}(M) \xrightarrow{\text{deg}} \mathbb{C}$ is exact.

Proof. Step 1: Let $\alpha \in \text{kerdeg.}$ By Theorem (*), there exists $f \in C^{\infty}M$ such that $(\partial \alpha + \partial \partial_J f) \wedge \Omega \wedge \overline{\Phi} = 0$, equivalently $(\partial \alpha + \partial \partial_J f) \wedge \Omega = 0$. Replacing α by $\alpha + \partial_J f$ in the same cohomology class, we may assume that $\partial \alpha \wedge \Omega = 0$.

Step 2: Since $\partial \alpha$ is primitive, one has $\int_M \partial \alpha \wedge \partial_J \alpha \wedge \overline{\Phi} = \|\partial \alpha\|^2$ by a quaternionic version of Hodge-Riemann relations.

Step 3: However, $\|\partial \alpha\|^2 = \int_M \partial \alpha \wedge \partial_J \alpha \wedge \overline{\Phi} = -\int_M \partial \partial_J \alpha \wedge \alpha \wedge \overline{\Phi} = 0$, hence $\partial \alpha = 0$.

The proof of $\partial \partial_J$ -lemma

THEOREM: Let (M, I, J, K, Φ) be a compact $SL(2, \mathbb{H})$ -manifold. Then $\partial \partial_J$ -lemma holds on $\Lambda^{2,0}(M)$ if and only if $h^1(\mathcal{O}_M)$ is even.

Proof. Step 1: Clearly, $\partial \partial_J$ -lemma is equivalent to vanishing of ∂ : $H^1_{AE}(M) \longrightarrow H^2_{BC}(M)$, but the kernel of this map is ker deg, hence it suffices to show that deg = 0.

Step 2: Since J defines quaternionic structure on $H^1_{AE}(M)$, this space is even-dimensional. Now, from the exact sequence

$$0 \longrightarrow H^{1}_{\partial}(M) \longrightarrow H^{1}_{AE}(M) \xrightarrow{\text{deg}} \mathbb{C},$$

we obtain that deg = 0 whenever $H^1_{\partial}(M)$ is even-dimensional.