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Hypercomplex manifolds

DEFINITION: Let M be a smooth manifold equipped with endomor-

phisms I, J,K : TM −→ TM , satisfying the quaternionic relation I2 = J2 =

K2 = IJK = − Id . Suppose that I, J, K are integrable almost complex

structures. Then (M, I, J,K) is called a hypercomplex manifold.

THEOREM: (Obata, 1955) On any hypercomplex manifold there exists

a unique torsion-free connection ∇ such that ∇I = ∇J = ∇K.

DEFINITION: Such a connection is called the Obata connection.

REMARK: The holonomy of Obata connection lies in GL(n,H).

REMARK: A torsion-free connection ∇ on M with Hol(∇) ⊂ GL(n,H)

defines a hypercomplex structure on M.
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Examples of hypercomplex manifolds

EXAMPLE: A Hopf surface M = H\0/Z ∼= S1 × S3. The holonomy of

Obata connection Hol(M) = 0.

EXAMPLE: Compact holomorphically symplectic manifolds are hy-

perkähler (by Calabi-Yau theorem), hence hypercomplex. Here Hol(M) ⊂
Sp(n) (this is equivalent to being hyperkähler).

PROPOSITION: A compact hypercomplex manifold (M, I, J,K) with

(M, I) of Kähler type also admits a hyperkähler structure.

REMARK: In dimension 1, compact hypercomplex manifolds are classified

(C. P. Boyer, 1988). This is the complete list: torus, K3 surface, Hopf

surface.
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Examples of hypercomplex manifolds (2)

EXAMPLE: The Lie groups

SU(2l + 1), T1 × SU(2l), T l × SO(2l + 1),

T2l × SO(4l), T l × Sp(l), T2 × E6,

T7 × E7, T8 × E8, T4 × F4, T2 ×G2.

Some other homogeneous spaces (D. Joyce and physicists Ph. Spindel,

A. Sevrin, W. Troost, A. Van Proeyen). Holonomy unknown (but likely

GL(n,H)).

THEOREM: (A. Soldatenkov)

Holonomy of Obata connection on SU(3) is GL(2,H).

EXAMPLE: Many nilmanifolds (quotients of a nilpotent Lie group by a

cocompact lattice) admit hypercomplex structures. In this case Hol(M) ⊂
SL(n,H).

4



HKT structures on SL(2,H)-manifolds M. Verbitsky

Quaternionic Hermitian structures

DEFINITION: Let (M, I, J,K) be a hypercomplex manifold, and g a Rie-
mannian metric. We say that g is quaternionic Hermitian if I, J,K are
orthogonal with respect to g.

CLAIM: Quaternionic Hermitian metrics always exist.

Proof: Take any Riemannian metric g and consider its average AvSU(2) g
with respect to SU(2) ⊂ H∗.

Given a quaternionic Hermitian metric g on (M, I, J,K), consider its Her-
mitian forms

ωI(·, ·) = g(·, I·), ωJ , ωK
(real, but not closed). Then Ω = ωJ +

√
−1ωK is of Hodge type (2,0) with

respect to I.

If dΩ = 0, (M, I, J,K, g) is hyperkähler (this is one of the definitions).

Consider a weaker condition:

∂Ω = 0, ∂ : Λ2,0(M, I)−→ Λ3,0(M, I)
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HKT structures

DEFINITION: (Howe, Papadopoulos, 1998)

Let (M, I, J,K) be a hypercomplex manifold, g a quaternionic Hermitian

metric, and Ω = ωJ +
√
−1 ωK the corresponding (2,0)-form. We say that

g is HKT (“hyperkähler with torsion”) if ∂Ω = 0..

HKT-metrics play in hypercomplex geometry the same role as Kähler

metrics play in complex geometry.

1. They admit a smooth potential (locally). There is a notion of

an “HKT-class” (similar to Kähler class) in a certain finite-dimensional

coholology group. Two metrics in the same HKT-class differ by a potential,

which is a function.

