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Contact manifolds.

In this lecture, all manifolds are assumed to be oriented.

Definition: Let M be a smooth manifold, dimM = 2n—1, and w a symplectic
form on M x R>%. Suppose that w is homogeneous: Wiw = ¢w, where
W,(m,t) = (m,qt). Then M is called a contact manifold.

Remark: The contact form on M is defined as 6 = w_lT where T = tdt
Then do = [d, 2T]w = Liezw = 2w. Therefore, the form do" 1 A0 = L™ 2T
is non-degenerate on M x {to} C M x R>0,

Remark: Usually, a contact manifold is defined as a (2n — 1)-manifold with
1-form 6 such that d¢"~! A9 is nowhere degenerate.

Example: An odd-dimensional sphere 52"~ 1 is contact. Indeed, C(5%"~1) =
§2n=1xR>0 = R?™\0, and symplectic form >-"_; dzo; 1 Adzo; is homogeneous.

Contact geometry is an odd-dimensional counterpart to symplectic
geometry
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Contact manifolds: three equivalent definitions

Definition 1: Let C(S) = (S x R”0) be a cone, equipped with the standard
action hy(z,t) = (z,At). Assume that C(S) is equipped with a symplectic
form w such that hiw = A?w. Then S is called contact manifold.

Definition 2: Let S be an odd-dimensional manifold, and B C T'S an ori-
ented sub-bundle of codimension 1, with Frobenius form A2B -2 TS/B
non-degenerate. Then S is called contact manifold, B C T'S the contact

bundle.

Definition 3: Let S be manifold of dimension 2k + 1, B C TS an oriented
sub-bundle of codimension 1. Assume that for a nowhere vanishing 1-form
6 € AL M vanishing on B, the form 8 A (d6)* is a non-degenerate volume form.
Then (S, B) is called a contact manifold, and § a contact form.

THEOREM: These three definitions are all equivalent.

The proof is given later today.
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Basic forms and Frobenius theorem

DEFINITION: Let M be a manifold, B ¢ TM a sub-bundle, § € A\*M a
differential form. It is called basic with respect to B if for each b € B, one
has 6.6 =0 and Liey0 = 0.

DEFINITION: A sub-bundle B C TM is called involutive if [B, B] C B.

THEOREM: (“Frobenius theorem”)

Let B C T'M be an involutive sub-bundle. Then for each point x € M there
exists a neighbourhood U > x and a smooth projection = : U — N such
that B=kern. m

THEOREM: Let M be a manifold, B C T'M an involutive sub-bundle, 0 &
A'M a differential form. Then the following are equivalent.

(i) n is basic.

(ii) for any open subset U C M and a projection = : U — N such
that B = kerdr, one has n = n*rf/ for some n’ € A'N.



Sasakian manifolds M. Verbitsky

Contact manifolds: three equivalent definitions (proofs)

Definition 2: Let S be an odd-dimensional manifold, and B C T'S an ori-
ented sub-bundle of codimension 1, with Frobenius form A2B -2 TS/B
non-degenerate. Then S is called contact manifold, B C T'S the contact

bundle.

Definition 3: Let S be manifold of dimension 2k + 1, B C T'S an oriented
sub-bundle of codimension 1. Assume that for any nowhere vanishing 1-form
6 € ALS, the form 6 A (d9)* is a non-degenerate volume form. Then (S, B) is
called a contact manifold, and 6 a contact form.

Proof. Step 1: (2) & (3):

for each z,y € B, df(z,y) = 0([z,y]) = ®(x,y). Therefore, the Frobenius form
A2B 2, TS/B can be expressed as (P(x,y),0) = df(x,y). Non-degeneracy
of OA(dP)* on T M is equivalent to non-degeneracy of dd = ® on B = ker 6.
Therefore, ®(z,y) = df(x,y) is of maximal rank on B if and only if 8 A (d9)*
IS non-degenerate.
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Contact manifolds: three equivalent definitions (proofs, part two)

Definition 1: Let C(S) = (S x R”0) be a cone, equipped with the standard
action hy(x,t) = (z,At). Assume that C(S) is equipped with a symplectic
form w such that hiw = A2w. Then S is called contact manifold.

