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Contact manifolds.

In this lecture, all manifolds are assumed to be oriented.

Definition: Let M be a smooth manifold, dimM = 2n−1, and ω a symplectic

form on M × R>0. Suppose that ω is homogeneous: Ψ∗qω = q2ω, where

Ψq(m, t) = (m, qt). Then M is called a contact manifold.

Remark: The contact form on M is defined as θ = ωy ~T , where ~T = t ddt.

Then dθ = [d, ·y ~T ]ω = Lie~T ω = 2ω. Therefore, the form dθn−1 ∧ θ = 1
nω

ny ~T

is non-degenerate on M × {t0} ⊂M × R>0.

Remark: Usually, a contact manifold is defined as a (2n−1)-manifold with

1-form θ such that dθn−1 ∧ θ is nowhere degenerate.

Example: An odd-dimensional sphere S2n−1 is contact. Indeed, C(S2n−1) =

S2n−1×R>0 = R2n\0, and symplectic form
∑n
i=1 dx2i−1∧dx2i is homogeneous.

Contact geometry is an odd-dimensional counterpart to symplectic

geometry
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Contact manifolds: three equivalent definitions

Definition 1: Let C(S) = (S × R>0) be a cone, equipped with the standard

action hλ(x, t) = (x, λt). Assume that C(S) is equipped with a symplectic

form ω such that h∗λω = λ2ω. Then S is called contact manifold.

Definition 2: Let S be an odd-dimensional manifold, and B ⊂ TS an ori-

ented sub-bundle of codimension 1, with Frobenius form Λ2B
Φ−→ TS/B

non-degenerate. Then S is called contact manifold, B ⊂ TS the contact

bundle.

Definition 3: Let S be manifold of dimension 2k + 1, B ⊂ TS an oriented

sub-bundle of codimension 1. Assume that for a nowhere vanishing 1-form

θ ∈ Λ1M vanishing on B, the form θ∧ (dθ)k is a non-degenerate volume form.

Then (S,B) is called a contact manifold, and θ a contact form.

THEOREM: These three definitions are all equivalent.

The proof is given later today.
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Basic forms and Frobenius theorem

DEFINITION: Let M be a manifold, B ⊂ TM a sub-bundle, θ ∈ ΛiM a

differential form. It is called basic with respect to B if for each b ∈ B, one

has θyb = 0 and Lieb θ = 0.

DEFINITION: A sub-bundle B ⊂ TM is called involutive if [B,B] ⊂ B.

THEOREM: (“Frobenius theorem”)

Let B ⊂ TM be an involutive sub-bundle. Then for each point x ∈M there

exists a neighbourhood U 3 x and a smooth projection π : U −→N such

that B = ker π.

THEOREM: Let M be a manifold, B ⊂ TM an involutive sub-bundle, θ ∈
ΛiM a differential form. Then the following are equivalent.

(i) η is basic.

(ii) for any open subset U ⊂ M and a projection π : U −→N such

that B = ker dπ, one has η = π∗η′ for some η′ ∈ ΛiN.
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Contact manifolds: three equivalent definitions (proofs)

Definition 2: Let S be an odd-dimensional manifold, and B ⊂ TS an ori-

ented sub-bundle of codimension 1, with Frobenius form Λ2B
Φ−→ TS/B

non-degenerate. Then S is called contact manifold, B ⊂ TS the contact

bundle.

Definition 3: Let S be manifold of dimension 2k + 1, B ⊂ TS an oriented

sub-bundle of codimension 1. Assume that for any nowhere vanishing 1-form

θ ∈ Λ1S, the form θ ∧ (dθ)k is a non-degenerate volume form. Then (S,B) is

called a contact manifold, and θ a contact form.

Proof. Step 1: (2) ⇔ (3):

for each x, y ∈ B, dθ(x, y) = θ([x, y]) = Φ(x, y). Therefore, the Frobenius form

Λ2B
Φ−→ TS/B can be expressed as 〈Φ(x, y), θ〉 = dθ(x, y). Non-degeneracy

of θ∧(dθ)k on TM is equivalent to non-degeneracy of dθ = Φ on B = ker θ.