2. When (M, I) has trivial canonical bundle, a version of Hodge the-

ory is established giving an sl(2)-action on holomorphic cohomology

H∗(M,O(M,I)) and analogue of Hodge decomposition and ddc-lemma.

3. Not all compact hypercomplex manifolds are HKT (Fino, Grantcharov).
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Buchsdahl-Lamari theorem and its hypercomplex analogue

THEOREM: (Buchsdahl-Lamari)

Let M be a compact complex surface. Then M is Kähler if and only if

b1(M) is even.

DEFINITION: A compact hypercomplex manifold with Obata holonomy

in SL(n,H) ⊂ GL(n,H) is called SL(n,H)-manifold.

THEOREM: (Grantcharov-Lejmi-V.)

Let M be an SL(2,H)-manifold. Then M is HKT if and only if h1(OM,I)

is even.

REMARK: Using the Hodge decomposition on H∗(OM,I), one can show

that h1(OM,I) is even for any SL(n,H)-manifold admitting an HKT

structure.
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Plan of this talk:

1. Introduce Hodge theory on hypercomplex manifolds.

a. HKT-structures.

b. Canonical bundle.

c. Quaternionic Dolbeault complex.

d. Laplacians and cohomology.

2. Explain Harvey-Lawson and Lamari’s ideas used in the proof of Buchsdahl-

Lamari theorem.

3. Deduce the main result from an HKT-analogue of ddc-lemma.
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ddc-lemma and its applications

LEMMA: Let (M,ω) be a compact Kähler manifold, and η dc-closed, d-
exact form. Then η ∈ im ddc, where dc = IdI.

Proof. Step 1: Kodaira identities gives ∆ = {d, d∗} = {dc, (dc)∗}, where
dc is an anticommutator. Denote by Λ = ∗L∗ the Hermitian conjugate of
L(α) = α ∧ ω. The Laplacian identity is deduced from (dc)∗ = −[Λ, d] and
d∗ = [Λ, dc]. Then, for any d, dc-closed form α, this gives ∆(α) = ddcΛα.

Step 2: Let G∆ be the Green operator, equal to ∆−1 on orthogonal
complement to ker ∆, and vanishing on ker ∆. Then G∆ commutes with
all operators commuting with ∆. Now, η is d-exact, hence orthogonal to
ker ∆. This gives η = G∆∆η = G∆dd

cΛη = ddcG∆Λη

Applications of ddc-lemma:

1. Formality in rational homotopy.

2. Unobstructedness of deformations.

3. Existence of a metric on a holomorphic line bundle with prescribed
curvature.
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HKT potential

Defining Kähler metric via Kähler potentials: A Kähler metric on (M, I)
is one which is locally given as

g(·, ·) =
√
−1 ∂∂ϕ(·, I·)

where ϕ is a function called a Kähler potential.

Defining HKT metric through HKT potentials: An HKT metric on
(M, I) is one which is locally given as

g(·, ·) = D(ϕ), where D(ϕ) := AvSU(2)(
√
−1 ∂∂ϕ(·, I·))

and ϕ is a function called an HKT potential.

THEOREM: (Banos-Swann)
This definition is equivalent to the usual one.

DEFINITION: A function which is an HKT potential of some HKT metric
is called strictly H-plurisubharmonic, or H-psh.

REMARK: For any H-psh function ϕ, ϕ is subharmonic with respect
to any quaternionic Hermitian metric. Therefore, there are no globally
defined H-psh functions on compact manifolds.
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HKT-forms

DEFINITION: Let g be an HKT metric. The corresponding (2,0)-form

Ω = ωJ +
√
−1 ωK is called an HKT-form.

CLAIM: Consider the multiplicative action of J on Λ∗(M). Then J maps

Λp,q(M)) to Λq,p(M)).

Proof: I and J anticommute.

DEFINITION: A (2,0)-form Ω on (M, I) is called real if J(Ω) = Ω and

strictly positive if Ω(x, J(x)) > 0 for each non-zero x ∈ T1,0
I (M).

CLAIM: Any HKT-form is strictly positive and real. Moreover, any ∂-

closed strictly positive real form Ω ∈ Λ2,0
I (M) defines an HKT-metric

g(x, y) := Ω(x, J(y)).
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Canonical bundle of a hypercomplex manifold.

