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Contact manifolds.

Definition: Let M be a smooth manifold, dimM = 2n—1, and w a symplectic
form on M x R>9. Suppose that w is automorphic: Wjw = g%w, where
W,(m,t) = (m,qt). Then M is called contact.

DEFINITION: The contact form on M is defined as 60 = w_lf, where

T =t4. Then df = [d,  .T]w = Liezw = w. Therefore, the form (df)" 10 =
L,",T is non-degenerate on M x {tg} ¢ M x R>O,

n

Remark: Usually, a contact manifold is defined as a (2n — 1)-manifold with
1-form 6 such that d9"— ! A 6 is nowhere degenerate.

Example: An odd-dimensional sphere S2"~1 is contact. Indeed, its cone
S52n—1 x R>0 = R?™\0 has the standard symplectic form Y7, dxo; 1 A dwo;
which is obviously homogeneous.

Contact geometry is an odd-dimensional counterpart to symplectic
geometry

DEFINITION: Reeb field on a contact manifold (M,0) is a field R € TM
such that do(R,-) =0 and (#,R) = 1.
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Boothby-Wang theorem

W. M. Boothby, H. C. Wang, On Contact Manifolds Annals of Mathematics,
Second Series, Vol. 68, No. 3 (Nov., 1958), pp. 721-734.

DEFINITION: A contact manifold (M, 8) is normal if it is equipped with an
Sl_action preserving 6 and tangent to the Reeb field.

REMARK: Let (M,0) be a contact manifold. Then the form df is non-
degenerate the bundle kerd C T' M.

THEOREM: (Boothby-Wang, 1958)

Let (M, 0) be a normal contact manifold. Then its space X of Reeb orbits is
symplectic and the natural projection = : M — X induces a symplectic
isomorphism dr : ker 6|z — T () X.

THEOREM: (Boothby-Wang, 1958)

Let (M,0) be a normal contact manifold, and (X,w) the symplectic manifold
obtained as its space of Reeb orbits. Then the cohomology class of w is
integral. Conversely, for any symplectic manifold (X,w) with [w] € H?(X,Z7),
there exists a principal S!-bundle L with ¢;(L) = [w] and a normal con-
tact structure on M := Tot(L) such that the corresponding Boothby-
Wang projection coincides with the natural map M — X.
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Kahler manifolds.

Definition: Let (M, ) be a complex manifold, dimg M = n, and g is Rieman-
nian form. Then g is called Hermitian if g(Ix,Iy) = g(x,vy).

Remark: Since [2 = —1d, it is equivalent to g(Iz,y) = —g(x, Iy). The form
w(z,y) ;= g(x, [y) Is skew-symmetric.

Definition: The differential form w is called the Hermitian form of (M, 1,g).

Definition: A complex Hermitian manifold is called Kahler if dw = 0.
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Sasakian manifolds.

Definition: Let (M,g;,;) be a Riemannian manifold, dimM = 2n — 1, and
(g,w,I) a Kaehler structure on M x R>0 with ¢ = ga; + t2dt @ dt. Suppose
that w is automorphic: Wiw = ¢°g, where Wy(m,t) = (m,qt), and I is W,
invariant. Then M is called Sasakian, and M x R0 its Kahler cone.

Sasakian geometry is an odd-dimensional counterpart to Kahler geom-
etry

Remark: A Sasakian manifold is obviosly contact. Indeed, a Sasakian man-
ifold is a contact manifold equipped with a compatible Riemannian
metric.

Example: An odd-dimensional sphere 5271 ijs Sasakian. Indeed, its cone
§2n=1 x R>0 = C™\0 has the standard Kahler form /=1 Y%, dz; A dz; which
IS obviously automorphic.

S. Sasaki, "On differentiable manifolds with certain structures which are
closely related to almost contact structure”, Tohoku Math. J. 2 (1960),

459-476.
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Kahler potentials on the Kahler cones

DEFINITION: A Kahler potential on a Kahler manifold (M, I,w) is a func-

tion f such that the (1,1)-form dd¢(f) is equal to w, where dd¢ = dIdI~! =
00

5 =1

CLAIM: Let M be a Sasakian manifold and C(M) = M xR>0 its Kahler cone,
with t the parameter on R>? and w its K3hler form. Then dd°(t?) = w, in
other words, 3t? is a Kahler potential.

Proof: Let 7 = td/dt be the radial vector field. Cartan’s formula Liexn =
(dn) X + d(naX) gives

2w = Lierw = d(w7) = d(tI(dt)) = 2dd°(¢?).

COROLLARY: The field I(¥) acts on C(M) by holomorphic isometries.

Proof: Indeed, 7 is holomorphic, and Lie;=(t) = (dt, Itd/dt) = 0. Therefore,

I(F) preserves the Kahler potential and the Kahler structure. m
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Reeb field

Definition: Given a contact manifold (M,0), a vector field R is called the
Reeb field of (M,0), if dd_R =0 and 6(R) = 1.

