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Salem numbers

arXiv:1408.0195 Chris Smyth, Survey article: Seventy years of Salem numbers.

DEFINITION: A Salem number is a real algebraic number λ > 1 which is
Galois conjugate to λ−1, such that the rest of its conjugates satisfy |λi| = 1.

REMARK: Since λ and λ−1 have the same minimal polynomial P (t) = tn +
an−1t

n−1 + ... + a0 ∈ Z[t], this polynomial is palindromic: ai = an−i, and
a0 = 1.

LEMMA: (Salem)
Let λ > 1 be a real algebraic number such that all its conjugates belong to
the closed disk |z| 6 1, with at least one on its boundary. Then λ is a Salem
number.

Proof: Let τ be the Galois conjugate on the boundary, then τ−1 = τ is also
a conjugate. Therefore, λ is conjugate to λ−1, and all other conjugates
ν are conjugate to ν−1. Since both ν and ν−1 belong to the disk |z| 6 1,
they lie on its boundary.

REMARK: If λ is a Salem number, all its integer powers λk, k 6= 0, are
also Salem numbers. Indeed, the Galois conjugates of λk are powers of
Galois conjugates of λ.
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Raphaël Salem (1898-1963)

Raphaël Salem (1898-1963)

Salem, R. Algebraic numbers and Fourier analysis, Heath mathematical monographs, 1963
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Number fields containing Salem numbers

DEFINITION: An arithmetic field is a finite extension of Q. An arithmen-
tic field is totally real if the images of all its embeddings to C belong to R.
THEOREM: (Salem)

A number field K is generated by a Salem number τ if and only if it con-

tains an index 2 totally real subfield K1 = Q[α], such that α > 2 is an

irrational real algebraic integer, and all its Galois conjugates belong to

the interval ]− 2,2[.
Proof. Step 1: Let α := τ + τ−1. Then all Galois conjugates of α are ν + ν,
where ν is on a circle, hence they are real and belong to ]− 2,2[. We proved
that Q[τ ] is degree 2 extension of a totally real field K1 = Q[α].

Step 2: Conversely, consider an index 2 totally real subfield K1 = Q[α] with
the above properties, and let τ be the solution of the quadratic equation
τ + τ−1 = α. Then all its Galois conjugates satisfy τ1 + τ−1

1 = α1, where
α1 ∈] − 2,2[. The quadratic equation τ2

1 − α1τ1 + 1 = 0 has discriminant
α2

1−4 < 0, hence it has two complex conjugate solutions; since these solutions
are inverse, they lie on a circle. The number τ is a solution of τ2−ατ + 1 = 0

which has positive discriminant α2 − 4 giving τ = α+
√
α2−4

2 . Then τ > α > 1

and its inverse τ−1 = α−
√
α2−4
2 is its Galois conjugate.
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Example of a Salem number

EXAMPLE: The argument of the last step gives a way to construct ex-

plicit examples of Salem numbers. Let α = x+
√
y > 1 be a real quadratic

irrational number such that x −√y ∈] − 2,2[. Then, as follows from Step 2,

the solution τ of the equation τ + τ−1 = α is a Salem number. One of the

numbers which have this property is α = 1
2(3 +

√
5); since

√
5 ≈ 2.23607,

α ≈ 2.6 and its Galois conjugate 1
2(3−

√
5) ≈ 0.4.

5



Salem numbers Misha Verbitsky

Salem numbers contained in number fields

THEOREM: (Salem)

Let K be a number field generated by a Salem number τ . Then for any Salem

number τ ′ ∈ K, τ 6= τ ′, the fraction τ
τ ′ is also a Salem number.

Proof. Step 1: Let α := τ + τ−1. Since Q(τ) is a quadratic extension of

Q(α), we can write τ ′ = p(α) + τq(α), for some polynomials p, q ∈ Q[z]. We

are going to show that τ ′ has the same degree as τ . Otherwise, some

real conjugates τ ′i = p(αi)+τiq(αi) would be real for τi non-real, implying that

q = 0, which is impossible.