0. Quaternionic Hermitian structure always exists.

1. Complex dimension is even.

2. The canonical line bundle Λn,0(M, I) of (M, I) is always trivial

topologically. Indeed, a non-degenerate section of canonical line bundle

is provided by top power of a form Ω associated with some quaternionic

Hermitian strucure. In particular, c1(M, I) = 0.

3. Canonical bundle is non-trivial holomorphically in many cases. How-

ever, when M is a nilmanifold, Λn,0(M, I) is trivial, and holonomy of

Obata connection lies in SL(n,H) (Barberis-Dotti-V., 2007)

4. If Hol(M) lies in SL(n,H), canonical bundle is trivial. The converse is

true when M is compact and HKT (V., 2004): an HKT manifold with

holomorphically trivial canonical bunlde satisfies Hol(M) ⊂ SL(n,H).
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SU(2)-action on Λ∗(M)

The group SU(2) of unitary quaternions acts on TM , because quaternion

algebra acts. By multilinearity, this action is extended to Λ∗(M).

1. The Hodge decomposition Λ∗(M) =
⊕

Λp,q(M) is recovered from

this SU(2)-action. “Hypercomplex analogue of the Hodge decompo-

sition”.

2. 〈ωI , ωJ , ωK〉 is an irreducible 3-dimensional representation of SU(2), for

any quaternionic Hermitian structure (“representation of weight 2”).

WEIGHT of a representation.

We say that an irreducible SU(2)-representation W has weight i if dimW =

i+ 1. A representation is said to be pure of weight i if all its irreducible

components have weight i. If all irreducible components of a representa-

tion W1 have weight 6 i, we say that W1 is a representation of weight

6 i. In a similar fashion one defines representations of weight > i.
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Quaternionic Dolbeault algebra

The weight is multiplicative, in the following sense: a tensor product of

representations of weights 6 i and 6 j has weight 6 i+ j.

Clearly, Λ1(M) has weight 1. Therefore, Λi(M) has weight 6 i.

Let V i ⊂ Λi(M) be the maximal SU(2)-invariant subspace of weight < i.

By multiplicativity, V ∗ =
⊕
i V

i is an ideal in Λ∗(M). We also have V i =

Λi(M) for i > 2n. Also, dV i ⊂ V i+1, hence V ∗ ⊂ Λ∗(M) is a differential

ideal in (Λi(M), d).

Denote by (Λ∗+(M), d+) the quotient algebra Λ∗(M)/V ∗.
We call it the quaternionic Dolbeault algebra (qD-algebra) of M .

A similar construction was given by Salamon in a more general situation.
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The Hodge decomposition of quaternionic Dolbeault algebra.

The Hodge decomposition is induced from the SU(2)-action, hence it is

compatible with weights: Λi+(M) =
⊕
p+q=iΛp,q+,I(M).

Let
√
−1I be an element of the Lie algebra su(2)⊗C acting as

√
−1 (p− q)

on Λp,q(M). This vector generates the Cartan algebra of su(2). The su(2)-

action induces an isomorphism of Λp,q+,I(M) for all {p, q | p+q = k, p, q > 0}.
This gives

Theorem: Λp,q+,I(M) ∼= Λ0,p+q(M, I).

This isomorphism is provided by the su(2)⊗ C-action.
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Differentials in the qD-complex

We extend J : Λ1(M)−→ Λ1(M) to Λ∗(M) by multiplicativity. Since I and

J anticommute on Λ1(M), we have J(Λp,q(M, I)) = Λq,p(M, I).

Denote by ∂J : Λp,0(M, I)−→ Λp,0(M, I) the operator J ◦ ∂ ◦ J, where

∂ : Λ0,p(M, I)−→ Λ0,p(M, I) is the standard Dolbeault differential. Then ∂,

∂J anticommute. Moreover, there exists a multiplicative isomorphism

of bicomplexes.

