Hypermähler SYZ conjecture

Misha Verbitsky

December 18, 2008,
Havana, Cuba
Complex manifolds

DEFINITION: Let M be a smooth manifold. An **almost complex structure** is an operator $I : TM \rightarrow TM$ which satisfies $I^2 = -\text{Id}_{TM}$.

The eigenvalues of this operator are $\pm \sqrt{-1}$. The corresponding eigenvalue decomposition is denoted $TM = T^{0,1}M \oplus T^{1,0}(M)$.

DEFINITION: An almost complex structure is **integrable** if $\forall X, Y \in T^{1,0}M$, one has $[X, Y] \in T^{0,1}M$. In this case I is called a **complex structure operator**. A manifold with an integrable almost complex structure is called a **complex manifold**.

THEOREM: (Newlander-Nirenberg)
This definition is equivalent to the usual one.
Kähler manifolds

DEFINITION: An Riemannian metric \(g \) on an almost complex manifold \(M \) is called **Hermitian** if \(g(Ix, Iy) = g(x, y) \). In this case, \(g(x, Iy) = g(Ix, I^2y) = -g(y, Ix) \), hence \(\omega(x, y) := g(x, Iy) \) is skew-symmetric.

DEFINITION: The differential form \(\omega \in \Lambda^{1,1}(M) \) is called the **Hermitian form** of \((M, I, g)\).

THEOREM: Let \((M, I, g)\) be an almost complex Hermitian manifold. Then the following conditions are equivalent.

(i) The complex structure \(I \) is integrable, and the Hermitian form \(\omega \) is closed.

(ii) One has \(\nabla(I) = 0 \), where \(\nabla \) is the Levi-Civita connection

\[
\nabla : \text{End}(TM) \rightarrow \text{End}(TM) \otimes \Lambda^1(M).
\]

DEFINITION: A complex Hermitian manifold \(M \) is called **Kähler** if either of these conditions hold. The cohomology class \([\omega] \in H^2(M)\) of a form \(\omega \) is called the **Kähler class** of \(M \). The set of all Kähler classes is called the **Kähler cone**.
Hyperkähler manifolds

DEFINITION: A hypercomplex manifold is a manifold M equipped with three complex structure operators I, J, K, satisfying quaternionic relations

$$IJ = -JI = K, \quad I^2 = J^2 = K^2 = -\text{Id}_{TM}$$

(the last equation is a part of the definition of almost complex structures).

DEFINITION: A hyperkähler manifold is a hypercomplex manifold equipped with a metric g which is Kähler with respect to I, J, K.

REMARK: This is equivalent to $\nabla I = \nabla J = \nabla K = 0$: the parallel translation along the connection preserves I, J, K.

DEFINITION: Let M be a Riemannian manifold, $x \in M$ a point. The subgroup of $GL(T_xM)$ generated by parallel translations (along all paths) is called the holonomy group of M.

REMARK: A hyperkähler manifold can be defined as a manifold which has holonomy in $Sp(n)$ (the group of all endomorphisms preserving I, J, K).
Holomorphically symplectic manifolds

DEFINITION: A holomorphically symplectic manifold is a complex manifold equipped with non-degenerate, holomorphic $(2,0)$-form.

THEOREM: (Calabi-Yau) A compact, Kähler, holomorphically symplectic manifold admits a unique hyperkähler metric in any Kähler class.

DEFINITION: For the rest of this talk, a hyperkähler manifold is a compact, Kähler, holomorphically symplectic manifold.

DEFINITION: A hyperkähler manifold M is called **simple** if $H^1(M) = 0$, $H^{2,0}(M) = \mathbb{C}$.

Bogomolov's decomposition: Any hyperkähler manifold admits a finite covering which is a product of a torus and several simple hyperkähler manifolds.

Remark: A simple hyperkähler manifold is always simply connected (Cheeger-Gromoll theorem).

Further on, all hyperkähler manifolds are assumed to be simple.
Holomorphic Lagrangian fibrations

THEOREM: (Matsushita, 1997)
Let \(\pi : M \to X \) be a surjective holomorphic map from a hyperkähler manifold \(M \) to \(X \), with \(0 < \dim X < \dim M \). Then \(\dim X = 1/2 \dim M \), and the fibers of \(\pi \) are holomorphic Lagrangian (this means that the symplectic form vanishes on \(\pi^{-1}(x) \)).