Step 2: (3) = (1):

Let M -2+ S be the space of positive vectors in the oriented 1-dimensional
bundle L := TS/B, which is trivialized by the form 0, V € T'M the unit vertical
vector field, and t: M — R a map which associates 0(v) to a point (s,v) € M,
s€S,vE Lly. LetT :(=1tn*0 € ALM . and let w := dT. Consider the vector field
r=1tV € T'M. Clearly, Lie,T = 2T, giving Lie,dT = 2d1'. To prove that M
IS a symplectic cone of S, it remains to show that d7 is symplectic.

Step 3: (3) = (1), second part:

Since kerdt = «*S, any vector field X € TS can be naturally lifted to a
vector field 7= 1(X) € kerdt ¢ TM. For each Y := n 1(y),z,y € B, one
has dT(X,Y) = T([X,Y]) = T(= 1([z,y])), hence dT is non-degenerate
on 7~ 1(B). Also, dT.V = T, and kerT = (x~1B,V), hence dT is non-
degenerate on the symplectic orthogonal complement to ~1B.
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Contact manifolds: three equivalent definitions (proofs, part three)

Definition 1: Let C(S) = (S x R”0) be a cone, equipped with the standard
action hy(z,t) = (x,At). Assume that C(S) is equipped with a symplectic
form w such that hjw = A2w. Then S is called contact manifold, and C(S)
the symplectic cone.

Definition 3: Let S be manifold of dimension 2k + 1, B C T'S an oriented
sub-bundle of codimension 1. Assume that for any nowhere vanishing 1-form
6 € A1S, the form 6 A (df)* is a non-degenerate volume form. Then (S, B) is
called a contact manifold, and 6 a contact form.

Step 4: (1) = (3):
Let M = C(S) =S xR>9, and t € C®°M the standard coordinate along R>9.

Consider the vector field r := t%, and the form 0 :(= war. Since f6.r = 0 and

Lie,t 710 =d(t 10)or +d(0or) =t 10—t~ 10+ d(1) = 0,

the form ¢t~ 10 is basic with respect to the projection C(S) — S. This
gives a form 6 on S. Finally, (al@)k"‘1 IS non-degenerate because df is sym-
plectic. Therefore, (d9)*+1.r = (k+ 1)(d0)* A 0 is non-degenerate on S.

|
7



Sasakian manifolds M. Verbitsky

Kahler manifolds.

Definition: Let (M, ) be a complex manifold, dimg M = n, and g is Rieman-
nian form. Then g is called Hermitian if g(Ix,Iy) = g(x,vy).

Remark: Since 1?2 = —1Id, it is equivalent to g(Iz,y) = —g(z, Iy). The form
w(x,y) ;= g(x, [y) is skew-symmetric.

Definition: The differential form w is called the Hermitian form of (M, 1,q).
Definition: A complex Hermitian manifold is called Kahler if dw = 0.

Remark: Kahler manifolds are the main object of complex algebraic
geometry (algebraic geometry over C). See e.qg. Griffiths, Harris, “Principles
of Algebraic Geometry”.
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Examples of Kahler manifolds.

Definition: Let M = CP"™ be a complex projective space, and g a U(n 4+ 1)-
invariant Riemannian form. It is called Fubini-Study form on CP"™. The
Fubini-Study form is obtained by taking arbitrary Riemannian form and aver-
aging with U(n 4+ 1).

Remark: For any z € CP"™, the stabilizer St(x) is isomorphic to U(n). Fubini-
Study form on T,CP"™ is U(n)-invariant, hence unique up to a constant.

Claim: Fubini-Study form is Kahler. Indeed, dw|; is a U(n)-invariant 3-
form on C", but such a form must vanish (invariants of U(n) are known since

XIX century).

Corollary: Every projective manifold (complex submanifold of CP") is Kahler.
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Almost complex manifolds.
A differential-geometric way of looking at Kahler manifolds.