Λ0
+(M)

d1,0
+

��

d0,1
+

��

Λ0,0
I (M)

∂J

��

∂

��

Λ1,0
+ (M)

d1,0
+

��

d0,1
+

��

Λ0,1
+ (M)

d1,0
+

��

d0,1
+

��

∼= Λ1,0
I (M)

∂J

��

∂

��

Λ1,0
I (M)

∂J

��

∂

��

Λ2,0
+ (M) Λ1,1

+ (M) Λ0,2
+ (M) Λ2,0

I (M) Λ2,0
I (M) Λ2,0

I (M)

... ...
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Potentials for HKT-metrics

A quaternionic Hermitian metric can be recovered from the correspond-
ing (2,0)-form: ωI(x, y) = 1

2Ω(x, J(y)), where x, y ∈ T1,0(M). The HKT-
structures uniquely correspond to (2,0)-forms which are

1. Real: J(Ω) = Ω

2. Closed: ∂Ω = 0.

2. Positive: Ω(x, J(x)) > 0, for any non-zero x ∈ T1,0(M)

Locally, any HKT-metric is given by a potential: Ω = ∂∂Jϕ where ϕ
is a smooth function.

Any convex, and any strictly plurisubharmonic function is a potential
of some HKT-structure. Therefore, HKT-structures locally always exist
(Grantcharov, Poon).

DEFINITION: Quaternionic Hessian of f ∈ C∞M is a form
x, y −→ ∂∂Jϕ(x, J(x)). It is equal to the usual Hessian averaged with SU(2).
A function is quaternionic plurisubharmonic if its H-Hessian is positive;
equivalently, if ∂∂Jf is a positive (2,0)-form.
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Hodge theory on HKT-manifolds with holonomy in SL(n,H)

DEFINITION: Let Φ be a non-degenerate, real, Obata-parallel section
of Λn,0(M, I). Then (M,J, J,K,Φ) is called an SL(n,H)-manifold.

DEFINITION: Let M be a compact HKT-manifold with holonomy in
SL(n,H), and ∆∂ := ∂∂

∗
+ ∂

∗
∂. Then ker ∆∂

∣∣∣Λ0,∗(M) = H∗(M,O(M,I)).

THEOREM: ∆∂ commutes with the multiplication by the HKT-form Ω,
and with the operator η −→ J(η). In particular, there is a Lefschetz-like
sl(2)-action on H∗(M,O(M,I)).

REMARK: To simplify notation, it is more convenient to consider the ∂

and ∂J-Laplacian, and to identify H∗(M,O(M,I)) with the cohomology of
∂.

THEOREM: The Laplacians ∆∂ and ∆∂J
are equal. In particular,

η −→ J(η) defines a complex structure on ∆∂-harmonic (k,0)-forms for
odd k, and real structure for odd k.

Theorem (“∂∂J-lemma”) Let η be a ∂J-closed, ∂-exact form on an HKT
SL(n,H)-manifold. Then η is ∂∂J-exact: η ∈ im ∂∂Jη.
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Hahn-Banach separation theorem and its applications

THEOREM: Let V be a locally convex topological vector space, W ⊂ V

a closed subspace, and A ⊂ V an open, convex subset, not intersecting A.

Then there exists a continuous linear functional ξ ∈ V ∗ vanishing on

W and positive on A.

THEOREM: (Harvey, Lawson):

Let M be a compact complex non-Kähler manifold. Then there exists a

positive (n − 1, n − 1)-current ξ which is a (n − 1, n − 1)-part of an exact

current.

Idea of a proof: Hahn-Banach separation theorem is applied to the set

A of strictly positive (1,1)-forms, and the set W of closed (1,1)-forms,

obtaining a current ξ ∈ Dn−1,n−1(M) = Λ1,1(M)∗ positive on A (that

is, positive) and vanishing on W . The latter condition is equivalent to

“(n− 1, n− 1)-part of an exact current”.
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Lamari’s proof of Buchsdahl-Lamari theorem

THEOREM: (Buchsdahl-Lamari)
Let M be a compact complex surface. Then M is Kähler if and only if
b1(M) is even.