Therefore, Φ(x, y) = dθ(x, y) is of maximal rank on B if and only if θ ∧ (dθ)k

is non-degenerate.
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Contact manifolds: three equivalent definitions (proofs, part two)

Definition 1: Let C(S) = (S × R>0) be a cone, equipped with the standard

action hλ(x, t) = (x, λt). Assume that C(S) is equipped with a symplectic

form ω such that h∗λω = λ2ω. Then S is called contact manifold.

Step 2: (3) ⇒ (1):

Let M
π−→ S be the space of positive vectors in the oriented 1-dimensional

bundle L := TS/B, which is trivialized by the form θ, V ∈ TM the unit vertical

vector field, and t : M −→ R a map which associates θ(v) to a point (s, v) ∈M ,

s ∈ S, v ∈ L|x. Let T := tπ∗θ ∈ Λ1M , and let ω := dT . Consider the vector field

r = tV ∈ TM . Clearly, Lier T = 2T , giving Lier dT = 2dT . To prove that M

is a symplectic cone of S, it remains to show that dT is symplectic.

Step 3: (3) ⇒ (1), second part:

Since ker dt = π∗S, any vector field X ∈ TS can be naturally lifted to a

vector field π−1(X) ∈ ker dt ⊂ TM . For each Y := π−1(y), x, y ∈ B, one

has dT (X,Y ) = T ([X,Y ]) = T (π−1([x, y])), hence dT is non-degenerate

on π−1(B). Also, dT yV = T , and ker T = 〈π−1B, V 〉, hence dT is non-

degenerate on the symplectic orthogonal complement to π−1B.
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Contact manifolds: three equivalent definitions (proofs, part three)

Definition 1: Let C(S) = (S × R>0) be a cone, equipped with the standard

action hλ(x, t) = (x, λt). Assume that C(S) is equipped with a symplectic

form ω such that h∗λω = λ2ω. Then S is called contact manifold, and C(S)

the symplectic cone.

Definition 3: Let S be manifold of dimension 2k + 1, B ⊂ TS an oriented

sub-bundle of codimension 1. Assume that for any nowhere vanishing 1-form

θ ∈ Λ1S, the form θ ∧ (dθ)k is a non-degenerate volume form. Then (S,B) is

called a contact manifold, and θ a contact form.

Step 4: (1) ⇒ (3):

Let M = C(S) = S × R>0, and t ∈ C∞M the standard coordinate along R>0.

Consider the vector field r := t ddt, and the form θ := ωyr. Since θyr = 0 and

Lier t
−1θ = d(t−1θ)yr + d(θyr) = t−1θ − t−1θ + d(1) = 0,

the form t−1θ is basic with respect to the projection C(S)−→ S. This

gives a form θ on S. Finally, (dθ)k+1 is non-degenerate because dθ is sym-

plectic. Therefore, (dθ)k+1yr = (k + 1)(dθ)k ∧ θ is non-degenerate on S.
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Kähler manifolds.

Definition: Let (M, I) be a complex manifold, dimCM = n, and g is Rieman-

nian form. Then g is called Hermitian if g(Ix, Iy) = g(x, y).

Remark: Since I2 = − Id, it is equivalent to g(Ix, y) = −g(x, Iy). The form

ω(x, y) := g(x, Iy) is skew-symmetric.

Definition: The differential form ω is called the Hermitian form of (M, I, g).

Definition: A complex Hermitian manifold is called Kähler if dω = 0.

Remark: Kähler manifolds are the main object of complex algebraic

geometry (algebraic geometry over C). See e.g. Griffiths, Harris, “Principles

of Algebraic Geometry”.
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Examples of Kähler manifolds.

Definition: Let M = CPn be a complex projective space, and g a U(n + 1)-

invariant Riemannian form. It is called Fubini-Study form on CPn. The

Fubini-Study form is obtained by taking arbitrary Riemannian form and aver-

aging with U(n+ 1).

Remark: For any x ∈ CPn, the stabilizer St(x) is isomorphic to U(n). Fubini-

Study form on TxCPn is U(n)-invariant, hence unique up to a constant.

Claim: Fubini-Study form is Kähler. Indeed, dω|x is a U(n)-invariant 3-

form on Cn, but such a form must vanish (invariants of U(n) are known since

XIX century).

Corollary: Every projective manifold (complex submanifold of CPn) is Kähler.
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Almost complex manifolds.