DEFINITION: Such a map is called holomorphic Lagrangian fibration.

REMARK: The base of \(\pi \) is conjectured to be rational. Hwang (2007) proved that \(X \cong \mathbb{C}P^n \), if it is smooth. Matsushita (2000) proved that it has the same rational cohomology as \(\mathbb{C}P^n \).

REMARK: The base of \(\pi \) has a natural flat connection on the smooth locus of \(\pi \). The combinatorics of this connection can be used to determine the topology of \(M \) (Strominger-Yau-Zaslow, Kontsevich-Soibelman).

If we want to learn something about \(M \), it’s recommended to start from a holomorphic Lagrangian fibration (if it exists).
The SYZ conjecture

DEFINITION: Let \((M, \omega)\) be a Calabi-Yau manifold, \(\Omega\) the holomorphic volume form, and \(Z \subset M\) a real analytic subvariety, Lagrangian with respect to \(\omega\). If \(\Omega\big|_Z\) is proportional to the Riemannian volume form, \(Z\) is called **special Lagrangian** (SpLag).

(Harvey-Lawson): **SpLag subvarieties minimize Riemannian volume in their cohomology class.** This implies that their moduli are finite-dimensional.

A trivial remark: A holomorphic Lagrangian subvariety of a hyperkähler manifold \((M, I)\) is special Lagrangian on \((M, J)\), where \((I, J, K)\) is a quaternionic structure associated with the hyperkähler structure.

Another trivial remark: A smooth fiber of a Lagrangian fibration has trivial tangent bundle. In particular, **a smooth fiber of a holomorphic Lagrangian fibration is a torus.**

Ample bundles

REMARK: Let L be a holomorphic line bundle. For any metric on L one associates its Chern connection; the curvature Θ of this connection is a closed, imaginary $(1,1)$-form. If the form $-\sqrt{-1}\Theta$ is Kähler, L is called **positive**.

REMARK: This is the usual source of Kähler metrics in complex geometry.

REMARK: The form $-\sqrt{-1}\Theta$ is Kähler if and only if $\Theta(x,\overline{x}) > 0$ for any non-zero $x \in T^{0,1}(M)$.

DEFINITION: A holomorphic line bundle is called **ample**, if for a sufficiently big N, the tensor power L^N is generated by global holomorphic sections, without common zeros, and, moreover, the natural map $M \to \mathbb{P}H^0(L^N)^*$ is an embedding.

THEOREM: (Kodaira) Let L be line bundle on a compact complex manifold, with $c_1(L)$ Kähler. Then L is ample.
Nef classes and semiample bundles

DEFINITION: A cohomology class θ is called nef (numerically effective) if it belongs to the closure of the Kähler cone. A holomorphic line bundle L is nef if $c_1(L)$ is nef.

DEFINITION: A line bundle is called semiample if L^N is generated by its holomorphic sections, which have no common zeros.

REMARK: From semiampleness it obviously follows that L is nef. Indeed, let $\pi: M \to \mathbb{P}H^0(L^N)^*$ the the standard map. Since sections of L have no common zeros, π is holomorphic. Then $L \cong \pi^* \mathcal{O}(1)$, and the curvature of L is a pullback of the Kähler form on $\mathbb{C}P^n$.

REMARK: The converse is false: a nef bundle is not necessarily semiample.
The hyperkähler SYZ conjecture

CONJECTURE: (Tyurin, Bogomolov, Hassett-Tschinkel, Huybrechts, Sawon). Any hyperkähler manifold can be deformed to a manifold admitting a holomorphic Lagrangian fibration.

REMARK: This is the only known source of SpLag fibrations.

THEOREM: (Fujiki). Let $\eta \in H^2(M)$, and $\dim M = 2n$, where M is hyperkähler. Then $\int_M \eta^{2n} = q(\eta, \eta)^n$, for some rational quadratic form q on $H^2(M)$.

DEFINITION: This form is called *Bogomolov-Beauville-Fujiki form*. It is defined uniquely, up to a sign.

