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Hypercomplex manifolds

DEFINITION: Let M be a smooth manifold equipped with endomor-
phisms I,J, K : TM —s TM, satisfying the quaternionic relation 12 = J2 =
K2 =J1JK = —1d. Suppose that I, J, K are integrable almost complex
structures. Then (M, I, J, K) is called a hypercomplex manifold.

THEOREM: (Obata, 1955) On any hypercomplex manifold there exists
a unique torsion-free connection V such that V/ =VJ = VK.

DEFINITION: Such a connection is called the Obata connection.
REMARK: The holonomy of Obata connection lies in GL(n,H).

REMARK: A torsion-free connection V on M with Hol(V) C GL(n,H)
defines a hypercomplex structure on M.
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Examples of hypercomplex manifolds

EXAMPLE: A Hopf surface M = H\0/Z = S! x $3. The holonomy of
Obata connection Hol(M) = 0.

EXAMPLE: Compact holomorphically symplectic manifolds are hy-
perkahler (by Calabi-Yau theorem), hence hypercomplex. Here Hol(M) C
Sp(n) (this is equivalent to being hyperkahler).

PROPOSITION: A compact hypercomplex manifold (M, 1I,J, K) with
(M, I) of Kahler type also admits a hyperkahler structure.

REMARK: In dimension 1, compact hypercomplex manifolds are classified
(C. P. Boyer, 1988). This is the complete list: torus, K3 surface, Hopf
surface.
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Examples of hypercomplex manifolds (2)

EXAMPLE: The Lie groups

SURL+1), T!'xsu(2l), T'xSO@2I+1),
T2 x SO(4l), T'x Sp(l), T2 x Eg,
T xE", T8 x ES, T x Fy, T2 x Go.
Some other homogeneous spaces (D. Joyce and physicists Ph. Spindel,

A. Sevrin, W. Troost, A. Van Proeyen). Holonomy unknown (but likely
GL(n,H)).

THEOREM: (A. Soldatenkov)
Holonomy of Obata connection on SU(3) is GL(2,H).

EXAMPLE: Many nilmanifolds (quotients of a nilpotent Lie group by a
cocompact lattice) admit hypercomplex structures. In this case Hol(M) C
SL(n,H).
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Quaternionic Hermitian structures

DEFINITION: Let (M, I,J, K) be a hypercomplex manifold, and g a Rie-
mannian metric. We say that g is quaternionic Hermitian if I, J, K are
orthogonal with respect to g.

CLAIM: Quaternionic Hermitian metrics always exist.

Proof: Take any Riemannian metric g and consider its average Avg (o) g
with respect to SU(2) C H*. =

Given a quaternionic Hermitian metric g on (M, I, J, K), consider its Her-
mitian forms

w[('7 ) — g(',I'),WJ,WK

(real, but not closed). Then Q =w;++v—1wg is of Hodge type (2,0) with
respect to I.

If d2 =0, (M,I,J,K,qg) is hyperkahler (this is one of the definitions).

Consider a weaker condition:
o =0, 9: N>, 1) — A3, D)
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HK'T structures

DEFINITION: (Howe, Papadopoulos, 1998)

Let (M,I,J,K) be a hypercomplex manifold, g a quaternionic Hermitian
metric, and Q = w;+ v/—1wg the corresponding (2,0)-form. We say that
g is HKT (“hyperkahler with torsion”) if 92 = 0..

HKT-metrics play in hypercomplex geometry the same role as Kahler
metrics play in complex geometry.

1. They admit a smooth potential (locally). There is a notion of
an “HKT-class” (similar to Kahler class) in a certain finite-dimensional
coholology group. Two metrics in the same HK'T-class differ by a potential,
which is a function.

2. When (M,I) has trivial canonical bundle, a version of Hodge the-
ory is established giving an sl(2)-action on holomorphic cohomology
H*(M, Oy y) and analogue of Hodge decomposition and dd°-lemma.

3. Not all compact hypercomplex manifolds are HKT (Fino, Grantcharov).
6
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Buchsdahl-Lamari theorem and its hypercomplex analogue

THEOREM: (Buchsdahl-Lamari)
Let M be a compact complex surface. Then M is Kahler if and only if

b1 (M) is even.