Definition: An almost complex structure on a manifold M is an operator
I: TM — TM such that 12 = —1Id. It is called integrable if I is induced by
a complex structure.

Theorem: A Riemannian almost complex Hermitian manifold (M, 1,q) is
Kahler if and only if Vw = 0, where V is a Levi-Civita connection.

Remark: This theorem is difficult (both ways). Integrability of almost com-
plex structures takes some intensive work on PDEs. The implication dw = 0O
= Vw = 0 is also non-trivial, but essentially linear-algebraic.

Remark: One may think of Kahler manifolds as of symplectic mani-
folds with a Riemannian structure compatible with a symplectic form.
Locally, every symplectic manifold admits a Kahler structure (Darboux).
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Sasakian manifolds.

Definition: Let M be a smooth manifold, dmM = 2n — 1, and (w,l) a
Kaehler structure on M xR>%. Suppose that w is homogeneous: Wiw = ¢2g,
where W,(m,t) = (m,qt), and I is Wg-invariant. Then M is called Sasakian,
and M x R>0 its Kahler cone.

Sasakian geometry is an odd-dimensional counterpart to Kahler geom-
etry

Remark: A Sasakian manifold is obviosly contact. Indeed, a Sasakian man-
ifold is a contact manifold equipped with a compatible Riemannian
metric.

Example: An odd-dimensional sphere S2"—1 is Sasakian. Indeed, its cone
§2n=1 x R>0 = C™\0 has the standard Ké&hler form /=1 Y% ; dz; A dz; which
IS obviously homogeneous.

S. Sasaki, "On differentiable manifolds with certain structures which are closely related to
almost contact structure”, Tohoku Math. J. 2 (1960), 459-476.
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Shigeo Sasaki (1912-1987).

Kenmotsu Katsuei, Sato Hajime, Sasaki Shigeo, 198
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Reeb field

DEFINITION: Let S be a Sasakian manifold, w the Kahler form on C(S),
and r = t% the homothety vector field. Then Liej.t = (dt,Ir) = 0, hence
I(r) is tangent to S C C(S). This vector field is called the Reeb field of a
Sasakian manifold.

REMARK: The Reeb field is dual to the contact form 0 = w.ur.

THEOREM: The Reeb field acts on a Sasakian manifold by contact
iIsometries.

(see the next slide)

DEFINITION: A Sasakian manifold is called regular if the Reeb field gen-
erates a free action of S1, quasiregular if all orbits of Reeb are closed, and
irregular otherwise.

13
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Reeb field acts by contact isometries

THEOREM: The Reeb field acts on a Sasakian manifold by contact
iIsometries.

Proof. Step 1: Let (C(S),w) be the cone of a Sasakian manifold with its
Kahler form, and t the standard coordinate function. A holomorphic vector
field is a vector field v such that its diffeomorphism flow etV is holomorphic.
The homothety vector field r = d% IS holomorphic, because Lie,o = 2,
Lie, g = 2g, giving Lie, I = Lie, gw~ 1 = 0.

Step 2: If Y is a holomorphic vector field, then IY is also holomorphic. To see
this, chose (locally) a Kahler metric. Then V(YY) = I1(Vy(Z2)) 4+ [Y,1Z] and
Vy(Z)+]|Y,Z] = V7Y, showing that V; (YY) = I(Vz(Y)) & Y is holomorphic.
Then the Reeb field acts on C(X) holomorphically.

Step 3: Liegeepw = d(walr) = d(tdt) = 0. Therefore, Lieg,pw = 0. Since
Liereep I = O as well, this implies that Reeb is Killing.
Step 4: Contact sub-bundle B C T'S is defined as kerau%; since the Reeb

field preserves ¢t and w, it preserves the contact sub-bundle. =m
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Quasiregular Sasakian manifolds.

Definition: Given a contact manifold (M, 6) with a Riemannian structure g,
the dual vector field 6% is called the Reeb field of (M,86, g).

