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Complex manifolds

DEFINITION: Let M be a smooth manifold. An almost complex structure

is an operator I : TM −→ TM which satisfies I2 = − IdTM .

The eigenvalues of this operator are ±
√
−1 . The corresponding eigenvalue

decomposition is denoted TM = T0,1M ⊕ T1,0(M).

DEFINITION: An almost complex structure is integrable if ∀X,Y ∈ T1,0M ,

one has [X,Y ] ∈ T1,0M . In this case I is called a complex structure op-

erator. A manifold with an integrable almost complex structure is called a

complex manifold.

THEOREM: (Newlander-Nirenberg)

This definition is equivalent to the usual one.
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Kähler manifolds

DEFINITION: An Riemannian metric g on an almost complex manifiold M

is called Hermitian if g(Ix, Iy) = g(x, y). In this case, g(x, Iy) = g(Ix, I2y) =
−g(y, Ix), hence ω(x, y) := g(x, Iy) is skew-symmetric.

DEFINITION: The differential form ω ∈ Λ1,1(M) is called the Hermitian

form of (M, I, g).

THEOREM: Let (M, I, g) be an almost complex Hermitian manifold. Then

the following conditions are equivalent.

(i) The complex structure I is integrable, and the Hermitian form ω is closed.

(ii) One has ∇(I) = 0, where ∇ is the Levi-Civita connection

∇ : End(TM)−→ End(TM)⊗ Λ1(M).

DEFINITION: A complex Hermitian manifold M is called Kähler if either
of these conditions hold. The cohomology class [ω] ∈ H2(M) of a form ω

is called the Kähler class of M . The set of all Kähler classes is called the

Kähler cone.
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Hyperkähler manifolds

DEFINITION: A hypercomplex manifold is a manifold M equipped with

three complex structure operators I, J,K, satisfying quaternionic relations

IJ = −JI = K, I2 = J2 = K2 = − IdTM

(the last equation is a part of the definition of almost complex structures).

DEFINITION: A hyperkähler manifold is a hypercomplex manifold equipped

with a metric g which is Kähler with respect to I, J,K.

REMARK: This is equivalent to ∇I = ∇J = ∇K = 0: the parallel translation

along the connection preserves I, J,K.

DEFINITION: Let M be a Riemannian manifold, x ∈ M a point. The

subgroup of GL(TxM) generated by parallel translations (along all paths) is

called the holonomy group of M .

REMARK: A hyperkähler manifold can be defined as a manifold which

has holonomy in Sp(n) (the group of all endomorphisms preserving I, J,K).
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Holomorphically symplectic manifolds

DEFINITION: A holomorphically symplectic manifold is a complex manifold

equipped with non-degenerate, holomorphic (2,0)-form.

THEOREM: (Calabi-Yau) A compact, Kähler, holomorphically symplectic

manifold admits a unique hyperkähler metric in any Kähler class.

DEFINITION: For the rest of this talk, a hyperkähler manifold is a com-

pact, Kähler, holomorphically symplectic manifold.

DEFINITION: A hyperkähler manifold M is called simple if π1(M) = 0,

H2,0(M) = C.

Bogomolov’s decomposition: Any hyperkähler manifold admits a finite cov-

ering which is a product of a torus and several simple hyperkähler manifolds.

Further on, all hyperkähler manifolds are assumed to be simple.
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Holomorphic Lagrangian fibrations

THEOREM: (Matsushita, 1997)

Let π : M −→X be a surjective holomorphic map from a hyperkähler manifold

M to X, whith 0 < dimX < dimM . Then dimX = 1/2 dimM, and the

fibers of π are holomorphic Lagrangian (this means that the symplectic

form vanishes on π−1(x)).

DEFINITION: Such a map is called holomorphic Lagrangian fibration.

REMARK: The base of π is conjectured to be rational. Hwang (2007) proved

that X ∼= CPn, if it is smooth. Matsushita (2000) proved that it has the same

rational cohomology as CPn.

REMARK: The base of π has a natural flat connection on the smooth locus

of π. The combinatorics of this connection can be used to determine the

topology of M (Strominger-Yau-Zaslow, Kontsevich-Soibelman).