A trivial observation: Let $\pi : M \rightarrow X$ be a holomorphic Lagrangian fibration, and ω_X a Kähler class on X. Then $\eta := \pi^* \omega_X$ is nef, and satisfies $q(\eta, \eta) = 0$.

The hyperkähler SYZ conjecture: Let L be a nef line bundle on a hyperkähler manifold, with $q(L, L) = 0$. Then L is semiample.
Semipositive line bundles

DEFINITION: A holomorphic line bundle is called **semipositive** if it has a (smooth) metric with semipositive curvature. It is obviously nef.

MAIN THEOREM: Let L be a semipositive line bundle on a hyperkähler manifold, with $q(L, L) = 0$. Then L^k is effective, for some $k > 0$.

Plan of a proof:

Step 1. Show that $H^*(L^N)$ is non-zero, for all N.

Step 2. Construct an embedding

$$H^i(L^N) \hookrightarrow H^0(\Omega^{2n-i}(M) \otimes L^N).$$

Step 3. **THEOREM:** Let L be a nef bundle on a hyperkähler manifold, with $q(L, L) = 0$. Assume that $H^0(\Omega^*(M) \otimes L^N) \neq 0$, for infinitely many values of N. Then L^k is effective, for some $k > 0$.

11
Step 1. Show that $H^*(L^N)$ is non-zero, for all N.

This is actually clear, because $\chi(L) = P(q(L, L))$, where P is a polynomial with coefficients depending on Chern classes of M only (Fujiki). Then

$$\chi(L) = \chi(O_M) = n + 1$$

(Bochner's vanishing).

Step 2. Construct an embedding

$$H^i(L^N \otimes K) \hookrightarrow H^0(\Omega^{2n-i}(M) \otimes L^N).$$

This is called “Hard Lefschetz theorem with coefficients in L” (Takegoshi, Mourougane, Demailly-Peternell-Schneider).

Idea of a proof: Let $B := L^*$. Then

$$\Delta_{\nabla'} - \Delta_{\overline{\partial}} = [\Theta_B, \wedge] \leq 0,$$

therefore $H^i(B^N) = \ker \Delta_{\overline{\partial}} \subset \ker \Delta_{\nabla'}$, and the last space is identified with B^*-valued holomorphic differential forms.

If L has a semi-positive singular metric, a similar map exists, with coefficients in appropriate multiplier ideals.
Kobayashi-Hitchin correspondence

DEFINITION: Let F be a coherent sheaf over an n-dimensional compact Kähler manifold M. Let

$$\text{slope}(F) := \frac{1}{\text{rank}(F)} \int_M \frac{c_1(F) \wedge \omega^{n-1}}{\text{vol}(M)}.$$

A torsion-free sheaf F is called *(Mumford-Takemoto) stable* if for all sub-sheaves $F' \subset F$ one has $\text{slope}(F') < \text{slope}(F)$. If F is a direct sum of stable sheaves of the same slope, F is called **polystable**.

DEFINITION: A Hermitian metric on a holomorphic vector bundle B is called *(Yang-Mills) (Hermitian-Einstein)* if the curvature of its Chern connection satisfies $\Theta_B \wedge \omega^{n-1} = \text{slope}(F) \cdot \text{Id}_B \cdot \omega^n$. A Yang-Mills connection is a Chern connection induced by the Yang-Mills metric.

REMARK: Yang-Mills connections minimize the integral

$$\int_M |\Theta_B|^2 \text{Vol}_M$$
Kobayashi-Hitchin correspondence (part 2)

Kobayashi-Hitchin correspondence (Donaldson, Uhlenbeck-Yau) Let B be a holomorphic vector bundle. Then B admits Yang-Mills metric if and only if B is polystable.

COROLLARY: Any tensor product of polystable bundles is polystable.

EXAMPLE: Let M be a Kähler-Einstein manifold. Then TM is polystable.

REMARK: Let M be a Calabi-Yau (e.g., hyperkähler) manifold. Then TM admits a Hermitian-Einstein metric for any Kähler class (Calabi-Yau theorem). Therefore, TM is stable for all Kähler structures.
Positive currents

DEFINITION: A current is a differential form with coefficients in distributions (generalized functions).

REMARK: De Rham differential is well defined on the space of currents, the Poincare lemma holds, and cohomology of currents are the same as cohomology of differential forms.