Remark: For any Sasakian manifold, the Reeb field generates a flow of
diffeomorphisms acting on M by contact isometries. This is obvious from
the definition, because the Reeb field ot = It% acts by holomorphic isometries
on the Kahler cone.

Definition: A Sasakian manifold M is called quasiregular if all orbits of the
Reeb flow are compact. The space of orbits of the Reeb flow is a complex
orbifold. Every quasiregular Sasakian manifold is a total space of S!-
bundle over a complex orbifold.

This is easy to see, because the quotient of M over the Reeb flow is the same
as the quotient of CM over its complexification, generated by 6% and 6%

15



Sasakian manifolds M. Verbitsky

Examples of Sasakian manifolds.

Example: Let X C CP" be a complex submanifold, and CX c C*T1\0 the
corresponding cone. The cone CX is obviously Kahler and homogeneous,
hence the intersection CX N S27"—1 js Sasakian. This intersection is an S1-
bundle over X. This construction gives many interesting contact manifolds,
including Milnor's exotic 7-spheres, which happen to be Sasakian.

Remark: A link of a homogeneous singularity is always Sasakian.

Remark: Every quasiregular Sasakian manifold is obtained this way, for some
Kahler metric on C*t1,

Remark: Every Sasakian manifold can be deformed to a quasiregular
one.

16
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CR-manifolds.

Definition: Let M be a smooth manifold, B C T'M a sub-bundle in a tangent
bundle, and I : B — B an endomorphism satisfying I?2 = —1. Consider
its v/—1 -eigenspace B1.9(M) c B®C Cc ToM = TM ® C. Suppose that
[B1.O B1.O] ¢ BL1.O. Then (B,I) is called a CR-structure on M.

Example: A complex manifold is CR, with B = T M. Indeed, [TYOM, T1.0M] ¢
T1.9M is equivalent to integrability of the complex structure (Newlander-
Nirenberg).

Example: Let X be a complex manifold, and M C X a hypersurface.
Then B = dim¢gTM N I(TM) = dimgcX — 1, hence rk B = n — 1. Since
[T19x 71.0x] c 719X, M is a CR-manifold.

Definition: A Frobenius form of a CR-manifold is the tensor BQ B — T M/B
mapping X,Y to the I‘ITM/B([X, Y]). It is an obstruction to integrability of
the foliation given by B.

17
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Contact CR-manifolds.
Complex algebraic geometry is a rich source of contact structures.

Definition: Let (M, B,I) be a CR-manifold, with codimB = 1. Then M is
called a contact CR-manifold if its Frobenius form is non-degenerate.

Remark: Since [B19, B1.0] ¢ B1.O and [BY1, B%1] ¢ BY1, the Frobenius form
is a pairing between BY%! and B9, This means that it is Hermitian.

Definition: Let (M, B,I) be a CR-manifold, with codimB = 1. Then M is
called a strictly pseudoconvex CR-manifold if its Frobenius form is positive
definite everywhere.

Example: Let h be a function on a complex manifold such that 00h = w
is a positive definite Hermitian form, and X = h_l(c) its level set. Then
the Frobenius form of X is equal to w|x. In particular, X is a strictly
pseudoconvex CR-manifold.

18
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CR-geometry of Sasakian manifolds.

Claim: Let M be a Sasakian manifold, CM = M x R>0 its Kahler cone, and
o(m,t) =t the projection of CM to R>9. Then /=1 80y = w is its Kahler
form.

Proof:
V—108p = 3dd°p = 2dIdp = dId(t?) = d(wot%) = w as we have already seen.
=

Corollary:
A Sasakian manifold is strictly pseudoconvex as a CR-manifold.

Question:
Which strictly pseudoconvex CR-manifolds admit Sasakian structures?

Answer: Let M be a compact, strictly pseudoconvex CR-manifold. Then M
admits a Sasakian structure if and only if M admits a CR-holomorphic
vector field, which is everywhere transversal to B. Moreover, this vector
field becomes the Reeb field for this Sasakian structure and the Sasakian
structure on M is uniquely determined by the CR-structure and the

Reeb field.
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