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Complex manifolds

DEFINITION: Let M be a smooth manifold. An almost complex structure
is an operator I : TM — TM which satisfies 2 = —Idpy.

The eigenvalues of this operator are +=v/—1 . The corresponding eigenvalue
decomposition is denoted TM = T91AM ¢ T1.0(M).

DEFINITION: An almost complex structure is integrable if VX,Y € TlvOM,
one has [X,Y] € TO1M. In this case I is called a complex structure op-
erator. A manifold with an integrable almost complex structure is called a
complex manifold.

THEOREM: (Newlander-Nirenberg)
This definition is equivalent to the usual one.



SYZ conjecture M. Verbitsky

Kahler manifolds

DEFINITION: An Riemannian metric g on an almost complex manifiold M
is called Hermitian if g(Iz, Iy) = g(x,y). In this case, g(z,Iy) = g(Iz, [%y) =
—qg(y,Ix), hence w(z,y) ;= g(x, Iy) is skew-symmetric.

DEFINITION: The differential form «w € ALI(M) is called the Hermitian
form of (M, 1I,gq).

THEOREM: Let (M,1I,g) be an almost complex Hermitian manifold. Then
the following conditions are equivalent.

(i) The complex structure I is integrable, and the Hermitian form w is closed.

(ii) One has V(I) = 0, where V is the Levi-Civita connection
V : End(TM) — End(TM) @ AL (M).

DEFINITION: A complex Hermitian manifold M is called Kahler if either
of these conditions hold. The cohomology class [w] € H2(M) of a form w
is called the Kahler class of M. The set of all Kahler classes is called the
Kahler cone.
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Hyperkahler manifolds

DEFINITION: A hypercomplex manifold is a manifold M equipped with
three complex structure operators I, J, K, satisfying quaternionic relations

IJ=—-JI=K, [°=J°=K?=—Idpy

(the last equation is a part of the definition of almost complex structures).

DEFINITION: A hyperkahler manifold is a hypercomplex manifold equipped
with a metric g which is Kahler with respect to I, J, K.

REMARK: This is equivalent to VI =VJ = VK = 0: the parallel translation
along the connection preserves I, J, K.

DEFINITION: Let M be a Riemannian manifold, € M a point. The
subgroup of GL(T,M) generated by parallel translations (along all paths) is
called the holonomy group of M.

REMARK: A hyperkahler manifold can be defined as a manifold which
has holonomy in Sp(n) (the group of all endomorphisms preserving I, J, K).
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Holomorphically symplectic manifolds

DEFINITION: A holomorphically symplectic manifold is a complex manifold
equipped with non-degenerate, holomorphic (2,0)-form.

THEOREM: (Calabi-Yau) A compact, Kahler, holomorphically symplectic
manifold admits a unique hyperkahler metric in any Kahler class.

DEFINITION: For the rest of this talk, a hyperkahler manifold is a com-
pact, Kahler, holomorphically symplectic manifold.

DEFINITION: A hyperkahler manifold M is called simple if Hl(M) = 0,
H29(M) =C.

Bogomolov’s decomposition: Any hyperkahler manifold admits a finite cov-
ering which is a product of a torus and several simple hyperkahler manifolds.

Remark: A simple hyperkahler manifold is always simply connected (Cheeger-
Gromoll theorem).

Further on, all hyperkahler manifolds are assumed to be simple.
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Holomorphic Lagrangian fibrations

THEOREM: (Matsushita, 1997)

Let 7 : M — X be a surjective holomorphic map from a hyperkahler manifold
M to X, whith 0 < dimX < dimM. Then dmX = 1/2dim M, and the
fibers of © are holomorphic Lagrangian (this means that the symplectic
form vanishes on 7= 1(2)).

DEFINITION: Such a map is called holomorphic Lagrangian fibration.

REMARK: The base of 7 is conjectured to be rational. Hwang (2007) proved
that X = CP", if it is smooth. Matsushita (2000) proved that it has the same
rational cohomology as CP".

REMARK: The base of # has a natural flat connection on the smooth locus
of w. The combinatorics of this connection can be used to determine the
topology of M (Strominger-Yau-Zaslow, Kontsevich-Soibelman).

If we want to learn something about M, it’'s recommended to start
from a holomorphic Lagrangian fibration (if it exists).
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The SYZ conjecture

DEFINITION: Let (M,w) be a Calabi-Yau manifold, €2 the holomorphic
volume form, and Z C M a real analytic subvariety, Lagrangian with respect
to w. If Q2| is proportional to the Riemannian volume form, Z is called special
Lagrangian (SpLag).