REMARK: The space of k-currents on an n-manifold M is dual to the space of $(n-k)$-forms with compact support.

EXAMPLE: For any subvariety $Z \subset M$ of codimension k, the map $\eta \mapsto \int_Z \eta$ on k-forms defines a k-current, called the current of integration.

DEFINITION: Let M be a complex n-manifold. A positive current is a $(1,1)$-current ζ which satisfies $\langle \zeta, \alpha \rangle \geq 0$, for any positive $(n-1,n-1)$-form with compact support.

EXAMPLE: A current of integration over a divisor is always positive.

DEFINITION: A cohomology class $\theta \in H^{1,1}(M)$ is called pseudoeffective if it can be represented by a closed, positive current.
Subsheaves in tensor bundles have pseudoeffective $-c_1(E)$

THEOREM: Let M be a compact hyperkähler manifold, \mathcal{I} a tensor power of a tangent bundle (such as a bundle of holomorphic forms), and $E \subset \mathcal{I}$ a coherent subsheaf of \mathcal{I}. **Then the class** $-c_1(E) \in H^{1,1}_\mathbb{R}(M)$ **is pseudoeffective.**

Step 0:

$$\int_M \alpha_1 \wedge \ldots \wedge \alpha_{2n} = \frac{1}{2n!} \sum q(\alpha_{i_1}, \alpha_{i_2}) q(\alpha_{i_3}, \alpha_{i_3}) \ldots$$

where $\alpha_i \in H^2(M)$, and the sum is taken over all $2n$-tuples (Fujiki). We chose the sign of q in such a way that $q(\omega, \omega) > 0$ for any Kähler class.

Step 1: Since \mathcal{I} is polystable, $\text{slope}(E) \leq 0$. Then $\int_M c_1(E) \wedge \omega^{n-1} \leq 0$ for any Kähler class ω. Equivalently, $q(c_1(E), \omega) \leq 0$. This means that **the class** $-c_1(E)$ **lies in the dual nef cone.**
Subsheaves in tensor bundles have pseudoeffective $-c_1(E)$ (part 2)

Step 2: Let $M_\alpha \xrightarrow{\varphi} M$ be a hyperkähler manifold birationally equivalent to M. Then φ is non-singular in codimension 1. Therefore, $H^2(M) = H^2(M_\alpha)$.

Step 3: Let \mathfrak{T}_α be the same tensor power of TM_α as \mathfrak{T}. Clearly, \mathfrak{T}_α can be obtained as a saturation of $\varphi^*\mathfrak{T}$. Taking a saturation of $\varphi^*E \subset \varphi^*\mathfrak{T}$, we obtain a coherent subsheaf $E_\alpha \subset \mathfrak{T}_\alpha$, with $c_1(E_\alpha) = c_1(E)$.

Step 4: We obtained that the class $-c_1(E)$ lies in the dual nef cone of M_α, for all birational models of M.

Step 5: We call the union of nef cones for all birational hyperkähler models of M the birational nef cone. The birational nef cone is dual to the pseudoeffective cone (Huybrechts, Boucksom). Therefore, $-c_1(E)$ is pseudoeffective.
Lemma: Hodge’s index theorem. Let $L \in H^{1,1}(M)$ a nef class satisfying $q(L, L) = 0$, and $\nu_0 \in H^{1,1}(M)$ a class satisfying $q(L, \nu_0) = 0$ and $q(\nu_0, \nu_0) \geq 0$. Then L is proportional to ν_0.

Theorem: Let M be a compact hyperkähler manifold, L a nef line bundle satisfying $q(L, L) = 0$, \mathcal{I} some tensor power of a tangent bundle, and $\gamma \in H^0(\mathcal{I} \otimes L)$. Assume no power of L is effective. Then γ is non-singular in codimension 1.

Step 1: Let \mathcal{L}_0 be a rank 1 subsheaf of \mathcal{I} generated by $\gamma \otimes L^{-1}$. Then $\nu := -c_1(\mathcal{L}_0)$ is pseudoeffective.

Step 2: By definition, γ is a section of a rank one sheaf $L \otimes \mathcal{L}_0$. Therefore, $D = c_1(L \otimes \mathcal{L}_0)$, where D is a union of all divisorial components of the zero set of γ. We have $c_1(L) = D + \nu$.

