Sasakian manifolds and CR-geometry

Misha Verbitsky

Estruturas geométricas em variedades February 16, 2023. IMPA

Misha Verbitsky

Contact manifolds.

Definition: Let M be a smooth manifold, dim M = 2n-1, and ω a symplectic form on $M \times \mathbb{R}^{>0}$. Suppose that ω is **automorphic**: $\Psi_q^* \omega = q^2 \omega$, where $\Psi_q(m,t) = (m,qt)$. Then M is called **contact**.

DEFINITION: The contact form on M is defined as $\theta = \omega \, \exists \vec{T}$, where $\vec{T} = t \frac{d}{dt}$. Then $d\theta = [d, \cdot \exists \vec{T}] \omega = \text{Lie}_{\vec{T}} \omega = \omega$. Therefore, the form $(d\theta)^{n-1} \wedge \theta = \frac{1}{n} \omega^n \, \exists \vec{T}$ is non-degenerate on $M \times \{t_0\} \subset M \times \mathbb{R}^{>0}$.

Remark: Usually, a contact manifold is defined as a (2n-1)-manifold with 1-form θ such that $d\theta^{n-1} \wedge \theta$ is nowhere degenerate.

Example: An odd-dimensional sphere S^{2n-1} is contact. Indeed, its cone $S^{2n-1} \times \mathbb{R}^{>0} = \mathbb{R}^{2n} \setminus 0$ has the standard symplectic form $\sum_{i=1}^{n} dx_{2i-1} \wedge dx_{2i}$ which is obviously homogeneous.

Contact geometry is an odd-dimensional counterpart to symplectic geometry

DEFINITION: Reeb field on a contact manifold (M, θ) is a field $R \in TM$ such that $d\theta(R, \cdot) = 0$ and $\langle \theta, R \rangle = 1$.

Boothby-Wang theorem

W. M. Boothby, H. C. Wang, On Contact Manifolds Annals of Mathematics, Second Series, Vol. 68, No. 3 (Nov., 1958), pp. 721-734.

DEFINITION: A contact manifold (M, θ) is **normal** if it is equipped with an S^1 -action preserving θ and tangent to the Reeb field.

REMARK: Let (M, θ) be a contact manifold. Then the form $d\theta$ is nondegenerate the bundle ker $\theta \subset TM$.

THEOREM: (Boothby-Wang, 1958)

Let (M, θ) be a normal contact manifold. Then its space X of Reeb orbits is symplectic and the natural projection $\pi : M \longrightarrow X$ induces a symplectic isomorphism $d\pi : \ker \theta|_X \longrightarrow T_{\pi(x)}X$.

THEOREM: (Boothby-Wang, 1958)

Let (M, θ) be a normal contact manifold, and (X, ω) the symplectic manifold obtained as its space of Reeb orbits. Then the cohomology class of ω is integral. Conversely, for any symplectic manifold (X, ω) with $[\omega] \in H^2(X, \mathbb{Z})$, there exists a principal S^1 -bundle L with $c_1(L) = [\omega]$ and a normal contact structure on M := Tot(L) such that the corresponding Boothby-Wang projection coincides with the natural map $M \longrightarrow X$.

Kähler manifolds.

Definition: Let (M, I) be a complex manifold, $\dim_{\mathbb{C}} M = n$, and g is Riemannian form. Then g is called **Hermitian** if g(Ix, Iy) = g(x, y).

Remark: Since $I^2 = -$ Id, it is equivalent to g(Ix, y) = -g(x, Iy). The form $\omega(x, y) := g(x, Iy)$ is skew-symmetric.

Definition: The differential form ω is called **the Hermitian form of** (M, I, g).

Definition: A complex Hermitian manifold is called Kähler if $d\omega = 0$.

Sasakian manifolds.

Definition: Let (M, g_M) be a Riemannian manifold, dim M = 2n - 1, and (g, ω, I) a Kaehler structure on $M \times \mathbb{R}^{>0}$ with $g = g_M + t^2 dt \otimes dt$. Suppose that ω is **automorphic**: $\Psi_q^* \omega = q^2 g$, where $\Psi_q(m, t) = (m, qt)$, and I is Ψ_q^- invariant. Then M is called **Sasakian**, and $M \times \mathbb{R}^{>0}$ its Kähler cone.