A differential-geometric way of looking at Kähler manifolds.

Definition: An almost complex structure on a manifold M is an operator

I : TM −→ TM such that I2 = − Id. It is called integrable if I is induced by

a complex structure.

Theorem: A Riemannian almost complex Hermitian manifold (M, I, g) is

Kähler if and only if ∇ω = 0, where ∇ is a Levi-Civita connection.

Remark: This theorem is difficult (both ways). Integrability of almost com-

plex structures takes some intensive work on PDEs. The implication dω = 0

⇒ ∇ω = 0 is also non-trivial, but essentially linear-algebraic.

Remark: One may think of Kähler manifolds as of symplectic mani-

folds with a Riemannian structure compatible with a symplectic form.

Locally, every symplectic manifold admits a Kähler structure (Darboux).
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Sasakian manifolds.

Definition: Let M be a smooth manifold, dimM = 2n − 1, and (ω, I) a

Kaehler structure on M×R>0. Suppose that ω is homogeneous: Ψ∗qω = q2g,

where Ψq(m, t) = (m, qt), and I is Ψq-invariant. Then M is called Sasakian,

and M × R>0 its Kähler cone.

Sasakian geometry is an odd-dimensional counterpart to Kähler geom-

etry

Remark: A Sasakian manifold is obviosly contact. Indeed, a Sasakian man-

ifold is a contact manifold equipped with a compatible Riemannian

metric.

Example: An odd-dimensional sphere S2n−1 is Sasakian. Indeed, its cone

S2n−1 × R>0 = Cn\0 has the standard Kähler form
√
−1

∑n
i=1 dzi ∧ dzi which

is obviously homogeneous.

S. Sasaki, ”On differentiable manifolds with certain structures which are closely related to

almost contact structure”, Tohoku Math. J. 2 (1960), 459-476.
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Shigeo Sasaki (1912-1987).

Kenmotsu Katsuei, Sato Hajime, Sasaki Shigeo, 1980
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Reeb field

DEFINITION: Let S be a Sasakian manifold, ω the Kähler form on C(S),

and r = t ddt the homothety vector field. Then LieIr t = 〈dt, Ir〉 = 0, hence

I(r) is tangent to S ⊂ C(S). This vector field is called the Reeb field of a

Sasakian manifold.

REMARK: The Reeb field is dual to the contact form θ = ωyr.

THEOREM: The Reeb field acts on a Sasakian manifold by contact

isometries.

(see the next slide)

DEFINITION: A Sasakian manifold is called regular if the Reeb field gen-

erates a free action of S1, quasiregular if all orbits of Reeb are closed, and

irregular otherwise.

13



Sasakian manifolds M. Verbitsky

Reeb field acts by contact isometries

THEOREM: The Reeb field acts on a Sasakian manifold by contact

isometries.

Proof. Step 1: Let (C(S), ω) be the cone of a Sasakian manifold with its

Kähler form, and t the standard coordinate function. A holomorphic vector

field is a vector field v such that its diffeomorphism flow etv is holomorphic.

The homothety vector field r = d ddt is holomorphic, because Lier ω̃ = 2ω̃,

Lier g = 2g, giving Lier I = Lier gω−1 = 0.

Step 2: If Y is a holomorphic vector field, then IY is also holomorphic. To see

this, chose (locally) a Kähler metric. Then ∇IZ(Y ) = I(∇Y (Z)) + [Y, IZ] and

∇Y (Z)+[Y, Z] = ∇ZY , showing that ∇IZ(Y ) = I(∇Z(Y ))⇔ Y is holomorphic.

Then the Reeb field acts on C(X) holomorphically.

Step 3: LieReeb ω = d(ω̃yIr) = d(tdt) = 0. Therefore, LieReeb ω = 0. Since

LieReeb I = 0 as well, this implies that Reeb is Killing.

Step 4: Contact sub-bundle B ⊂ TS is defined as kerωy ddt; since the Reeb

field preserves t and ω, it preserves the contact sub-bundle.
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Quasiregular Sasakian manifolds.

Definition: Given a contact manifold (M, θ) with a Riemannian structure g,

the dual vector field θ] is called the Reeb field of (M, θ, g).

