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Contact manifolds.

Definition: Let M be a smooth manifold, dimM = 2n−1, and ω a symplectic
form on M × R>0. Suppose that ω is automorphic: Ψ∗qω = q2ω, where
Ψq(m, t) = (m, qt). Then M is called contact.

DEFINITION: The contact form on M is defined as θ = ωy ~T , where
~T = t ddt. Then dθ = [d, ·y ~T ]ω = Lie~T ω = ω. Therefore, the form (dθ)n−1∧θ =
1
nω

ny ~T is non-degenerate on M × {t0} ⊂M × R>0.

Remark: Usually, a contact manifold is defined as a (2n−1)-manifold with
1-form θ such that dθn−1 ∧ θ is nowhere degenerate.

Example: An odd-dimensional sphere S2n−1 is contact. Indeed, its cone
S2n−1 × R>0 = R2n\0 has the standard symplectic form

∑n
i=1 dx2i−1 ∧ dx2i

which is obviously homogeneous.

Contact geometry is an odd-dimensional counterpart to symplectic
geometry

DEFINITION: Reeb field on a contact manifold (M, θ) is a field R ∈ TM
such that dθ(R, ·) = 0 and 〈θ,R〉 = 1.
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Boothby-Wang theorem

W. M. Boothby, H. C. Wang, On Contact Manifolds Annals of Mathematics,
Second Series, Vol. 68, No. 3 (Nov., 1958), pp. 721-734.

DEFINITION: A contact manifold (M, θ) is normal if it is equipped with an
S1-action preserving θ and tangent to the Reeb field.

REMARK: Let (M, θ) be a contact manifold. Then the form dθ is non-
degenerate the bundle ker θ ⊂ TM.

THEOREM: (Boothby-Wang, 1958)
Let (M, θ) be a normal contact manifold. Then its space X of Reeb orbits is
symplectic and the natural projection π : M −→X induces a symplectic
isomorphism dπ : ker θ|x −→ Tπ(x)X.

THEOREM: (Boothby-Wang, 1958)
Let (M, θ) be a normal contact manifold, and (X,ω) the symplectic manifold
obtained as its space of Reeb orbits. Then the cohomology class of ω is
integral. Conversely, for any symplectic manifold (X,ω) with [ω] ∈ H2(X,Z),
there exists a principal S1-bundle L with c1(L) = [ω] and a normal con-
tact structure on M := Tot(L) such that the corresponding Boothby-
Wang projection coincides with the natural map M −→X.
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Kähler manifolds.

Definition: Let (M, I) be a complex manifold, dimCM = n, and g is Rieman-

nian form. Then g is called Hermitian if g(Ix, Iy) = g(x, y).

Remark: Since I2 = − Id, it is equivalent to g(Ix, y) = −g(x, Iy). The form

ω(x, y) := g(x, Iy) is skew-symmetric.

Definition: The differential form ω is called the Hermitian form of (M, I, g).

Definition: A complex Hermitian manifold is called Kähler if dω = 0.

4



Sasakian manifolds and CR-geometry Misha Verbitsky

Sasakian manifolds.

Definition: Let (M, gM) be a Riemannian manifold, dimM = 2n − 1, and

(g, ω, I) a Kaehler structure on M × R>0 with g = gM + t2dt ⊗ dt. Suppose

that ω is automorphic: Ψ∗qω = q2g, where Ψq(m, t) = (m, qt), and I is Ψq-

invariant. Then M is called Sasakian, and M × R>0 its Kähler cone.

Sasakian geometry is an odd-dimensional counterpart to Kähler geom-

etry

Remark: A Sasakian manifold is obviosly contact. Indeed, a Sasakian man-

ifold is a contact manifold equipped with a compatible Riemannian

metric.

Example: An odd-dimensional sphere S2n−1 is Sasakian. Indeed, its cone

S2n−1 × R>0 = Cn\0 has the standard Kähler form
√
−1

∑n
i=1 dzi ∧ dzi which

is obviously automorphic.

S. Sasaki, ”On differentiable manifolds with certain structures which are

closely related to almost contact structure”, Tohoku Math. J. 2 (1960),

459-476.
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Kähler potentials on the Kähler cones

DEFINITION: A Kähler potential on a Kähler manifold (M, I, ω) is a func-

tion f such that the (1,1)-form ddc(f) is equal to ω, where ddc = dIdI−1 =
∂∂

−2
√
−1

.

CLAIM: Let M be a Sasakian manifold and C(M) = M×R>0 its Kähler cone,

with t the parameter on R>0 and ω its Kähler form. Then ddc(t2) = ω, in

other words, 1
2t

2 is a Kähler potential.