Scheme of Lamari’s proof:
Step 1: Evenness of b1(M) is equivalent to ddc-lemma.

Step 2: Using regularization of positive currents (Demailly), one proves
that existence of Kähler current (positive, closed current ξ, such that
ξ−ω is positive for some Hermitian form ω) is equivalent to existence of a
Kähler form.

Step 3: Existence of a Kähler current is equivalent to non-existence of a
positive current ξ which is a limit of ddc-closed positive forms and equal to
an (1,1)-part of an exact current.

Step 4: Non-existence of such ξ is implied by ddc-lemma.

For HKT-manifolds, ddc-lemma is the only non-trivial step.
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Harvey-Lawson for HKT-structures

THEOREM: Let (M, I, J,K,Φ) be an SL(2,H)-manifold, not admitting
an HKT-metric. Then M admits a ∂-exact, positive (2,0)-current.

Proof. Step 1: Apply Hahn-Banach separation theorem to the space A
of positive, real (2,0)-forms and W of ∂-closed real (2,0)-forms to obtain
a current ξ ∈ Λ2,0

R (M, I)∗ which is positive on A (hence, real and
positive) and vanishes on W .

Step 2: Consider the pairing 〈η, ν〉 =
∫
M η ∧ ν ∧ Φ on (p,0)-forms. This

pairing is compatible with ∂ and ∂J and allows one to identify the cur-
rents Λp,0R (M, I)∗ with Λn−p,0R (M, I) ⊗ C∞(M)∗, where C∞(M)∗ denotes
generalized functions. This identification is compatible with ∂ and ∂J;
cohomology of currents are the same as cohomology of forms.

Step 3: Since 〈ξ,W 〉 = 0, for each η one has 0 = 〈ξ, ∂η〉 = 〈∂ξ, η〉, giving
∂ξ = 0. It remains to show that the cohomology class of ξ in H2

∂ (Λ∗,0(M))
vanishes

Step 4: The Serre’s duality gives a non-degenerate pairing 〈[ξ], [ν]〉 −→ R
on cohomology classes in H2

∂ (Λ∗,0(M)). Since 〈[ξ], [ν]〉 = 0 for each ∂-
closed nu, the cohomology class of ξ also vanishes.
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HKT metrics from ∂∂J-lemma

THEOREM: Let (M, I, J,K,Φ) be a compact SL(2,H)-manifold. Assume

that ∂∂J-lemma holds on Λ2,0(M). Then M is HKT.

Proof: Indeed, if M is not HKT, M admits a ∂-exact positive, real (2,0)-

current ξ. By ∂∂J-lemma this current would be ∂∂J-exact: ξ = ∂∂Jf . Then

f is a globally defined H-plurisubharmonic function, hence subharmonic,

hence constant.

To finish the proof of main theorem, it remains to prove the ∂∂J-lemma

for even h1(OM).
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APPENDIX: ∂∂J-lemma for HKT manifolds

Quaternionic Gauduchon metrics

DEFINITION: A Hermitian metric ω on a complex n manifold is called
Gauduchon if ∂∂ωn−1 = 0.

THEOREM: (P. Gauduchon, 1978) Let M be a compact, complex man-
ifold, and h a Hermitian form. Then there exists a Gauduchon metric
conformally equivalent to h, and it is unique, up to a constant multiplier.

DEFINITION: A quaternionic Hermitian form g in a hypercomplex mani-
fold M , dimHM = n. is called quaternionic Gauduchon, if ∂∂JΩn−1 = 0,
where Ω = ωJ +

√
−1 ωK is the corresponding positive (2,0)-form.

PROPOSITION: Let (M, I, J,K,Φ) be an SL(n,H)-manifold equipped
with a quaternionic Hermitian form g, and |Φ|2 := Φ ∧Φ/ω2n

I . Then g is
quaternionic Gauduchon if and only if the Hermitian metric |Φ|−1g
is Gauduchon on (M, I).

Proof: A simple linear algebra argument, left as an exercise.