If we want to learn something about M, it’s recommended to start

from a holomorphic Lagrangian fibration (if it exists).
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The SYZ conjecture

DEFINITION: Let (M,ω) be a Calabi-Yau manifold, Ω the holomorphic
volume form, and Z ⊂ M a real analytic subvariety, Lagrangian with respect
to ω. If Ω|Z is proportional to the Riemannian volume form, Z is called
special Lagrangian (SpLag).

(Harvey-Lawson): SpLag subvarieties minimize Riemannian volume in
their cohomology class. This implies that their moduli are finite-dimensional.

A trivial remark: A holomorphic Lagrangian subvariety of a hyperkähler man-
ifold (M, I) is special Lagrangian on (M,J), where (I, J,K) is a quaternionic
structure associated with the hyperkähler structure.

Another trivial remark: A smooth fiber of a Lagrangian fibration has trivial
tangent bundle. In particular, a smooth fiber of a holomorphic Lagrangian
fibration is a torus.

Strominger-Yau-Zaslow, “Mirror symmetry as T-duality” (1997). Any
Calabi-Yau manifold admits a Lagrangian fibration with special Lagrangian
fibers. Taking its dual fibration, one obtains “the mirror dual” Calabi-Yau
manifold.
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Ample bundles

REMARK: Let L be a holomorphic line bundle. For any metric on L one

associates its Chern connection; the curvature Θ of this connection is a closed,

imaginary (1,1)-form. If the form −
√
−1 Θ is Kähler, L is called positive.

REMARK: This is the usual source of Kähler metrics in complex geometry.

REMARK: The form −
√
−1 Θ is Kähler if and only if Θ(x, x) > 0 for any

non-zero x ∈ T0,1(M).

DEFINITION: A holomorphic line bundle is called ample, if for a sufficiently

big N , the tensor power LN is generated by global holomorphic sections,

without common zeros, and, moreover, the natural map M −→ PH0(LN)∗ is

an embedding.

THEOREM: (Kodaira) Let L be line bundle on a compact complex

manifold, with c1(L) Kähler. Then L is ample.

8



SYZ conjecture and ergodic action M. Verbitsky

Nef classes and semiample bundles

DEFINITION: A cohomology class θ is called nef (numerically effective) if

it belongs to the closure of the Kähler cone. A holomorphic line bundle L is

nef if c1(L) is nef.

DEFINITION: A line bundle is called semiample if LN is generated by its

holomorphic sections, which have no common zeros.

REMARK: From semiampleness it obviously follows that L is nef. In-

deed, let π : M −→ PH0(LN)∗ the the standard map. Since sections of L have

no common zeros, π is holomorphic. Then L ∼= π∗O(1), and the curvature of

L is a pullback of the Kähler form on CPn.

REMARK: The converse is false:

a nef bundle is not necessarily semiample.
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The hyperkähler SYZ conjecture

CONJECTURE: (Tyurin, Bogomolov, Hassett-Tschinkel, Huybrechts, Sawon).

Any hyperkähler manifold can be deformed to a manifold admitting a holo-

morphic Lagrangian fibration.

REMARK: This is the only known source of SpLag fibrations.

A trivial observation: Let π : M −→X be a holomorphic Lagrangian fibra-

tion, and ωX a Kähler class on X. Then η := π∗ωX is nef, and satisfies

q(η, η) = 0.

The hyperkähler SYZ conjecture: Let L be a nef line bundle on a hy-

perkähler manifold, with
∫
M c1(L)dimCM = 0 (such bundle is called parabolic).

Then L is semiample.

REMARK: This statement is a special case of Kawamata’s abundance con-

jecture. When
∫
M c1(L)dimCM > 0, Kawamata’s base point free theorem

implies that L is semiample.
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SYZ conjecture in dimension 4, Q-effectivity in any dimension

Two applications of today’s lecture main theorem (stated later):

THEOREM: Let M be a hyperkähler manifold, and L a parabolic nef bundle.

Then L is Q-effective, that is, its positive power L⊗N admits a holomor-

phic section.