18
L-valued holomorphic forms are non-singular in codimension 1 (part 2)

Step 3: We have $c_1(L) = D + \nu$. Since L is nef, ν and D are pseudoeffective, we have $q(L, \nu) \geq 0$ and $q(L, D) \geq 0$. Then

$$0 = q(L, L) = q(L, \nu) + q(L, D) \geq 0.$$

We obtain that $q(L, \nu) = q(L, D) = 0$.

Step 4: **Divisorial Zariski decomposition (Boucksom).**

For any pseudoeffective ν, we have $\nu = \nu_0 + \sum \alpha_i E_i$, where ν_0 is birational nef, α_i positive and rational, and E_i are exceptional divisors.

Step 5: The same argument as in Step 3 can be used to show that $q(L, \nu_0) = q(L, E_i) = 0$.

Step 6: Hodge index theorem implies $\nu_0 = \lambda c_1(L)$. This gives

$$c_1(L) = D + \lambda c_1(L) + \sum \alpha_i E_i$$

Therefore, $(1 - \lambda)c_1(L)$ is effective. By our assumptions, L is not effective. **Therefore, $\lambda - 1 = 0$, and $D + \sum \alpha_i E_i = 0$.**
From \(L \)-valued differential forms to sections of \(L \)

THEOREM: Let \(L \) be a nef bundle on a hyperkähler manifold, with \(q(L, L) = 0 \). Assume that \(H^0(\Omega^*(M) \otimes L^N) \neq 0 \), for infinitely many values of \(N \). Then \(L^k \) is effective, for some \(k > 0 \).

Step 1: Suppose that \(L^k \) is never effective. Then any non-zero section of \(\Omega^*(M) \otimes L^N \) is non-degenerate outside of codimension 2, as we have just shown.

Step 2: Let \(E_k \subset \bigoplus_i \Omega^i M \) be subsheaf generated by global sections of \(E \otimes L^i \), \(i = 1, ..., k \). Let \(E_\infty := \bigcup E_k \), and \(r \) be its rank. For any \(r \)-tuple of linearly independent (at generic point) sections of \(E_\infty \), \(\gamma_1 \in E \otimes L^i_1, ..., \gamma_r \in E \otimes L^i_r \), the determinant \(\gamma_1 \wedge ... \wedge \gamma_r \) is a section of \(\text{det} E_\infty \otimes L^N \), \(N = \sum i_k \). non-vanishing in codimension 1, hence non-degenerate.

Step 3: This gives an isomorphism \(\text{det} E_\infty \cong L^N \), with \(N = \sum i_k \) as above.

Step 4: There are infinitely many choices of \(\gamma_i \), with \(i_k \) going to \(\infty \), hence \(\text{det} E_\infty \cong L^N \) cannot always hold. **Contradiction!** We proved that \(L^k \) is effective.
Multiplier ideal sheaves.

REMARK: If L is nef, it does not imply that L is semipositive. However, a singular semipositive metric always exists.

THEOREM (*)&: Let M be a simple hyperkähler manifold, L a nef bundle on M, with positive singular metric, $q(L, L) = 0$, and let $\mathcal{I}(L^m)$ be the sheaf of L^2-integrable holomorphic sections of L^m. **Assume that for infinitely many** $m > 0$, $H^i(\mathcal{I}(L^m)) \neq 0$. **Then** L^N is effective, for some $N > 0$.

Proof: Using the multiplier ideal version of hard Lefschetz, we obtain that $H^*(\mathcal{I}(L^m)) \neq 0$ implies that $H^0(\Omega^*(M) \otimes L^m)$ is non-zero. Applying the above theorem, we obtain that L^k is effective.

SPECULATION: Let L be a singular nef bundle. Consider a function $k \xrightarrow{\chi_L} \chi(\mathcal{I}(L^k))$. Is it possible that $\chi_L(0) = n + 1$, and $\chi_L(k) = 0$ for all $k > 0$, except a finite number?

If it is impossible, assumptions of (*) hold, and L^N is effective.

REMARK: If L has algebraic singularities, $\chi_L(k)$ is either periodic, or unbounded, hence L^N is effective.