Proof: Let ~r = td/dt be the radial vector field. Cartan’s formula LieX η =

(dη)yX + d(ηyX) gives

2ω = Lie~r ω = d(ωy~r) = d(tI(dt)) = 2ddc(t2).

COROLLARY: The field I(~r) acts on C(M) by holomorphic isometries.

Proof: Indeed, ~r is holomorphic, and LieI~r(t) = 〈dt, Itd/dt〉 = 0. Therefore,

I(~t) preserves the Kähler potential and the Kähler structure.
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Reeb field

Definition: Given a contact manifold (M, θ), a vector field R is called the

Reeb field of (M, θ), if dθyR = 0 and θ(R) = 1.

DEFINITION: Let C(M) := M × R>0 be the cone of a Sasakian manifold

M . The vector field ~r := td/dt is called the Lee field on C(M). Clearly, ~r

acts on C(M) by holomorphic homotheties.

REMARK: On a Sasakian manifold, dθ is restriction of the Kähler form to

M = M × {1} ⊂ M × R>0, hence ker dθ|M = I(Rc). Also, θ(I(~r))|M = 1.

Therefore, R := I(~r) is the Reeb field of M.

COROLLARY: The Reeb field of a Sasakian manifold is the Riemannian

dual to its contact form θ = ω(~r, ·).

COROLLARY: For any Sasakian manifold, the Reeb field generates a

flow of diffeomorphisms acting on M by contact isometries.

Proof: The Reeb field θ] = I(~r) acts holomorphically because ~r acts holo-

morphically, and preserves the Kähler potentialm as shown above.
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Quasiregular Sasakian manifolds

Definition: A Sasakian manifold M is called quasiregular if all orbits of the

Reeb flow are compact.

The following claim is the Sasakian version of Boothby-Wang theorem.

CLAIM: Every quasiregular Sasakian manifold is a total space of S1-

bundle over a Kähler orbifold.

Proof: The quotient of M over the Reeb flow is the same as the quotient of

its cone C(M) over its complexification, generated by ~r and R = I(~r).

REMARK: The space of Reeb orbits X of a quasiregular Sasakian manifold

is in fact projective, as follows from Kodaira theorem. Indeed, C(M) is

C∗-bundle over X, and the corresponding line bundle has positive curvature

which can be expressed as ddc log(ϕ), where ϕ = r2 is the Kähler potential of

C(M).
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Examples of Sasakian manifolds.

Example: Let X ⊂ CPn be a complex submanifold, and CX ⊂ Cn+1\0 the

corresponding cone. The cone CX is obviously Kähler and automorphic,

hence the intersection CX ∩ S2n−1 is Sasakian. This intersection is an S1-

bundle over X. This construction gives many interesting contact manifolds,

including Milnor’s exotic 7-spheres, which happen to be Sasakian.

Remark: A link of a homogeneous singularity is always Sasakian.

Remark: Every quasiregular Sasakian manifold is obtained this way.

Remark: All 3-dimensional Sasakian manifolds, except S3 and the quotients
S3

Z/n, are quasiregular (H. Geiges, 1997, F. Belgun, 2000).

Remark: Every Sasakian manifold is diffeomorphic to a quasiregular

one.
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CR-manifolds.

Definition: Let M be a smooth manifold, B ⊂ TM a sub-bundle in a tangent

bundle, and I : B −→B an endomorphism satisfying I2 = −1. Consider

its
√
−1 -eigenspace B1,0(M) ⊂ B ⊗ C ⊂ TCM = TM ⊗ C. Suppose that

[B1,0, B1,0] ⊂ B1,0. Then (B, I) is called a CR-structure on M .

Example: A complex manifold is CR, with B = TM . Indeed, [T1,0M,T1,0M ] ⊂
T1,0M is equivalent to integrability of the complex structure (Newlander-

Nirenberg).

Example: Let X be a complex manifold, and M ⊂ X a hypersurface.

Then B := dimC TM ∩ I(TM) = dimCX − 1, hence rkB = n − 1. Since

[T1,0X,T1,0X] ⊂ T1,0X, M is a CR-manifold.

Definition: A Frobenius form of a CR-manifold is the tensor B⊗B −→ TM/B

mapping X,Y to the projection ΠTM/B([X,Y ]). It is an obstruction to inte-

grability of the foliation given by B.
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Contact CR-manifolds.

Definition: Let (M,B, I) be a CR-manifold, with codimB = 1. Then M is

called a contact CR-manifold if its Frobenius form is non-degenerate.

Remark: Since [B1,0, B1,0] ⊂ B1,0 and [B0,1, B0,1] ⊂ B0,1, the Frobenius form

is a pairing between B0,1 and B1,0. This means that it is of Hodge type

(1,1), that us, pseudo-Hermitian.