Step 2: The element τ ′ is expressed polynomially through τ : τ ′ = P (τ),

where P ∈ Q[z]. Consider the Galois element ι which takes τ to τ−1. This

automorphism maps τ ′ to a real conjugate of τ ′, because P has rational

coefficients. The only real conjugates of τ ′ are τ ′ and (τ ′)−1. Since τ ′ has the

same degree as τ , it cannot be fixed by ι, which implies ι(τ ′) = (τ ′)−1.

Step 3: We obtained that ττ ′ is conjugate to its reciprocal. Since the rest

of conjugates of τ and τ ′ lie on the circle, the same is true for ττ ′,
hence it is a Salem number.
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The hyperbolic space and its isometries

REMARK: The group O(m,n),m, n > 0 has 4 connected components. We

denote the connected component of 1 by SO+(m,n). We call a vector v

positive if its square is positive.

DEFINITION: Let V be a vector space with quadratic form q of signature

(1, n), Pos(V ) = {x ∈ V | q(x, x) > 0} its positive cone, and P+V projec-

tivization of Pos(V ). Denote by g any SO(V )-invariant Riemannian structure

on P+V . Then (P+V, g) is called hyperbolic space, and the group SO+(V )

the group of oriented hyperbolic isometries.
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Classification of hyperbolic isometries

Theorem-definition: Let n > 0, and α ∈ SO+(1, n) is a non-trivial oriented

isometry acting on V = R1,n. Then one and only one of these three cases

occurs

(i) α has an eigenvector x with q(x, x) > 0 (α is “elliptic isometry”)

(ii) α has an eigenvector x with q(x, x) = 0 and a real eigenvalue λx

satisfying |λx| > 1 (α is “hyperbolic isometry”)

(iii) α has a unique eigenvector x with q(x, x) = 0 (α is “parabolic

isometry”).

REMARK: All eigenvalues of elliptic and parabolic isometries have abso-

lute value 1. Hyperbolic and elliptic isometries are semisimple (that is,

diagonalizable over C), parabolic are not.

DEFINITION: The quadric {l ∈ PV | q(l, l) = 0} is called the absolute.

It is realized as the boundary of the hyperbolic space P+V . Then elliptic

isometries have no fixed points on the absolute, parabolic isometries

have 1 fixed point on the absolute, and hyperbolic isometries have 2.
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Hyperbolic lattices

DEFINITION: A quadratic lattice (Λ, q) is Zn equipped with Z-valued

quadratic form q. An arithmetic hyperbolic lattice is the group of O(Λ, q)

isometries of (Λ, q) of signature (1, n− 1).

REMARK: Clearly, O(Λ, q) ⊂ O(1, n−1), hence O(Λ, q) acts on the hyperbolic

space Hn−1 by isometries. It is possible to show that the Haar measure

of the quotient O(1,n−1)
O(Λ,q) is finite, and the Riemannian volume of the

quotient Hn−1

O(Λ,q) is also finite.

DEFINITION: Let Γ ⊂ O(1, n − 1) be a discrete subgroup. It is called a

lattice subgroup if the Haar measure of the quotient O(1,n−1)
Γ is finite.

DEFINITION: It is not hard to see that the Riemannian volume of Hn−1/Γ

is finite if and only if it is a lattice. In this situation, the quotient Hn−1/Γ is

called a hyperbolic manifold.
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Salem numbers and hyperbolic automorphisms

PROPOSITION: Let (Λ, q) be a quadratic lattice of signature (1, n − 1),

and O(Λ, q) ⊂ O(1, n − 1) the corresponding arithmetic subgroup. Consider

an element u ∈ O(Λ, q) as an isometry of Hn−1. Suppose that this isometry

hyperbolic, and let λ > 1 be the corresponding eigenvalue of u. Then λ is a

Salem number.

Proof: By definition, u can be represented by an invertible integer matrix. Let

P (t) ∈ Z[t] be an irreducible factor if its minimal polynomial which satisfies

P (λ) = 0. Since all roots of P (t) except λ and λ−1 lie on a circle, λ is a

Salem number.
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Salem numbers and complex surfaces

DEFINITION: Let M be a complex surface, and H2(M) = H2,0(M) ⊕
H1,1(M)⊕H0,2(M) its second cohomology with their Hodge decomposition.

By Hodge index theorem, the intersection form on H1,1(M) has signature

(1,m). An automorphism of M is called hyperbolic, parabolic or elliptic if

its action on H1,1(M) is hyperbolic, parabolic or elliptic.