THEOREM: (based on a theorem Gongyo and Matsumura)

Let M be a hyperkähler manifold, dimCM = 4. Then SYZ conjecture is

true.
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Currents and generalized functions

DEFINITION: Let F be a Hermitian bundle with connection ∇, on a Rie-

mannian manifold M with Levi-Civita connection, and

‖f‖Ck := sup
x∈M

(
|f |+ |∇f |+ ...+ |∇kf |

)
the corresponding Ck-norm defined on smooth sections with compact sup-

port. The Ck-topology is independent from the choice of connection

and metrics.

DEFINITION: A generalized function is a functional on top forms with

compact support, which is continuous in one of Ci-topologies.

DEFINITION: A k-current is a functional on (dimM − k)-forms with com-

pact support, which is continuous in one of Ci-topologies.

REMARK: Currents are forms with coefficients in generalized functions.
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Currents on complex manifolds

DEFINITION: The space of currents is equipped with weak topology (a

sequence of currents converges if it converges on all forms with compact sup-

port). The space of currents with this topology is a Montel space (barrelled,

locally convex, all bounded subsets are precompact). Montel spaces are re-

flexive (the map to its double dual with strong topology is an isomorphism).

CLAIM: De Rham differential is continuous on currents, and the Poincare

lemma holds. Hence, the cohomology of currents are the same as coho-

mology of smooth forms.

DEFINITION: On an complex manifold, (p, q)-currents are (p, q)-forms with

coefficients in generalized functions

REMARK: In the literature, this is sometimes called (n − p, n − q)-

currents.

CLAIM: The Dolbeault lemma holds on (p, q)-currents, and the ∂-cohomology

are the same as for forms.
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Positive forms and currents

DEFINITION: A weakly positive (p, p)-form onis a real (p, p)-form η which

satisfies η(x1, Ix1, x2, Ix2, ...xp, Ixp) > 0 for all x1, ...np ∈ TM . The set of

weakly positive (p, p)-forms is a convex cone.

DEFINITION: A cone of strongly positive (p, p)-forms is a convex cone

generated by η1 ∧ η2 ∧ ... ∧ ηp, for all poisitve (1,1)-forms η1, ..., ηp.

CLAIM: For (n− 1, n− 1)-forms, strong positivity is the same as weak.

CLAIM: The cones of strongly and weakly positive forms are dual.

REMARK: The 0 form is weakly positive and strongly positive.

DEFINITION: A strongly/weakly positive (p, p)-current is a current tak-

ing non-negative values on weakly/strongly positive compactly supported

(n− p, n− p)-forms.

REMARK: A positive (p, p)-current is C0-continuous.
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Positive currents and measures

DEFINITION: A positive generalized function is a generalized function

taking non-negative values on all positive volume forms.

REMARK: Positive generalized functions are C0-continuous. A positive gen-

eralized function multiplied by a positive volume form gives a measure on

a manifold, and all measures are obtained this way.

DEFINITION: A mass of a positive (p, p)-current η on a Hermitian n-

manifold (M,ω) is a measure η ∧ ωn−p. It is non-negative, and positive, if

η 6= 0.

Theorem: The space of positive currents with bounded mass is (weakly)

compact.

Proof: Follows from precompactness of bounded sets in weak-*-topology.

REMARK: Since the space of currents is Montel, all bounded subsets are

precompact.
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Closed positive currents and psh functions

DEFINITION: Let Z ⊂M be a complex analytic subvariety. The current of

integration [Z] is the current α−→
∫
Z α. It is closed and positive (Lelong).

REMARK: (Poincare-Lelong formula)
√
−1
π ddc log |ϕ| = [Zϕ], where Zϕ is a

divisor of a holomorphic function ϕ.

DEFINITION: A locally integrable function f : M −→ [∞,∞[ is called plurisub-

harmonic (psh) if ddcf is a positive current.

CLAIM: (a local ddc-lemma) Locally, every positive, closed (1,1)-current

is obtained as ddcf, for some psh function f .

DEFINITION: Let f be a real locally integrable function on a complex

manifold, such that ddcf + α is a positive current, for some smooth (1,1)-

form α. Then f is called almost plurisubharmonic.