Remark: For any Sasakian manifold, the Reeb field generates a flow of

diffeomorphisms acting on M by contact isometries. This is obvious from

the definition, because the Reeb field θ] = It ddt acts by holomorphic isometries

on the Kähler cone.

Definition: A Sasakian manifold M is called quasiregular if all orbits of the

Reeb flow are compact. The space of orbits of the Reeb flow is a complex

orbifold. Every quasiregular Sasakian manifold is a total space of S1-

bundle over a complex orbifold.

This is easy to see, because the quotient of M over the Reeb flow is the same

as the quotient of CM over its complexification, generated by θ] and Iθ].
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Examples of Sasakian manifolds.

Example: Let X ⊂ CPn be a complex submanifold, and CX ⊂ Cn+1\0 the

corresponding cone. The cone CX is obviously Kähler and homogeneous,

hence the intersection CX ∩ S2n−1 is Sasakian. This intersection is an S1-

bundle over X. This construction gives many interesting contact manifolds,

including Milnor’s exotic 7-spheres, which happen to be Sasakian.

Remark: A link of a homogeneous singularity is always Sasakian.

Remark: Every quasiregular Sasakian manifold is obtained this way, for some

Kähler metric on Cn+1.

Remark: Every Sasakian manifold can be deformed to a quasiregular

one.
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CR-manifolds.

Definition: Let M be a smooth manifold, B ⊂ TM a sub-bundle in a tangent

bundle, and I : B −→B an endomorphism satisfying I2 = −1. Consider

its
√
−1 -eigenspace B1,0(M) ⊂ B ⊗ C ⊂ TCM = TM ⊗ C. Suppose that

[B1,0, B1,0] ⊂ B1,0. Then (B, I) is called a CR-structure on M .

Example: A complex manifold is CR, with B = TM . Indeed, [T1,0M,T1,0M ] ⊂
T1,0M is equivalent to integrability of the complex structure (Newlander-

Nirenberg).

Example: Let X be a complex manifold, and M ⊂ X a hypersurface.

Then B := dimC TM ∩ I(TM) = dimCX − 1, hence rkB = n − 1. Since

[T1,0X,T1,0X] ⊂ T1,0X, M is a CR-manifold.

Definition: A Frobenius form of a CR-manifold is the tensor B⊗B −→ TM/B

mapping X,Y to the ΠTM/B([X,Y ]). It is an obstruction to integrability of

the foliation given by B.
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Contact CR-manifolds.

Complex algebraic geometry is a rich source of contact structures.

Definition: Let (M,B, I) be a CR-manifold, with codimB = 1. Then M is

called a contact CR-manifold if its Frobenius form is non-degenerate.

Remark: Since [B1,0, B1,0] ⊂ B1,0 and [B0,1, B0,1] ⊂ B0,1, the Frobenius form

is a pairing between B0,1 and B1,0. This means that it is Hermitian.

Definition: Let (M,B, I) be a CR-manifold, with codimB = 1. Then M is

called a strictly pseudoconvex CR-manifold if its Frobenius form is positive

definite everywhere.

Example: Let h be a function on a complex manifold such that ∂∂h = ω

is a positive definite Hermitian form, and X = h−1(c) its level set. Then

the Frobenius form of X is equal to ω|X . In particular, X is a strictly

pseudoconvex CR-manifold.
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CR-geometry of Sasakian manifolds.

Claim: Let M be a Sasakian manifold, CM = M × R>0 its Kähler cone, and
ϕ(m, t) = t the projection of CM to R>0. Then

√
−1 ∂∂ϕ = ω is its Kähler

form.

Proof:√
−1∂∂ϕ = 1

2dd
cϕ = 1

2dIdϕ = dId(t2) = d(ωyt ddt) = ω as we have already seen.

Corollary:
A Sasakian manifold is strictly pseudoconvex as a CR-manifold.

Question:
Which strictly pseudoconvex CR-manifolds admit Sasakian structures?

Answer: Let M be a compact, strictly pseudoconvex CR-manifold. Then M

admits a Sasakian structure if and only if M admits a CR-holomorphic
vector field, which is everywhere transversal to B. Moreover, this vector
field becomes the Reeb field for this Sasakian structure and the Sasakian
structure on M is uniquely determined by the CR-structure and the
Reeb field.
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