DEFINITION: A compact hypercomplex manifold with Obata holonomy
in SL(n,H) is called SL(n,H)-manifold.

THEOREM: (Grantcharov-Lejmi-V.)
Let M be an SL(2,H)-manifold. Then M is HKT if and only if hl((’)M’I)
IS even.

REMARK: Using the Hodge decomposition on H*(OM,I), one can show
that h1(Oy; ) is even for any SL(n,H)-manifold admitting an HKT
structure.
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Plan of this talk:

1. Introduce Hodge theory on hypercomplex manifolds.
a. HK'T-structures.

b. Canonical bundle.

c. Quaternionic Dolbeault complex.

d. Laplacians and cohomology.

2. Explain Harvey-Lawson and Lamari’'s ideas used in the proof of Buchsdahl-
Lamari theorem.

3. Prove quaternionic analogue of dd°-lemma for manifolds with even
ht (O ).
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HK'T potential

Defining Kahler metric via Kahler potentials: A Kahler metricon (M, I)
IS one which is locally given as

where ¢ is a function called a Kahler potential.

Defining HKT metric through HKT potentials: An HKT metric on
(M, I) is one which is locally given as

g(-,-) = D(p), where D(p) := Avgy () (vV—189¢(, 1))
and ¢ is a function called an HK'T potential.

THEOREM: (Banos-Swann)
This definition is equivalent to the usual one.

DEFINITION: A function which is an HKT potential of some HKT metric
IS called strictly H-plurisubharmonic, or H-psh.

REMARK: For any H-psh function ¢, ¢ is subharmonic with respect
to any quaternionic Hermitian metric. Therefore, there are no globally
defined H-psh functions on compact manifolds.

9
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HKT-forms

DEFINITION: Let g be an HKT metric. The corresponding (2,0)-form
QR=wj~+ vV—1wg is called an HKT-form.

CLAIM: Consider the multiplicative action of J on A*(M). Then J maps
AP 4(M)) to ADP(M)).

Proof: [ and J anticommute. =

DEFINITION: A (2,0)-form Q on (M,I) is called real if J(2) = Q and
strictly positive if Q(x,J(x)) > 0 for each non-zero z € T}’O(M).

CLAIM: Any HKT-form is strictly positive and real. Moreover, any 0-
closed strictly positive real form €2 € /\%O(M) defines an HK'T-metric

g9(z,y) == Q=z, J(¥)).

10
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Canonical bundle of a hypercomplex manifold.
0. Quaternionic Hermitian structure always exists.
1. Complex dimension is even.

2. The canonical line bundle A™O(M,I) of (M,I) is always trivial
topologically. Indeed, a non-degenerate section of canonical line bundle
IS provided by top power of a form {2 associated with some quaternionic
Hermitian strucure. In particular, ¢q1(M,I) = 0.

3. Canonical bundle is non-trivial holomorphically in many cases. How-
ever, when M is a nilmanifold, A”?O(M,I) is trivial, and holonomy of
Obata connection lies in SL(n,H) (Barberis-Dotti-V., 2007)

4. If Hol(M) lies in SL(n,H), canonical bundle is trivial. The converse is
true when M is compact and HKT (V., 2004): an HKT manifold with
holomorphically trivial canonical bunlde satisfies Hol(M) C SL(n,H).

11
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SU(2)-action on A*(M)

The group SU(2) of unitary quaternions acts on T'M, because quaternion
algebra acts. By multilinearity, this action is extended to A*(M).

1. The Hodge decomposition A*(M) = @ AP9(M) is recovered from
this SU(2)-action. “Hypercomplex analogue of the Hodge decompo-
sition”.

2. (wr,wy,wg) is an irreducible 3-dimensional representation of SU(2), for
any quaternionic Hermitian structure (“representation of weight 2").

WEIGHT of a representation.

We say that an irreducible SU(2)-representation W has weight ¢ if dimW =
1+ 1. A representation is said to be pure of weight ¢ if all its irreducible
components have weight ¢. If all irreducible components of a representa-
tion W3 have weight <, we say that Wj is a representation of weight
< 7. In a similar fashion one defines representations of weight > «.