DEFINITION: Let L be a line bundle and h a smooth Hermitian metric on L.

For any almost plurisubharmonic function f , we call he−f a singular metric

on L. Its curvature is equal to Θh + ddcf .
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Nef current

DEFINITION: A nef current is a limit of positive, closed (p, p)-forms in the

space of currents.

REMARK: Generally speaking, currents cannot be multiplied. However,

if a current is nef, η = lim ηi, where ηi are positive, closed forms, we can

define η ∧Θ for any positive current as a limit limi ηi∧Θ. This limit exists by

compactness, it is closed and positive, but not necessarily unique.

THEOREM: Let x ∈ M be a point on a Hermitian manifold, and ηx :=

ddc log dx, where dx(y) := d(x, y) is the distance function. Then in a sufficiently

small neighbourhood of x, the current ηx is a positive, closed, nef current,

obtained as a limit ηx = limi ηi, where ηi = ddc(max(−i, log dx). Moreover,

the limit lim ηi ∧Θ is uniquely defined for any positive, closed current

Θ.
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Lelong numbers

DEFINITION: Let Θ be a closed, positive (p, p)-current on an n-manifold

M , x ∈ M a point, ηx = ddc log dx, and Θ ∧ ηn−px the corresponding measure.

Consider its Lebesgue decomposition Θ ∧ ηn−px = cδx + α, where α(x) = 0

and δx is an atomic measure concentrated in x. The number c is called the

Lelong number of a current Θ is x, denoted by νx(Θ).

DEFINITION: Lelong set Fc of a current Θ is a set of all x where Θ has

non-zero Lelong number νx(Θ) > c.

THEOREM: (Siu) Lelong sets of a positive, closed current are closed and

complex analytic for any c ∈ R>0.
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Lelong numbers and multiplier ideals

DEFINITION: Let f be an almost plurisubharmonic function, and e−f the

corresponding singular metric on a trivial line bundle OM . The multiplier

ideal of f is a sheaf of L2-integrable holomorphic sections of OM .

THEOREM: (Nadel) It is a coherent sheaf, equal to OM outside of the

set of all points where νx(ddcf) 6 1/n.

REMARK: The multiplier ideal of f is determined uniquely by the corre-

sponding current ddcf .

REMARK: e−2ϕ is integrable in x if and only if the multiplier ideal of ϕ

is trivial in x.
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Lelong numbers and SYZ conjecture

THEOREM: (V., 2009) Let L be a parabolic bundle on a hyperkähler man-

ifold. Assume that L admits a metric with all Lelong numbers vanishing.

Then L is Q-effective.

THEOREM: (Gongyo-Matsumura) Let L be a parabolic bundle on a hy-

perkähler manifold M , dimCM = 4. Assume that L admits a metric with all

Lelong numbers vanishing. Then L is semiample.

The main results of today’s lecture are the following two theorems:

THEOREM: Let M be a hyperkähler manifold, and [η] ∈ H1,1(M) a parabolic

nef class. Then [η] is represented by a positive, closed (1,1)-current with

vanishing Lelong numbers.

REMARK: This implies Q-effectivity and SYZ conjecture for dimC = 4.
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Uniqueness of positive representative

DEFINITION: An automorphism of a hyperkähler manifold is called hyper-

bolic if it acts on H2(M) with eigenvalue α, where |α| > 1.

THEOREM: Let (M, I) be a hyperkähler manifold with Pic(M) non-maximal.

Assume that a deformation of M admits a hyperbolic automorphism. Con-

sider an irrational parabolic nef class [η] ∈ H1,1(M), and let η be a positive,

closed (1,1)-current representing [η]. Then such a current is unique in its

cohomology class.
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Teichmüller spaces

DEFINITION: Let M be a smooth manifold. A complex structure on M is

an endomorphism I ∈ EndTM , I2 = − IdTM such that the eigenspace bundles

of I are involutive, that is, satisfy satisfy [T1,0M,T1,0M ] ⊂ T1,0M .

REMARK: Let Comp be the space of such tensors equipped with a topology

of convergence of all derivatives. It is a Fréchet manifold.