Sasakian geometry is an odd-dimensional counterpart to Kähler geometry

Remark: A Sasakian manifold is obviosly contact. Indeed, a Sasakian manifold is a contact manifold equipped with a compatible Riemannian metric.

Example: An odd-dimensional sphere S^{2n-1} **is Sasakian.** Indeed, its cone $S^{2n-1} \times \mathbb{R}^{>0} = \mathbb{C}^n \setminus 0$ has the standard Kähler form $\sqrt{-1} \sum_{i=1}^n dz_i \wedge d\overline{z}_i$ which is obviously automorphic.

S. Sasaki, "On differentiable manifolds with certain structures which are closely related to almost contact structure", Tohoku Math. J. 2 (1960), 459-476.

Kähler potentials on the Kähler cones

DEFINITION: A Kähler potential on a Kähler manifold (M, I, ω) is a function f such that the (1,1)-form $dd^c(f)$ is equal to ω , where $dd^c = dIdI^{-1} = \frac{\partial\overline{\partial}}{-2\sqrt{-1}}$.

CLAIM: Let *M* be a Sasakian manifold and $C(M) = M \times \mathbb{R}^{>0}$ its Kähler cone, with *t* the parameter on $\mathbb{R}^{>0}$ and ω its Kähler form. Then $dd^c(t^2) = \omega$, in other words, $\frac{1}{2}t^2$ is a Kähler potential.

Proof: Let $\vec{r} = td/dt$ be the radial vector field. Cartan's formula $\text{Lie}_X \eta = (d\eta) \lrcorner X + d(\eta \lrcorner X)$ gives

$$2\omega = \operatorname{Lie}_{\vec{r}} \omega = d(\omega \,\lrcorner\, \vec{r}) = d(tI(dt)) = 2dd^c(t^2).$$

COROLLARY: The field $I(\vec{r})$ acts on C(M) by holomorphic isometries.

Proof: Indeed, \vec{r} is holomorphic, and $\text{Lie}_{I\vec{r}}(t) = \langle dt, Itd/dt \rangle = 0$. Therefore, $I(\vec{t})$ preserves the Kähler potential and the Kähler structure.

Reeb field

Definition: Given a contact manifold (M, θ) , a vector field R is called the **Reeb field** of (M, θ) , if $d\theta \lrcorner R = 0$ and $\theta(R) = 1$.

DEFINITION: Let $C(M) := M \times \mathbb{R}^{>0}$ be the cone of a Sasakian manifold M. The vector field $\vec{r} := td/dt$ is called **the Lee field** on C(M). Clearly, \vec{r} acts on C(M) by holomorphic homotheties.

REMARK: On a Sasakian manifold, $d\theta$ is restriction of the Kähler form to $M = M \times \{1\} \subset M \times \mathbb{R}^{>0}$, hence ker $d\theta|_M = I(R^c)$. Also, $\theta(I(\vec{r}))|_M = 1$. **Therefore,** $R := I(\vec{r})$ is the Reeb field of M.

COROLLARY: The Reeb field of a Sasakian manifold is the Riemannian dual to its contact form $\theta = \omega(\vec{r}, \cdot)$.

COROLLARY: For any Sasakian manifold, **the Reeb field generates a flow of diffeomorphisms acting on** *M* **by contact isometries**.

Proof: The Reeb field $\theta^{\sharp} = I(\vec{r})$ acts holomorphically because \vec{r} acts holomorphically, and preserves the Kähler potentialm as shown above.

Quasiregular Sasakian manifolds

Definition: A Sasakian manifold M is called **quasiregular** if all orbits of the Reeb flow are compact.

The following claim is the Sasakian version of Boothby-Wang theorem.

CLAIM: Every quasiregular Sasakian manifold is a total space of S^{1} -bundle over a Kähler orbifold.

Proof: The quotient of M over the Reeb flow is the same as the quotient of its cone C(M) over its complexification, generated by \vec{r} and $R = I(\vec{r})$.

REMARK: The space of Reeb orbits X of a quasiregular Sasakian manifold is in fact projective, as follows from Kodaira theorem. Indeed, C(M) is \mathbb{C}^* -bundle over X, and the corresponding line bundle has positive curvature which can be expressed as $dd^c \log(\varphi)$, where $\varphi = r^2$ is the Kähler potential of C(M).