(Harvey-Lawson): SplLag subvarieties minimize Riemannian volume in
their cohomology class. This implies that their moduli are finite-dimensional.

A trivial remark: A holomorphic Lagrangian subvariety of a hyperkahler man-
ifold (M, I) is special Lagrangian on (M, J), where (I,J, K) is a quaternionic
structure associated with the hyperkahler structure.

Another trivial remark: A smooth fiber of a Lagrangian fibration has trivial
tangent bundle. In particular, a smooth fiber of a holomorphic Lagrangian
fibration is a torus.

Strominger-Yau-Zaslow, “Mirror symmetry as T-duality” (1997). Any
Calabi-Yau manifold admits a Lagrangian fibration with special Lagrangian
fibers. Taking its dual fibration, one obtains “the mirror dual’ Calabi-Yau
manifold.
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Ample bundles

REMARK: Let L be a holomorphic line bundle. For any metric on L one
associates its Chern connection; the curvature © of this connection is a closed,
imaginary (1,1)-form. If the form —/—1 © is Kahler, L is called positive.

REMARK: This is the usual source of Kahler metrics in complex geometry.

REMARK: The form —/—1© is Kahler if and only if ©(x,z) > 0 for any
non-zero z € 791 (M).

DEFINITION: A holomorphic line bundle is called ample, if for a sufficiently
big N, the tensor power LY s generated by global holomorphic sections,
without common zeros, and, moreover, the natural map M — PHO(LV)* is
an embedding.

THEOREM: (Kodaira) Let L be line bundle on a compact complex
manifold, with ¢y (L) Kahler. Then L is ample.
3
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Nef classes and semiample bundles

DEFINITION: A cohomology class 6 is called nef (numerically effective) if
it belongs to the closure of the Kahler cone. A holomorphic line bundle L is
nef if c;(L) is nef.

DEFINITION: A line bundle is called semiample if LY is generated by its
holomorphic sections, which have no common zeros.

REMARK: From semiampleness it obviously follows that L is nef. In-
deed, let 7 : M — PHO(LY)* the the standard map. Since sections of L have
no common zeros, « is holomorphic. Then L = 7*O(1), and the curvature of
L is a pullback of the Kahler form on CP™.

REMARK: The converse is false:
a nef bundle is not necessarily semiample.
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The hyperkahler SYZ conjecture

CONJECTURE: (Tyurin, Bogomolov, Hassett-Tschinkel, Huybrechts, Sawon).
Any hyperkahler manifold can be deformed to a manifold admitting a holo-
morphic Lagrangian fibration.

REMARK: This is the only known source of SplLag fibrations.

THEOREM: (Fujiki). Let n € H2(M), and dimM = 2n, where M is hy-
perkdhler. Then [,;n°" = q(n,n)™, for some rational quadratic form ¢ on
H?2(M).

DEFINITION: This form is called Bogomolov-Beauville-Fujiki form. It is
defined uniquely, up to a sign.

A trivial observation: Let 7 : M — X be a holomorphic Lagrangian fibra-
tion, and wx a Kdhler class on X. Then n := n*wy is nef, and satisfies

q(n,m) = 0.

The hyperkahler SYZ conjecture: Let L be a nef line bundle on a
hyperkahler manifold, with ¢(L,L) = 0. Then L is semiample.
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Semipositive line bundles

DEFINITION: A holomorphic line bundle is called semipositive if it has a
(smooth) metric with semipositive curvature. It is obviously nef.

MAIN THEOREM: Let L be a semipositive line bundle on a hyperkahler
manifold, with ¢(L,L) = 0. Then L is effective, for some k > 0.

Plan of a proof:
Step 1. Show that H*(LY) is non-zero, for all N.
Step 2. Construct an embedding

HY(LN) — HY(Q*" (M) ® LY).

Step 3. THEOREM: Let L be a nef bundle on a hyperkahler manifold, with
g(L,L) = 0. Assume that HO(2*(M) @ LY) # 0, for infinitely many values of
N. Then L* is effective, for some k > 0.
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Step 1. Show that H*(LY) is non-zero, for all N.

This is actually clear, because x(L) = P(q(L,L)), where P is a polynomial
with coefficients depending on Chern classes of M only (Fujiki). Then

x(L) =x(Opy) =n+1
(Bochner's vanishing).