REMARK: The diffeomorphism group Diff is a Fréchet Lie group acting on

a Fréchet manifold Comp in a natural way.

Definition: Let M be a compact complex manifold, and Diff0(M) a con-

nected component of its diffeomorphism group (the group of isotopies).

Let Teich := Comp /Diff0(M). We call it the Teichmüller space.
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Computation of the mapping class group

THEOREM: (Fujiki). Let η ∈ H2(M), and dimM = 2n, where M is hy-

perkähler. Then
∫
M η2n = cq(η, η)n, for some primitive integer quadratic

form q on H2(M,Z), and c > 0 a rational number.

DEFINITION: The form q is called Bogomolov-Beauville-Fujiki form. It

has signature (3, b2 − 3).

THEOREM: (V., 1996, 2009) Let M be a simple hyperkähler manifold, and

Γ0 = Aut(H∗(M,Z), p1, ..., pn). Then

(i) Γ0

∣∣∣H2(M,Z) is a finite index subgroup of O(H2(M,Z), q).

(ii) The map Γ0 −→O(H2(M,Z), q) has finite kernel.
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The period map

REMARK: To simplify the language, we redefine Teich and Comp for hy-

perkähler manifolds, admitting only complex structures of Kähler type. Since

the Hodge numbers are constant in families of Kähler manifolds, for any

J ∈ Teich, (M,J) is also a simple hyperkähler manifold, hence H2,0(M,J)

is one-dimensional.

Definition: Let Per : Teich −→ PH2(M,C) map J to a line H2,0(M,J) ∈
PH2(M,C). The map Per : Teich −→ PH2(M,C) is called the period map.

REMARK: Per maps Teich into an open subset of a quadric, defined by

Per := {l ∈ PH2(M,C) | q(l, l) = 0, q(l, l) > 0}.

It is called the period space of M .

REMARK: Per = SO(b2 − 3,3)/SO(2) × SO(b2 − 3,1). Indeed, the group

SO(H2(M,R), q) = SO(b2−3,3) acts transitively on Per, and SO(2)×SO(b2−
3,1) is a stabilizer of a point.
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Birational Teichmüller moduli space

DEFINITION: Let M be a topological space. We say that x, y ∈M are non-

separable (denoted by x ∼ y) if for any open sets V 3 x, U 3 y, U ∩ V 6= ∅.

THEOREM: (Huybrechts, 2001) Two points I, I ′ ∈ Teich are non-separable

if and only if there exists a bimeromorphism (M, I)−→ (M, I ′) which is

non-singular in codimension 2 and acts as identity on H2(M).

REMARK: This is possible only if (M, I) and (M, I ′) contain a rational curve.

General hyperkähler manifold has no curves; ones which have belong to

a countable union of divisors in Teich.

DEFINITION: The space Teichb := Teich / ∼ is called the birational Te-

ichmüller space of M .

THEOREM: The period map Teichb
Per−→ Per is an isomorphism, for each

connected component of Teichb.
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Ergodic complex structures

DEFINITION: Let (M,µ) be a space with measure, and G a group acting on

M preserving measure. This action is ergodic if all G-invariant measurable

subsets M ′ ⊂M satisfy µ(M ′) = 0 or µ(M\M ′) = 0.

CLAIM: Let M be a manifold, µ a Lebesgue measure, and G a group acting

on M ergodically. Then the set of non-dense orbits has measure 0.

DEFINITION: A complex structure I ∈ Teich is called ergodic if its orbit is

dense in its connected component in Teich.

CLAIM: Let (M, I) be a manifold with an ergodic complex structure, and

I ′ its deformation. Then there exists a sequence of diffeomorphisms νi
such that νi(I) converges to I ′ in C∞-topology. Moreover, this property

is equivalent to ergodicity of I.

THEOREM: Let M be a compact torus, dimCM > 2, or a simple hyperkähler

manifold. A complex structure on M is ergodic if and only if Pic(M) is

not of maximal rank.
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Ergodic action of Diff0 on parabolic classes

DEFINITION: Let Teichp be the Teichmüller space of pairs (I, η), where

η is a parabolic class and I ∈ Teich a complex structure on a hyperkähler

manifold

REMARK: Let W = H2(M,R). The space Teichp by global Torelli is

mapped (bijectively, outside of a measure 0 set) to the set Perp of pairs

Perp = {(u, l) | l ∈ Gr++(W ), u ∈ l⊥, q(u, u) = 0} such that 〈l, u〉 has positive

orientation (u should belong to a positive half of the light cone of W ).