12
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Quaternionic Dolbeault algebra

The weight is multiplicative, in the following sense: a tensor product of
representations of weights < ¢ and < 5 has weight <+ 7.

Clearly, A1(M) has weight 1. Therefore, A'(M) has weight <

Let V' C A*(M) be the maximal SU(2)-invariant subspace of weight < 3.
By multiplicativity, V* = @, V"’ is an ideal in A*(M). We also have V' =
N (M) for i > 2n. Also, dV* c Vitl hence V* c A*(M) is a differential

ideal in (A*(M),d).

Denote by (/\ (M),dy) the quotient algebra A*(M)/V*.
We call it the quaternlonlc Dolbeault algebra (gD-algebra) of M.

A similar construction was given by Salamon in a more general situation.

13
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The Hodge decomposition of quaternionic Dolbeault algebra.

The Hodge decomposition is induced from the SU(2)-action, hence it is
compatible with weights: AY (M) = @4 ,—; A/ (M).

Let /—1Z be an element of the Lie algebra su(2) ® C acting as v—1(p—¢q)
on ANP4(M). This vector generates the Cartan algebra of su(2). The su(2)-
action induces an isomorphism of /\ﬁqI(M) for all {p,q | p+q =%k, p,q > 0}.
This gives

Theorem: AR (M) = NOP+a(pr ).

This isomorphism is provided by the su(2) ® C-action.

14
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Differentials in the gD-complex

We extend J: AL(M) — AL(M) to A*(M) by multiplicativity. Since I and
J anticommute on AL(M), we have J(AP9(M, 1)) = ANDP(M,I).

Denote by 9; : APO(M,I) — APO(M,I) the operator Jodo J, where
d: NOP(M, T) —s ANOP(M, I) is the standard Dolbeault differential. Then 9,
0y anticommute. Moreover, there exists a multiplicative isomorphism
of bicomplexes.

(M) NYO (M)

dO,l 8

AL (M) ASH(M) APO (M) AP (M)

AVARAYE

ANO(M) AP AZE(M) APP(M) APOP(MD) ATP(MD

12

15



HKT structures on SL(2,H)-manifolds M. Verbitsky
Potentials for HKT-metrics

A quaternionic Hermitian metric can be recovered from the correspond-
ing (2,0)-form: wi(z,7) = 3Q(z, J(7)), where z,y € T1O(M). The HKT-
structures uniquely correspond to (2,0)-forms which are

1. Real: J(Q2)=Q
2. Closed: 092 = 0.
2. Positive: Q(z, J(Z)) > 0, for any non-zero z € T1.0(M)

Locally, any HKT-metric is given by a potential: 2 = 005 where ¢
IS @ smooth function.

Any convexXx, and any strictly plurisubharmonic function is a potential
of some HKT-structure. Therefore, HKT-structures locally always exist
(Grantcharov, Poon).

DEFINITION: Quaternionic Hessian of f € C°°M is a form

x,y — 00 jp(x, J(T)). It is equal to the usual Hessian averaged with SU(2).
A function is quaternionic plurisubharmonic if its H-Hessian is positive;
equivalently, if 99;f is a positive (2,0)-form.

16
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Hodge theory on HKT-manifolds with holonomy in SL(n,H)

DEFINITION: Let ®© be a non-degenerate, real, Obata-parallel section
of AWO(M,I). Then (M, J,J, K,®) is called an SL(n,H)-manifold.

DEFINITION: Let M be a compact HKT-manifold with holonomy in
SL(n,H), and A5 :=99 + 9. Then ker A5|,\o,*(M) = H*(M, Oy 1))

THEOREM.: Ag commutes with the multiplication by the HKT-form €,
and with the operator n — J(77). In particular, there is a Lefschetz-like
sl(2)-action on H*(M, (”)(MJ)).

REMARK: To simplify notation, it is more convenient to consider the 0
and dj-Laplacian, and to identify H*(M, O(M’I)) with the cohomology of
0.

THEOREM?: The Laplacians Ay and Ay, are equal. In particular,
n — J(7) defines a complex structure on Ag-harmonic (k,0)-forms for
odd k, and real structure for odd k.