Step 2. Construct an embedding
HY(LN @ K) — HY(Q?" (M) @ LY).

This is called “Hard Lefschetz theorem with coefficients in L”” (Takegoshi,
Mourougane, Demailly-Peternell-Schneider).

Idea of a proof: Let B:= L*. Then
Ay — Dz =[05,N <0,

therefore HY(BN) = ker Ay C ker Ays, and the last space is identified with
B*-valued holomorphic differential forms.

If L has a semi-positive singular metric, a similar map exists, with
coefficients in appropriate multiplier ideals.
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Kobayashi-Hitchin correspondence

DEFINITION: Let F be a coherent sheaf over an n-dimensional compact
Kahler manifold M. Let

1 / c1(F) Awn—1
rank(F) JmM  wvol(M)
A torsion-free sheaf I is called (Mumford-Takemoto) stable if for all sub-

sheaves I/ C F one has slope(F’) < slope(F). If F is a direct sum of stable
sheaves of the same slope, F' is called polystable.

slope(F) :=

DEFINITION: A Hermitian metric on a holomorphic vector bundle B is
called Yang-Mills (Hermitian-Einstein) if the curvature of its Chern connec-
tion satisfies ©5 A w" ™1 = slope(F) - Idg -w™. A Yang-Mills connection is a
Chern connection induced by the Yang-Mills metric.

REMARK: Yang-Mills connections minimize the integral

/M ©5]% Vol
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Kobayashi-Hitchin correspondence (part 2)

Kobayashi-Hitchin correspondence (Donaldson, Uhlenbeck-Yau) Let B be
a holomorphic vector bundle. Then B admits Yang-Mills metric if and
only if B is polystable.

COROLLARY: Any tensor product of polystable bundles is polystable.
EXAMPLE: Let M be a Kahler-Einstein manifold. Then T'M is polystable.
REMARK: Let M be a Calabi-Yau (e.g., hyperkahler) manifold. Then T'M

admits a Hermitian-Einstein metric for any Kahler class (Calabi-Yau theorem).
Therefore, T'M is stable for all Kahler structures.
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Positive currents

DEFININION: A current is a differential form with coefficients in distribu-
tions (generalized functions).

REMARK: De Rham differential is well defined on the space of currents, the Poincare lemma
holds, and cohomology of currents are the same as cohomology of differential forms.

REMARK: The space of k-currents on an n-manifold M is dual to the space
of (n — k)-forms with compact support.

EXAMPLE: For any subvariety Z C M of codimension k, the map n— [, n
on k-forms defines a k-current, called the current of integration.

DEFININION: Let M be a complex n-manifold. A positive current is a
(1,1)-current ¢ which satisfies (¢,a) > 0, for any positive (n — 1,n — 1)-form
with compact support.

EXAMPLE: A current of integration over a divisor is always positive.

DEFININION: A cohomology class 8 € HL1(M) is called pseudoeffective if
it can be represented by a closed, positive current.
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Subsheaves in tensor bundles have pseudoeffective —cq(F)

THEOREM: Let M be a compact hyperkahler manifold, € a tensor power
of a tangent bundle (such as a bundle of holomorphic forms), and E C ¥ a
coherent subsheaf of €. Then the class —c1(F) € Hﬂé’l(M) is pseudoeffec-
tive.

Step O:
1
[t Aoy = 25 Y gl 0i)a(is, aig)--

where a; € H2(M), and the sum is taken over all 2n-tuples (Fujiki). We chose
the sign of ¢ in such a way that ¢(w,w) > 0 for any Kahler class.

Step 1: Since ¥ is polystable, slope(E) < 0. Then [;;c1(E) Aw™™ 1 <0 for
any Kahler class w. Equivalently, ¢(c1(F),w) < 0. This means that the class
—c1(F) lies in the dual nef cone.
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Subsheaves in tensor bundles have pseudoeffective —c(EF) (part 2)

Step 2: Let M, 2, M be a hyperkahler manifold birationally equivalent to
M. Then ¢ is non-singular in codimension 1. Therefore, H2(M) = H2(M,).

Step 3: Let T, be the same tensor power of T'M, as ¥. Clearly, ¥, can be
obtained as a saturation of ©*%. Taking a saturation of p*E C ¢*%, we obtain
a coherent subsheaf Ey C Tq, With ¢1(Eq) = c1(F).