Theorem 1: The mapping class group acts on Teichp ergodically. More-

over, any orbit of (M,η) where η is irrational and Pic(M, I) is not of maximal

rank is dense in Per.

The ergodicity follows from Moore theorem.
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Ergodic action of Diff0 on parabolic classes and Moore’s theorem

THEOREM: (Calvin C. Moore, 1966) Let Γ be an arithmetic lattice in a

non-compact simple Lie group G with finite center, and H ⊂ G a non-compact

subgroup. Then the left action of Γ on G/H is ergodic, that is, for all Γ-

invariant measurable subsets Z ⊂ G/H, either Z has measure 0, or

G/H\Z has measure 0.

In our case, Teichp is identified (up to measure 0) with the quotient Perp =

SO(W )/H, where W = H2(M,R) and H is a stabilizer of (l, u) ∈ Perp, which

is a non-compact parabolic group.
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Ratner theory

To determine which orbits of Γ on Teichp are dense, we use Ratner theory.

DEFINITION: Let G be a connected Lie group equipped with a Haar mea-

sure. A lattice Γ ⊂ G is a discrete subgroup of finite covolume (that is, G/Γ

has finite volume).

EXAMPLE: By Borel and Harish-Chandra theorem, any integer lattice in

a simple Lie group has finite covolume.

THEOREM: (Marina Ratner)

Let H ⊂ G be a Lie subroup generated by unipotents, and Γ ⊂ G a lattice.

Then a closure of any H-orbit in G/Γ is an orbit of a closed, connected

subgroup S ⊂ G, such that S ∩ Γ ⊂ S is a lattice.

REMARK: Let x ∈ G/H be a point in a homogeneous space, and Γ · x its

Γ-orbit, where Γ is an arithmetic lattice. Then its closure is an orbit of a

group S containing stabilizer of x. Moreover, S is a smallest group defined

over rationals and stabilizing x.
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Ratner theory and parabolic classes

CLAIM: Let W be a vector space with a quadratic form of signature (3, k),

G = SO+(W ), and H = St(l, u) a stabilizer of an oriented pair (l, u), where

l ∈ Gr++(W ), a u a non-zero null-vector in l⊥ Then any closed connected

Lie subgroup S ⊂ G containing H coincides with G, H, St(l) or St(u).

COROLLARY: Let Γ ⊂ SO+(W ) be an arithmetic lattice acting on G/H,

and (l, u) ∈ G/H any point. Then any Γ-orbit of (l, u) is dense, unless l or

u is rational.

Now the second claim of Theorem 1 follows immediately.

Theorem 1: The mapping class group acts on Teichp ergodically. More-

over, any orbit of (M,η) where η is irrational and Pic(M, I) is not of maximal

rank is dense in Per.
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Vanishing of Lelong numbers

THEOREM: Let M be a hyperkähler manifold, and [η] ∈ H1,1(M) a parabolic

nef class. Then [η] is represented by a positive, closed (1,1)-current with

vanishing Lelong numbers.

Proof. Step 1: When Pic(M, I) = 0, it is known. Indeed, in this case all

complex subvarieties of (M, I) are symplectic, and Lelong sets are known to

be coisotropic (V., 2010).

Step 2: Let (I, η) be any point in Teichp, and (J, [µ]) ∈ Teichp a general

point satisfying assumptions of Step 1. By Theorem 1, it has dense Γ-

orbit. Then there exists a sequence of diffeomorphisms νi such that

limi νi(J, [µ]) = (I, [η]).