Theorem (“00;-lemma” ) Let n be a dj-closed, 9-exact form on an HKT
SL(n,H)-manifold. Then n is ddj-exact: n € im 9o n.

17
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Hahn-Banach separation theorem and its applications

THEOREM: Let V be a locally convex topological vector space, W C V
a closed subspace, and A C V an open, convex subset, not intersecting A.
Then there exists a continuous linear functional £ € V* vanishing on
W and positive on A.

THEOREM: (Harvey, Lawson):

Let M be a compact complex non-Kahler manifold. Then there exists a
positive (n — 1,n — 1)-current £ which is a (n — 1,n — 1)-part of an exact
current.

Idea of a proof: Hahn-Banach separation theorem is applied to the set
A of strictly positive (1,1)-forms, and the set W of closed (1,1)-forms,
obtaining a current ¢ € D" Lr=1(pr) = ALL(AM)* positive on A (that is,
positive) and vanishing on W. The later condition (after some simple
cohomological manipulations) becomes “(n — 1,n — 1)-part of an exact
current’”. m

18
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Lamari’s proof of Buchsdahl-Lamari theorem

THEOREM: (Buchsdahl-Lamari)
Let M be a compact complex surface. Then M is Kahler if and only if
b1 (M) is even.

Scheme of Lamari’s proof:
Step 1: Evenness of b1(M) is equivalent to dd¢-lemma.

Step 2: Using regularization of positive currents (Demailly), one proves
that existence of Kahler current (positive, closed current &, such that
£ —w is positive for some Hermitian form w) is equivalent to existence of a
Kahler form.

Step 3: Existence of a Kahler current is equivalent to non-existence of a
positive current £ which is a limit of dd®-closed positive forms and equal to
an (1,1)-part of an exact current.

Step 4: Non-existence of such £ is implied by dd°-lemma.

For HKT-manifolds, dd®-lemma is the only non-trivial step.
19



HKT structures on SL(2,H)-manifolds M. Verbitsky
Harvey-Lawson for HKT-structures

THEOREM: Let (M,I,J K,®) be an SL(2,H)-manifold, not admitting
an HKT-metric. Then M admits a d-exact, positive (2,0)-current.

Proof. Step 1: Apply Hahn-Banach separation theorem to the space A
of positive, real (2 O) forms and W of d-closed real (2,0)-forms to obtain
a current ¢ ¢ /\R (M I)* which is positive on A (hence, real and
positive) and vanishes on W.

Step 2: Consider the pairing (n,v) = [i;m Av AP on (p,0)-forms. This
pairing |s compatible with 8 and 05 and allows one to identify the cur-
rents /\% (M, I)* with Ag~ POM, T) @ Coo(M)*, where Coo(M)* denotes
generalized functions. ThIS identification is compatible with 0 and 0j;
cohomology of currents are the same as cohomology of forms.

Step 3: Since (&, W) = 0, for each n one has 0 = (§,9n) = (0¢,n), giving
8¢ = 0. It remains to show that the cohomology class of ¢ in H5(A*O(M))
vanishes

Step 4: The Serre’'s duality gives a non-degenerate pairing ([¢],[v]) — R
on cohomology classes in HZ2(A*O(M)). Since ([¢],[v]) = 0 for each 6-
closed nu, the cohomology class of £ also vanishes. m

20
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HKT metrics from 00 ;-lemma

THEOREM: Let (M, 1,J,K,®) be a compact SL(2,H)-manifold. Assume
that 89 ;-lemma holds on A29(M). Then M is HKT.

Proof: Indeed, if M is not HKT, M admits a 0-exact positive, real (2,0)-
current £. By 00j-lemma this current would be 00 -exact: £ = 90 f. Then
f is a globally defined H-plurisubharmonic function, hence subharmonic,
hence constant. m

To finish the proof of main theorem, it remains to prove the 99 ;-lemma
for even h1(O,)).

21
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Quaternionic Gauduchon metrics

DEFINITION: A Hermitian metric w on a complex n manifold is called
Gauduchon if 80w 1 =

THEOREM: (P. Gauduchon, 1978) Let M be a compact, complex man-
ifold, and A a Hermitian form. Then there exists a Gauduchon metric
conformally equivalent to A, and it is unique, up to a constant multiplier.