Examples of Sasakian manifolds.

Example: Let $X \subset \mathbb{C}P^n$ be a complex submanifold, and $CX \subset \mathbb{C}^{n+1}\setminus 0$ the corresponding cone. The cone CX is obviously Kähler and automorphic, hence **the intersection** $CX \cap S^{2n-1}$ **is Sasakian.** This intersection is an S^1 -bundle over X. This construction gives many interesting contact manifolds, including Milnor's exotic 7-spheres, which happen to be Sasakian.

Remark: A link of a homogeneous singularity is always Sasakian.

Remark: Every quasiregular Sasakian manifold is obtained this way.

Remark: All 3-dimensional Sasakian manifolds, except S^3 and the quotients $\frac{S^3}{\mathbb{Z}/n}$, are quasiregular (H. Geiges, 1997, F. Belgun, 2000).

Remark: Every Sasakian manifold is diffeomorphic to a quasiregular one.

CR-manifolds.

Definition: Let M be a smooth manifold, $B \subset TM$ a sub-bundle in a tangent bundle, and $I : B \longrightarrow B$ an endomorphism satisfying $I^2 = -1$. Consider its $\sqrt{-1}$ -eigenspace $B^{1,0}(M) \subset B \otimes \mathbb{C} \subset T_C M = TM \otimes \mathbb{C}$. Suppose that $[B^{1,0}, B^{1,0}] \subset B^{1,0}$. Then (B, I) is called a **CR-structure on** M.

Example: A complex manifold is CR, with B = TM. Indeed, $[T^{1,0}M, T^{1,0}M] \subset T^{1,0}M$ is equivalent to integrability of the complex structure (Newlander-Nirenberg).

Example: Let X be a complex manifold, and $M \subset X$ a hypersurface. Then $B := \dim_{\mathbb{C}} TM \cap I(TM) = \dim_{\mathbb{C}} X - 1$, hence $\operatorname{rk} B = n - 1$. Since $[T^{1,0}X, T^{1,0}X] \subset T^{1,0}X$, M is a CR-manifold.

Definition: A Frobenius form of a CR-manifold is the tensor $B \otimes B \longrightarrow TM/B$ mapping X, Y to the projection $\Pi_{TM/B}([X,Y])$. It is an obstruction to integrability of the foliation given by B.

Contact CR-manifolds.

Definition: Let (M, B, I) be a CR-manifold, with codim B = 1. Then M is called a contact CR-manifold if its Frobenius form is non-degenerate.

Remark: Since $[B^{1,0}, B^{1,0}] \subset B^{1,0}$ and $[B^{0,1}, B^{0,1}] \subset B^{0,1}$, the Frobenius form is a pairing between $B^{0,1}$ and $B^{1,0}$. This means that it is of Hodge type (1,1), that us, pseudo-Hermitian.

Definition: Let (M, B, I) be a CR-manifold, with codim B = 1. Then M is called a strictly pseudoconvex CR-manifold if its Frobenius form is positive definite everywhere.

Example: Let *h* be a function on a complex manifold such that $\partial \overline{\partial} h = \omega$ is a positive definite Hermitian form, and $X = h^{-1}(c)$ its level set. Then the Frobenius form of *X* is equal to $\omega|_X$. In particular, *X* is a strictly pseudoconvex CR-manifold.

CR-geometry of Sasakian manifolds.

THEOREM: A Sasakian manifold is strictly pseudoconvex as a CRmanifold.

Proof: Let $\varphi = t^2$ be the Kähler potential on $C(M) = M \times \mathbb{R}^{>0}$. Then M is its level set. A level set of a Kähler potential is always strictly pseudoconvex.

Question: Which strictly pseudoconvex CR-manifolds admit Sasakian structures?

Answer: (Ornea-V.) Let (M, B, I) be a compact, strictly pseudoconvex CRmanifold. Then M admits a Sasakian metric if and only if M admits a CR-holomorphic vector field which is transversal to B. Moreover, for every such field v, there exists a unique Sasakian metric such that v or -v is its Reeb field.