Step 3: Let µ be a positive, closed current representing [µ] on (M,J). Then

its Lelong numbers vanish. The limit limi νi(µ) exists by compactness; it is

a positive, closed current on (M, I), denoted by µ. To prove theorem it

suffices to show that its Lelong numbers vanish.
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Step 4: Denote by (Ji, ηi) the point νi(J, [µ]) in Teichp, and by µi the current
νi(µ). Let β be a smooth, closed (1,1)-form representing [µ] on (M,J),
and αi = νi(β) a sequence smooth forms representing [ηi] on (M,Ji) and
converging to a smooth form α on (M, I). Then µi − α = ddcψi by ddc-
lemma, and µ − α = ddcψ, with ψi converging to ψ. By Nadel’s theorem, to
prove that Lelong numbers of µ vanish it suffices to show that e−Cψ is
L2-integrable for any C > 0.

Step 5: A Calabi-Yau manifold has a canonical measure, therefore, all dif-
feomorphisms νi are measure-preserving. With respect to this measure Voli
on (M,Ji), the integral

∫
e−Cψi Voli stays constant. Then the limit e−Cψ is

L2-integrable, as the following lemma implies (weak limits of positive currents
ddcϕi correspond to pointwise limits of plurisubharmonic functions ϕi).

LEMMA: Let f be a bounded from above function on a compact manifold
(M,ρ) with measure, νi a sequence of measure-preserving self-maps, and
g = lim ν∗i f a pointwise limit. Then

∫
M fρ =

∫
M gρ.

Proof: Let fC := max(f,−C) and gC := max(g,−C). Then gC = lim ν∗i fC,
giving

∫
M fCρ =

∫
M gCρ, by Lebesgue bounded convergence theorem. On

the other hand,
∫
M gρ = limC

∫
M gCρ by Lebesgue monotonous convergence

theorem.
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Uniqueness of positive representative: Dinh-Sibony result

THEOREM: (Dinh-Sibony)
Let (M, I) be a compact complex manifold equipped with a automorphism
T acting on H1,1(M) with eigenvalues αi, and let α be a real eigenvalue
satisfying |α| > 1. Assume that it is a maximal eigenvalue, and the rest are
smaller. Then the corresponding eigenvector v ∈ H1,1(M) is nef, and is
represented by a unique positive current.

I will prove this theorem for volume-preserving automorphisms.

Proof. Step 1: Since α is the biggest eigenvalue, and the Kähler cone is
open in H1,1, there exists a Kähler class ω which does not lie in the sum W
of all other eigenspaces: ω = cv +w, where w ∈W , c 6= 0. This means that
the term cαnv dominates the rest in T ∗ω = cαnv + (Tn)∗w, and we have
limi

(Tn)∗ω
αn = cv. Therefore cv is nef.

Step 2: It remains to prove uniqueness of the positive representative η of v.
Suppose that there are two positive representatives η1, η2, with η1−η2 = ddcψ
by ddc-lemma. Then T ∗ψ = αψ + C, where C is a real constant. Let Vol
be a volume form on M preserved by T , and consider the pushforward ψ∗Vol
as a measure on R. Then ψ∗Vol is mapped to itself by x−→ αx + C. This
is impossible, however, because such a measure must be atomic, and ψ is
non-constant.
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Uniqueness of positive representative

THEOREM: Let (M, I) be a hyperkähler manifold with Pic(M) non-maximal.

Assume that a deformation of M admits a hyperbolic automorphism. Con-

sider an irrational parabolic nef class [µ] ∈ H1,1(M), and let µ be a positive,

closed (1,1)-current representing [µ]. Then such a current is unique in its

cohomology class.

Proof: Suppose that such a current is not unique; let µ, λ be positive rep-

resentatives. Let (M,J, η) be a hyperkähler manifold admitting a hyperbolic

automorphism, [η] its eigenvector with a maximal eigenvalue, and η its pos-

itive, closed representative. Using ergodic theory as above, we may approxi-

mate (J, [η]) by a sequence νi(I, [µ]). Then the limits limi νi(µ) and limi νi(λ)

are positive currents which represent [η], giving limi νi(µ) = limi νi(λ). How-

ever, µ − λ = ddcψ, and lim νi(ψ) 6= 0 by the same argument with Lebesgue

monotone convergency as above (we again use that ηi is volume-preserving).

This implies that a positive representative is unique for any pair (I, [µ]) with

dense orbit.
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