DEFINITION: A quaternionic Hermitian form g in a hypercomplex mani-
fold M, dimyg M = n. is called quaternionic Gauduchon, if 89;Q" 1 =0,
where Q = wj;+ v/—1wp is the corresponding positive (2,0)-form.

PROPOSITION: Let (M,I,J,K,®) be an SL(n,H)-manifold equipped
with a quaternionic Hermitian form g, and |2 := ® A ®/w?™. Then g is
quaternionic Gauduchon if and only if the Hermitian metric \CD\—lg
iIs Gauduchon on (M, ).

Proof:. A simple linear algebra argument, left as an exercise. =

COROLLARY: Quaternionic Gauduchon metrics always exist.
22
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Surjectivity of f — Q"1 A 00, f.

Theorem (*): (M,I,J,K,Q2,®d) be a compact quaternionic Hermitian
SL(n,H)-manifold. Assume that  is H-Gauduchon. Consider the map
D: C®M — N*(M),

D(f) =80, f AQ" LA,
Then D induces a bijection between C°°M/const and the space of all
exact 4n-forms on M.

Proof. Step 1: Clearly, D is elliptic, and has index O, because it has the
same symbol as Laplacian which is self-adjoint.

Step 2: Hopf maximum principle implies that ker D = const. T herefore,
coker D is 1-dimensional. It remains to show that im D consists of exact
4n-forms.
Step 3:

/ManfAQ“—l Ad = —/ManaJ(Qn—l) Ad =0

because €2 is H-Gauduchon. =m
23
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Quaternionic Aeppli and Bott-Chern cohomology.

DEFINITION: Let (M, I, J, K) be a hypercomplex manifold. Define quater-
nionic Bott-Chern cohomology as

ker O N ker 8J‘Ap,o(M)
00;(AP=20(M))
and quaternionic Aeppli cohomology as

HY (M) 1=

ker o ker 07| ap.0
HY (M) = vy
O(NP=20(M)) + 9;(AP=20(M))
REMARK: These spaces are finite-dimensional. Moreover, H%C(M) is
dual to Hi”_p(M). The proof is the same as for the usual Bott-Chern and

E
Aeppli cohomology.

CLAIM: 99; lemma for A% is equivalent to vanishing of the map
0: Hip(M) — H3,(M). =

24
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Degree map for Aeppli cohomology

DEFINITION: Let (M,I,J K,Q2,®) be a compact quaternionic Gaudu-
chon SL(n,H)-manifold. Consider the map deg H} (M) — C putting a to
[0aAQP L AD. Since Q is H-Gauduchon, deg«a is independent from the
choince of « in its cohomology class.

THEOREM: Let (M,1,J,K,Q2,®P) be a compact quaternionic Gauduchon

SL(2,H)-manifold. Then the sequence 0 — HA(M) — HY (M) ded ¢ is
exact.

Proof. Step 1: Let a € kerdeg. By Theorem (*), there exists f € C®°M
such that (8a + 90;f) A Q2 AP = 0, equivalently (da + 99;f) AN Q2 = 0.
Replacing a by a+ 9;5f in the same cohomology class, we may assume
that da A2 = 0.

Step 2: Since da is primitive, one has [, 0a Adja A P® = [|0al|? by a
quaternionic version of Hodge-Riemann relations.

Step 3: However, ||0a|]? = [1;0aANdjaAD = — [1;007a AaAD = 0, hence
Oa=0. =
25
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The proof of 90 ;-lemma

THEOREM: Let (M,I,J,K,®) be a compact SL(2,H)-manifold. Then
90 ;-lemma holds on A29(M) if and only if R1(O;,) is even.

Proof. Step 1: Clearly, 00j5-lemma is equivalent to vanishing of 0 :
HYp(M) — H% (M), but the kernel of this map is ker deg, hence it suffices
to show that deg = 0.

Step 2: Since J defines quaternionic structure on H}XE(M), this space is
even-dimensional. Now, from the exact sequence

0 — HY(M) — HY (M) 29 C,

we obtain that deg = 0 whenever H(%(M) is even-dimensional. m
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