REMARK: If the surface M is also projective, then H1,1(M) can be decom-

posed onto its integer part H1,1(M)∩H2(M,Z), called the Hodge part. The

Hodge part of H1,1(M) has signature (1, r), by projectivity. Then any hyper-

bolic automorphism of M acts on H1,1(M) ∩H2(M,Z) with an eigenvalue λ

which satisfies |λ| > 1; as we have shown above, |λ| is a Salem number.

This is how Salem numbers crop up in McMullen’s work on K3 surfaces.

McMullen, Curtis T. Dynamics on K3 surfaces: Salem numbers and Siegel

disks. J. Reine Angew. Math. 545 (2002), 201-233.

11



Salem numbers Misha Verbitsky

Siegel disks

DEFINITION: A linear map A : (z1, z2, ..., zn)−→ (λ1z1, λ2z2, ..., λnzn) is

called an irrational rotation if |λi| = 1 and the action of A on (S1)n has dense

orbits. In this case the numbers λi are called multiplicatively independent.

DEFINITION: We say that a holomorphic self-map f : M −→M admits

a Siegel disk if f has a fixed point p and a neighbourhood of p admitting

coordinates where f acts linearly as an irrational rotation.

THEOREM: (McMullen)

Let M be a complex n-manifold, and f : M −→M a holomorphic map which

has a fixed point p such that df acts on TpM as an irrational rotation. Assume

that all eigenvalues of this action are algebraic. Then (M, f) admits a Siegel

disk.

The proof of this result takes a lot of number theory, originally developed by

Gel’fond and Fel’dman in their work on Hilbert 7-th problem on transcendence

of numbers such as 2
√

2.
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Diophantine numbers

DEFINITION: Let λ1, ..., λn be non-zero complex numbers. We say that
they are multiplicatively independent if the only solution of

∏
λ
ki
i = 1 is

k1 = 0, ..., kn = 0. We say they are jointly Diophantine if there exist numbers
C,M > 0 such that for all n-tuples (k1, ..., kn) ∈ Zn, we have∣∣∣∏λ

ki
i − 1

∣∣∣ > C(max |ki|)−M .
THEOREM: (S. Sternberg, 1961)
Let M be a complex n-manifold, and f : M −→M a holomorphic map which
has a fixed point p such that df acts on TpM with jointly Diophantine eigen-
values. Then f can be linearized in a neighbourhood of p. In other words,
(M, f) admits a Siegel disk.
THEOREM: (N. I. Fel’dman, 1968)
Let λi be multiplicatively algebraic numbers. Chose their logarithms logλi.
Then there exists a positive number M such that

|k02πı + k1 logλ1 + ...+ kn logλn| > e−M(d+max |ki|),

where d is the degree of the field generated by λi.
COROLLARY: Any collection of multiplicatively independent algebraic num-
bers is jointly Diophantine.

Comparing this result and Sternberg’s theorem, we immediately obtain the
result of McMullen.
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K3 surfaces

DEFINITION: A holomorphically symplectic manifold is a complex man-

ifold equipped with a non-degenerate, holomorphic (2,0)-form.

DEFINITION: Take a 2-dimensional complex torus T , then all 16 singular

points of T/±1 are of form C2/±1. Its resolution T̃/±1 is called a Kummer

surface. It is holomorphically symplectic.

DEFINITION: A K3 surface is a complex deformation of a Kummer surface.

CLAIM: 1. π1(K3) = 0,

2. The second homology and cohomology of K3 is torsion-free.

3. b2(K3) = 22, and the signature of its intersection form is (3,19).

4. The intersection form of K3 is even, and the corresponding quadratic

lattice is U3 ⊕ (−E8)2, where U =

(
0 1
1 0

)
and E8 is the Coxeter matrix for

the group E8.

THEOREM: Any complex compact surface with c1(M) = 0 and π1(M) = 0

is isomorphic to K3. Moreover, it is Kähler.
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Siegel disk on K3 surfaces

THEOREM: (McMullen)
Let M be a projective K3 surface, and f its holomorphic automorphism. Then
f cannot admit a Siegel disk. Moreover, the set isomorphism classes of
K3 surfaces admitting an automorphism with Siegel disk is countable.