Definition: Let (M,B, I) be a CR-manifold, with codimB = 1. Then M is

called a strictly pseudoconvex CR-manifold if its Frobenius form is positive

definite everywhere.

Example: Let h be a function on a complex manifold such that ∂∂h = ω

is a positive definite Hermitian form, and X = h−1(c) its level set. Then

the Frobenius form of X is equal to ω|X . In particular, X is a strictly

pseudoconvex CR-manifold.
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CR-geometry of Sasakian manifolds.

THEOREM: A Sasakian manifold is strictly pseudoconvex as a CR-

manifold.

Proof: Let ϕ = t2 be the Kähler potential on C(M) = M × R>0. Then

M is its level set. A level set of a Kähler potential is always strictly

pseudoconvex.

Question: Which strictly pseudoconvex CR-manifolds admit Sasakian struc-

tures?

Answer: (Ornea-V.) Let (M,B, I) be a compact, strictly pseudoconvex CR-

manifold. Then M admits a Sasakian metric if and only if M admits

a CR-holomorphic vector field which is transversal to B. Moreover, for

every such field v, there exists a unique Sasakian metric such that v or

−v is its Reeb field.
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CR-Holomorphic vector fields on pseudoconvex CR-manifolds

THEOREM: Let S be a strictly pseudoconvex compact CR-manifold, dimR S >

5. Then S admits a Sasakian structure if and only if S admits a transver-

sal CR-holomorphic vector field. This vector field becomes a Reeb field of

this Sasakian manifold.

Step 1: By Rossi-Andreotti-Siu, S = ∂M , where M = Spec(H0(OS)b) is

a Stein variety with isolated singularities, and R acts on M by holomorphic

automorphisms.

Step 2: Since R is transversal to the contact distribution, IR is transversal to

∂M ; replacing R by −R, we can always assume that IR points toward interior

of M , and Aε := eεIR for small ε maps M to a subset Aε(M) ⊂ M with

compact closure.

Step 3: Consider the ring H = H0(OM)b of bounded holomorphic functions

on M , with sup-metric. Then H is a Banach ring. Since Aε(M) has compact

closure, A∗ε(B) is a normal family, where B is any open ball in the Banach

space H, and A∗ε is a compact operator.
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CR-Holomorphic vector fields on pseudoconvex CR-manifolds (2)

Step 4: By maximum principle, for any non-constant f ∈ H, one has

supAε(M) |f | < supM |f |. Since any limit point flim of a sequence (Aiε)
∗f

satisfies supAε(M)|f | = supM |f |, it is constant. A limit function flim exists,

because A∗ε(B) is precompact.

Step 5: This implies that for each z ∈ M , a limit point zlim of a sequence

{z,Aεz,A2
εz, ...} is unique and independent of z. Indeed, flim(z) = f(zlim), but

flim = const. This implies that Aε is a holomorphic contraction contracting

M to the origin point x0 ⊂M.

Step 6: Since R
∣∣∣Sε = Aε(R) is nowhere vanishing for each ε, the vector

field ~r := IR is transversal to Sε := Aε(S) pointing to the origin. Therefore,

through each point of S passes a unique solution ρ(t) of an equation dρ(t)
dt = ~r.

Step 7: Let ϕλ be a ρ-automorphic Kähler potential which is equal to 1 on

S ⊂ M . Such a potential exists, because S is strictly pseudoconvex, hence

it can be realized as a level set of a psh function. The Lie algebra 〈R, IR〉
acts on (M,ddcϕλ) by holomorphic homotheties, hence it is a conical

Kähler manifold (Kamishima-Ornea). Therefore, S is Sasakian.
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Quasi-regular deformations of Sasakian manifolds.

THEOREM: (D. Burns) Let (M,B, I) be a pseudoconvex CR-manifold,

which is not equivalent to a sphere with the standard CR-structure. Then

the group of holomorphic automorphisms of M is compact.

THEOREM: (Ornea-V.) Let (M,B, I) be a CR manifold admitting a Sasakian

structure, that is, a CR-holomorphic vector field R which is transversal to B.

Then R = limiRi, where Ri are Reeb fields of quasiregular Sasakian

structures.

Proof. Step 1: Let G be the closure of the Lie subgroup in Aut(M,B, I)

generated by etR. Since G is compact and commutative, it is a torus. For

any vector field R′ ∈ Lie(G) in its Lie algebra sufficiently close to R, it is also

transversal to B, hence gives another Sasakian structure.

Step 2: A Reeb field R′ ∈ Lie(G) is quasiregular if and only if it generates a

compact subgroup, that is, is rational with respect to the rational structure

on the Lie algebra LieG. However, rational points are dense in LieG.
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