CR-Holomorphic vector fields on pseudoconvex CR-manifolds

THEOREM: Let *S* be a strictly pseudoconvex compact CR-manifold, dim_{\mathbb{R}} $S \ge$ 5. Then *S* admits a Sasakian structure if and only if *S* admits a transversal CR-holomorphic vector field. This vector field becomes a Reeb field of this Sasakian manifold.

Step 1: By Rossi-Andreotti-Siu, $S = \partial M$, where $M = \text{Spec}(H^0(\mathcal{O}_S)_b)$ is a Stein variety with isolated singularities, and R acts on M by holomorphic automorphisms.

Step 2: Since *R* is transversal to the contact distribution, *IR* is transversal to ∂M ; replacing *R* by -R, we can always assume that *IR* points toward interior of *M*, and $A_{\varepsilon} := e^{\varepsilon IR}$ for small ε maps *M* to a subset $A_{\varepsilon}(M) \subset M$ with compact closure.

Step 3: Consider the ring $\mathcal{H} = H^0(\mathcal{O}_M)_b$ of bounded holomorphic functions on M, with sup-metric. Then \mathcal{H} is a Banach ring. Since $A_{\varepsilon}(M)$ has compact closure, $A_{\varepsilon}^*(B)$ is a normal family, where B is any open ball in the Banach space \mathcal{H} , and A_{ε}^* is a compact operator.

CR-Holomorphic vector fields on pseudoconvex CR-manifolds (2)

Step 4: By maximum principle, for any non-constant $f \in \mathcal{H}$, one has $\sup_{A_{\varepsilon}(M)} |f| < \sup_{M} |f|$. **Since any limit point** f_{lim} of a sequence $(A_{\varepsilon}^{i})^{*}f$ satisfies $\sup_{A_{\varepsilon}(M)} |f| = \sup_{M} |f|$, it is constant. A limit function f_{lim} exists, because $A_{\varepsilon}^{*}(B)$ is precompact.

Step 5: This implies that for each $z \in M$, a limit point z_{lim} of a sequence $\{z, A_{\varepsilon}z, A_{\varepsilon}^2z, ...\}$ is unique and independent of z. Indeed, $f_{\text{lim}}(z) = f(z_{\text{lim}})$, but $f_{\text{lim}} = const$. This implies that A_{ε} is a holomorphic contraction contracting M to the origin point $x_0 \subset M$.

Step 6: Since $R|_{S_{\varepsilon}} = A_{\varepsilon}(R)$ is nowhere vanishing for each ε , the vector field $\vec{r} := IR$ is transversal to $S_{\varepsilon} := A_{\varepsilon}(S)$ pointing to the origin. Therefore, through each point of S passes a unique solution $\rho(t)$ of an equation $\frac{d\rho(t)}{dt} = \vec{r}$.

Step 7: Let φ_{λ} be a ρ -automorphic Kähler potential which is equal to 1 on $S \subset M$. Such a potential exists, because S is strictly pseudoconvex, hence it can be realized as a level set of a psh function. The Lie algebra $\langle R, IR \rangle$ acts on $(M, dd^c \varphi_{\lambda})$ by holomorphic homotheties, hence it is a conical Kähler manifold (Kamishima-Ornea). Therefore, S is Sasakian.

Quasi-regular deformations of Sasakian manifolds.

THEOREM: (D. Burns) Let (M, B, I) be a pseudoconvex CR-manifold, which is not equivalent to a sphere with the standard CR-structure. Then the group of holomorphic automorphisms of M is compact.

THEOREM: (Ornea-V.) Let (M, B, I) be a CR manifold admitting a Sasakian structure, that is, a CR-holomorphic vector field R which is transversal to B. **Then** $R = \lim_{i} R_i$, where R_i are Reeb fields of quasiregular Sasakian structures.

Proof. Step 1: Let G be the closure of the Lie subgroup in Aut(M, B, I) generated by e^{tR} . Since G is compact and commutative, it is a torus. For any vector field $R' \in Lie(G)$ in its Lie algebra sufficiently close to R, it is also transversal to B, hence gives another Sasakian structure.

Step 2: A Reeb field $R' \in \text{Lie}(G)$ is quasiregular if and only if it generates a compact subgroup, that is, is rational with respect to the rational structure on the Lie algebra Lie G. However, rational points are dense in Lie G.