DEFINITION: Let f be an automorphism of a K3 surface, and Ω a holo-
morphic symplectic form of M . Then, clearly, f∗Ω is proportional to Ω with
a complex coefficient: f∗Ω = δΩ. Then δ is called the determinant of f .

REMARK: Let f be an automorphism of a K3 surface which admits a Siegel
disk with eigenvalues λ1, λ2. Then λ1λ2 = δ. In particular, δ is not a root
of unity.

THEOREM: (McMullen)
Let M be a non-projective K3 surface, and f its holomorphic automorphism.
Assume that Tr f∗

∣∣∣H2(M) = −1, and one of its eigenvalues is a Salem number.

Assume, moreover, that its determinant δ satisfies τ := δ + δ−1 > 1 − 2
√

2.
Assume, finally, that τ has a Galois conjugate τ ′ such that τ ′ < 1 − 2

√
2.

Then f has a unique fixed point p. Moreover, (M, f, p) admits a Siegel
disk.
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Automorphisms of K3 surfaces and Salem numbers

PROPOSITION: Let f be an automorphism of a K3 surface, Then either

all eigenvalues of f∗ on H2(M) are roots of unity, or there is a unique,

simple eigenvalue λ with |λ| > 1, and |λ| is a Salem number.

Proof. Step 1: Let δ be the determinant of f . Any diffeomorphism of

M preserves the volume:
∫
M Vol =

∫
M f∗Vol. Choosing Ω ∧ Ω = Vol, and

using f∗Vol = δδVol, we obtain that |δ| = 1. Therefore, any eigenvector of

f∗
∣∣∣H2(M,C) belongs to H1,1(M,R). From the classification of the isometries

of the hyperbolic space, we obtain that either all eigenvalues of f∗
∣∣∣H1,1(M)

satisfy |αi| = 1 or there exists a unique simple eigenvalue λ with |λ| > 1.

Step 2: In the first case, we use Kronecker’s theorem: if an algebraic

number α and all its conjugates lie in the unit circle, it is a root of

unity.

Step 3: In the second case, the Galois conjugates of λ are roots of the

minimal polynomial of f∗
∣∣∣H2(M), hence they are all eigenvalues of f∗

∣∣∣H2(M),

but there are at most two eigenvalues which do not lie on the circle.

Therefore, |λ| is a Salem number.
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Automorphisms of projective K3 surfaces

The following theorem immediately implies that as projective K3 cannot have

Siegel disks.

PROPOSITION: Let f be an automorphism of a projective K3 surface M ,

and δ its determinant. Then δ is a root of unity.

Proof: Consider the group NS(M) := H2(M,Z)∩H1,1(M). Since M is projec-

tive, NS(M) contains a positive vector, hence the group NS(M)⊗Z Q, called

the Hodge lattice has signature (1, k), and its orthogonal complement T(M),

called the transcendental lattice, has signature (2,19 − k). Since f∗ pre-

serves Re(H2,0(M)⊕H0,2(M)) ⊂ T(M), which has signature (2,0), it belongs

to a maximal compact subgroup:

f∗
∣∣∣T(M) ⊂ O(2)×O(19− k) ⊂ O(T(M)⊗ R) = O(2,19− k).

However, f∗ is an integer automorphism of T(M), hence it lies in a discrete

subgroup of O(T(M)⊗R). Intersection of a discrete group and a compact

group is always finite, hence f∗ has finite order on T(M). This implies

that f∗ acts Ω as a root of unity.
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Hodge structures

DEFINITION: Let VR be a real vector space. A (real) Hodge structure
of weight w on a vector space VC = VR ⊗R C is a decomposition VC =⊕
p+q=w V

p,q, satisfying V p,q = V q,p. It is called rational Hodge structure if
one fixes a rational lattice VQ such that VR = VQ⊗R, and an integer Hodge
structure if one fixes an integer lattice VZ ⊂ VQ. A Hodge structure is
equipped with U(1)-action, with u ∈ U(1) acting as up−q on V p,q. Morphism
of Hodge structures is a rational map which is U(1)-invariant.

DEFINITION: A rational Hodge structure VC =
⊕

p+q=2
p,q>0

V p,q of weight 2 with

dimV 2,0 = 1 is called a Hodge structure of K3 type.