COROLLARY: Quaternionic Gauduchon metrics always exist.
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Surjectivity of f −→Ωn−1 ∧ ∂∂Jf.

Theorem (*): (M, I, J,K,Ω,Φ) be a compact quaternionic Hermitian
SL(n,H)-manifold. Assume that Ω is H-Gauduchon. Consider the map
D : C∞M −→ Λ4n(M),

D(f) = ∂∂Jf ∧Ωn−1 ∧Φ.

Then D induces a bijection between C∞M/const and the space of all
exact 4n-forms on M.

Proof. Step 1: Clearly, D is elliptic, and has index 0, because it has the
same symbol as Laplacian which is self-adjoint.

Step 2: Hopf maximum principle implies that kerD = const. Therefore,
cokerD is 1-dimensional. It remains to show that imD consists of exact
4n-forms.

Step 3: ∫
M
∂∂Jf ∧Ωn−1 ∧Φ = −

∫
M
f ∧ ∂∂J(Ωn−1) ∧Φ = 0

because Ω is H-Gauduchon.
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Quaternionic Aeppli and Bott-Chern cohomology.

DEFINITION: Let (M, I, J,K) be a hypercomplex manifold. Define quater-

nionic Bott-Chern cohomology as

H
p
BC(M) :=

ker ∂ ∩ ker ∂J
∣∣∣Λp,0(M)

∂∂J(Λp−2,0(M))
,

and quaternionic Aeppli cohomology as

H
p
AE(M) :=

ker ∂ ker ∂J
∣∣∣Λp,0(M)

∂(Λp−2,0(M)) + ∂J(Λp−2,0(M))
.

REMARK: These spaces are finite-dimensional. Moreover, Hp
BC(M) is

dual to H
2n−p
AE (M). The proof is the same as for the usual Bott-Chern and

Aeppli cohomology.

CLAIM: ∂∂J lemma for Λ2,0 is equivalent to vanishing of the map

∂ : H1
AE(M)−→H2

BC(M).
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Degree map for Aeppli cohomology

DEFINITION: Let (M, I, J,K,Ω,Φ) be a compact quaternionic Gaudu-
chon SL(n,H)-manifold. Consider the map degH1

AE(M)−→ C putting α to∫
∂α ∧Ωn−1 ∧Φ. Since Ω is H-Gauduchon, degα is independent from the

choince of α in its cohomology class.

THEOREM: Let (M, I, J,K,Ω,Φ) be a compact quaternionic Gauduchon

SL(2,H)-manifold. Then the sequence 0−→H1
∂ (M)−→H1

AE(M)
deg−→ C is

exact.

Proof. Step 1: Let α ∈ ker deg. By Theorem (*), there exists f ∈ C∞M
such that (∂α + ∂∂Jf) ∧ Ω ∧ Φ = 0, equivalently (∂α + ∂∂Jf) ∧ Ω = 0.
Replacing α by α + ∂Jf in the same cohomology class, we may assume
that ∂α ∧Ω = 0.

Step 2: Since ∂α is primitive, one has
∫
M ∂α ∧ ∂Jα ∧ Φ = ‖∂α‖2 by a

quaternionic version of Hodge-Riemann relations.

Step 3: However, ‖∂α‖2 =
∫
M ∂α∧∂Jα∧Φ = −

∫
M ∂∂Jα∧α∧Φ = 0, hence

∂α = 0.
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The proof of ∂∂J-lemma

THEOREM: Let (M, I, J,K,Φ) be a compact SL(2,H)-manifold. Then

∂∂J-lemma holds on Λ2,0(M) if and only if h1(OM) is even.

Proof. Step 1: Clearly, ∂∂J-lemma is equivalent to vanishing of ∂ :

H1
AE(M)−→H2

BC(M), but the kernel of this map is ker deg, hence it suffices

to show that deg = 0.

Step 2: Since J defines quaternionic structure on H1
AE(M), this space is

even-dimensional. Now, from the exact sequence

0−→H1
∂ (M)−→H1

AE(M)
deg−→ C,

we obtain that deg = 0 whenever H1
∂ (M) is even-dimensional.
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