Step 4: We obtained that the class —c;(FE) lies in the dual nef cone of
M, for all birational models of M.

Step 5: We call the union of nef cones for all birational hyperkahler mod-
els of M the birational nef cone. The birational nef cone is dual to the
pseudoeffective cone (Huybrechts, Boucksom). Therefore, —ci(F) is pseu-
doeffective.

|
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L-valued holomorphic forms are non-singular in codimension 1

LEMMA: Hodge's index theorem. Let L € HLI(M) a nef class satisfying
q(L,L) = 0, and vg € HY1(M) a class satisfying ¢(L,vg) = 0 and ¢(vg,vg) > O.
Then L is proportional to v.

THEOREM: Let M be a compact hyperkahler manifold, L a nef line bundle
satisfying ¢q(L,L) = 0, ¥ some tensor power of a tangent bundle, and ~ €
H9(T ® L). Assume no power of L is effective. Then ~ is non-singular
in codimension 1.

Step 1: Let Ly be a rank 1 subsheaf of ¥ generated by v ® L~1. Then
v .= —c1(Lg) is pseudoeffective.

Step 2: By definition, v is a section of a rank one sheaf L& Lg. Therefore,
D = c1(L ® Lg), where D is a union of all divisorial components of the zero
set of v. We have ¢1(L) = D 4 v.
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L-valued holomorphic forms are non-singular in codimension 1 (part 2)

Step 3: We have ¢c1(L) = D+v. Since L is nef, v and D are pseudoeffective,
we have ¢(L,v) > 0 and ¢(L,D) > 0. Then

0=gq(L,L) =q(L,v)+q(L,D) > 0.
We obtain that ¢(L,v) = ¢q(L,D) = 0.

Step 4: Divisorial Zariski decomposition (Boucksom).
For any pseudoeffective v, we have v = vg + > o F;, where v is birational
nef, «; positive and rational, and E; are exceptional divisors.

Step 5: The same argument as in Step 3 can be used to show that q(L,vg) =

Step 6: Hodge index theorem implies vg = Ac1(L). This gives

c1(L) = D+ Ae1(L) + ) oy E;
Therefore, (1 — X)ecq1(L) is effective. By our assumptions, L is not effective.
Therefore, \—1 =0, and D+ > o;E; = 0.

m
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From L-valued differential forms to sections of L

THEOREM: Let L be a nef bundle on a hyperkahler manifold, with ¢q(L, L) =
0. Assume that HO(Q*(M) ® L) # 0, for infinitely many values of N. Then
L* is effective, for some k > 0.

Step 1: Suppose that L®* is never effective. Then any non-zero section
of *(M) ® LY is non-degenerate outside of codimension 2, as we have
just shown.

Step 2: Let E;. C @; QM be subsheaf generated by global sections of EQ L®",
1 =1,...,k. Let Fxx := UE}, and r be its rank. For any r-tuple of linearly
independent (at generic point) sections of Exo, 71 € EQL®1, ... ~. € E® L®,
the determinant v1 A...Av» is a section of det Eoo®LN N = Y. 1L. hon-vanishing
in codimension 1, hence non-degenerate.

Step 3: This gives an isomorphism det Eo, = LY, with N = Y4, as above.

Step 4: There are infinitely many choices of ~;, with i going to oo, hence
det Fo = LY cannot always hold. Contadiction! We proved that Lk is
effective.

|
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Multiplier ideal sheaves.

REMARK: If L is nef, it does not imply that L is semipositive. However, a
singular semipositive metric always exists.

THEOREM (*): Let M be a simple hyperkahler manifold, L a nef bundle
on M, with positive singular metric, q(L,L) = 0, and let Z(L™) be the sheaf
of L2-integrable holomorphic sections of L™. Assume that for infinitely
many m > 0, HY(Z(L™)) # 0. Then LY is effective, for some N > 0.

Proof: Using the multiplier ideal version of hard Lefschetz, we obtain that
H*(Z(L™)) # 0 implies that HO(2*(M)® L™) is non-zero. Applying the above
theorem, we obtain that LF is effective. m

SPECULATION: Let L be a singular nef bundle. Consider a function k XL,
x(Z(L*)). Is it possible that x;(0) = n+ 1, and xz(k) = 0 for all kK > O,
except a finite number?

If it is impossible, assumptions of (*) hold, and LY is effective.

REMARK: If L has algebraic singularities, x;(k) is either periodic, or
unbounded, hence LY is effective.
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