THEOREM: (global Torelli theorem for K3)
Let M be a K3 surface, q ∈ Sym2(H2(M)∗) the intersection form, and S
a Hodge structure H2(M) = H2,0(M) ⊕ H1,1(M) ⊕ H0,2(M) of K3 type on
H2(M). Assume that q(l, l) = 0 and q(l, l) > 0 for a non-zero vector l ∈
H2,0(M). Then there exists a complex structure on M inducing this
Hodge decomposition. Moreover, it is unique up to a diffeomorphism
acting trivially on H2(M,R).

REMARK: This implies that the Teichmüller space of K3 surfaces is
Gr++(H2(M,R)).
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Global Torelli for K3 with automorphisms

We use the following version of Torelli theorem.

THEOREM: (global Torelli theorem for K3 with automorphisms)

Let M be a K3 surface, and f ∈ O+(H2(M,Z), q) an isometry of its intersection

lattice preserving the orientation in the (3,0)-part. Assume that there exists

a Hodge structure on H2(M) preserved by f , and satisfying q(l, l) = 0 and

q(l, l) > 0 for a non-zero vector l ∈ H2,0(M). Then there exists a complex

structure I on M inducing this Hodge decomposition, and an automor-

phism f of (M, I) inducing f on H2(M,R). Moreover, the pair (M, I, f) is

defined uniquely up to a diffeomorphism acting trivially on H2(M,R).
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Only countably many K3 surfaces admit Siegel disks

THEOREM: (McMullen)

Let H2(M,Z), q be an intersection lattice of a K3 surface, and f an auto-

morphism admitting a Siegel disk. Then the action of f on H2(M,Z) on

the transcendental lattice has countably many Hodge structures of K3

type which are compatible with the action of f.

Proof: The action of f on its eigenspace H2,0(M) has an eigenvalue which is

conjugate to a Salem number, hence it is a simple eigenvalue. Then H2,0(M)

can be one of finitely many simple 1-dimensional eigenspaces of f, and

H2,0(M) determines the complex structure by Torelli theorem.

REMARK: This theorem immediately implies that the set of K3 admit-

ting Siegel disks is countable. Indeed, the Hodge lattice is integral, hence

there are only countably many choices. The transcendental lattice admits

only countably many Hodge decompositions which are compatible with f by

the above theorem.
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Atyah-Bott fixed point formula

Let f be a holomorphic automorphism of compact Kähler n-manifold, and

Lr(f) :=
∑n
s=0(−1)sTr f∗

∣∣∣Hr,s(M)

THEOREM: (Atyah-Bott fixed point formula)

Assume that all fixed points of f are simple. Then

Lr(f) =
∑
pi

Tr
(
Df

∣∣∣ΛrTpiM )
det

(
Id−Dpif

) .
where {pi} is the set of fixed points of f .

REMARK: Let f be an automorphism of a K3 surface with a unique fixed

point p. Then this formula gives L2(f) = 1 + δ = δ
1−TrDpf+δ, which can

be rewritten as

TrDpf =
1 + δ + δ2

1 + δ
.
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Existence of Siegel disks

REMARK: Existence of automorphism of the following type is implied by

the Torelli theorem.

THEOREM: (McMullen)

Let M be a non-projective K3 surface, and f its holomorphic automorphism.

Assume that Tr f∗
∣∣∣H2(M) = −1, and one of its eigenvalues is a Salem number.

Assume, moreover, that its determinant δ satisfies τ := δ + δ−1 > 1 − 2
√

2.

Assume, finally, that τ has a Galois conjugate τ ′ such that τ ′ < 1 − 2
√

2.

Then f has a unique fixed point p. Moreover, (M, f, p) admits a Siegel

disk.

Proof. Step 1: By Lefschetz fixed point formula, f has 1 = Tr f∗
∣∣∣H2(M) + 2

fixed points, hence the fixed point p of f is unique and simple. It remains

to find the eigenvalues of dF on TpM .

Step 2: The eigenvalues α, β of the action of Df on TpM are computed using

the formula α+β = TrDpf = 1+δ+δ2

1+δ . and αβ = detDpf = δ. Computing α, β

in terms of δ yields the multiplicative independence, which implies existence

of a Siegel disk by application of Fel’dman’s theorem.
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