DEFINITION: Let C(M) := M x R>0 be the cone of a Sasakian manifold
M. The vector field 7 := td/dt is called the Lee field on C(M). Clearly, 7
acts on C(M) by holomorphic homotheties.

REMARK: On a Sasakian manifold, df is restriction of the Kahler form to
M = M x {1} ¢ M x R>9, hence kerdf|y; = I(R®). Also, 0(I(7))|y = 1.
Therefore, R := I(¥) is the Reeb field of M.

COROLLARY: The Reeb field of a Sasakian manifold is the Riemannian
dual to its contact form 0 = w(7,-).

COROLLARY: For any Sasakian manifold, the Reeb field generates a
flow of diffeomorphisms acting on M by contact isometries.

Proof: The Reeb field 6 = I(7¥) acts holomorphically because 7 acts holo-

morphically, and preserves the Kahler potentialm as shown above. =
7
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Quasiregular Sasakian manifolds

Definition: A Sasakian manifold M is called quasiregular if all orbits of the
Reeb flow are compact.

The following claim is the Sasakian version of Boothby-Wang theorem.

CLAIM: Every quasiregular Sasakian manifold is a total space of Sl-
bundle over a Kahler orbifold.

Proof: The quotient of M over the Reeb flow is the same as the quotient of
its cone C(M) over its complexification, generated by ¥ and R=I(7). =

REMARK: The space of Reeb orbits X of a quasiregular Sasakian manifold
Is in fact projective, as follows from Kodaira theorem. Indeed, C(M) is
C*-bundle over X, and the corresponding line bundle has positive curvature
which can be expressed as dd¢log(yp), where ¢ = r2 is the K3hler potential of
C(M).
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Examples of Sasakian manifolds.

Example: Let X C CP" be a complex submanifold, and CX c C*T1\0 the
corresponding cone. The cone CX is obviously Kahler and automorphic,
hence the intersection CX N S27—1 js Sasakian. This intersection is an S1-
bundle over X. This construction gives many interesting contact manifolds,
including Milnor's exotic 7-spheres, which happen to be Sasakian.

Remark: A link of a homogeneous singularity is always Sasakian.
Remark: Every quasiregular Sasakian manifold is obtained this way.

Remark: All 3-dimensional Sasakian manifolds, except S3 and the quotients
3
Zs—/n, are quasiregular (H. Geiges, 1997, F. Belgun, 2000).

Remark: Every Sasakian manifold is diffeomorphic to a quasiregular
one.
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CR-manifolds.

Definition: Let M be a smooth manifold, B C T'M a sub-bundle in a tangent
bundle, and I : B — B an endomorphism satisfying I?2 = —1. Consider
its v/—1 -eigenspace B1.9(M) c B®C Cc ToM = TM ® C. Suppose that
[B1.O B1.O] ¢ BL1.O. Then (B,I) is called a CR-structure on M.

Example: A complex manifold is CR, with B = T M. Indeed, [TYOM, T1.0M] ¢
T1.9M is equivalent to integrability of the complex structure (Newlander-
Nirenberg).

Example: Let X be a complex manifold, and M C X a hypersurface.
Then B = dim¢gTM N I(TM) = dimgcX — 1, hence rk B = n — 1. Since
[T19x 71.0x] c 719X, M is a CR-manifold.

Definition: A Frobenius form of a CR-manifold is the tensor BQ B — T M/B
mapping X,Y to the projection I‘ITM/B([X, Y]). It is an obstruction to inte-
grability of the foliation given by B.
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Contact CR-manifolds.

Definition: Let (M,B,I) be a CR-manifold, with codimB = 1. Then M is
called a contact CR-manifold if its Frobenius form is non-degenerate.

Remark: Since [B1.0, B1.0] ¢ B1.0 and [BY1, B91] ¢ BY1, the Frobenius form
is a pairing between B9 and B10. This means that it is of Hodge type
(1,1), that us, pseudo-Hermitian.

Definition: Let (M, B,I) be a CR-manifold, with codimB = 1. Then M is
called a strictly pseudoconvex CR-manifold if its Frobenius form is positive
definite everywhere.

Example: Let h be a function on a complex manifold such that 00h = w
is a positive definite Hermitian form, and X = h_l(c) its level set. Then
the Frobenius form of X is equal to w|x. In particular, X is a strictly
pseudoconvex CR-manifold.

11
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CR-geometry of Sasakian manifolds.

THEOREM: A Sasakian manifold is strictly pseudoconvex as a CR-
manifold.

Proof: Let ¢ = t2 be the Kihler potential on C(M) = M x R>9. Then
M is its level set. A level set of a Kahler potential is always strictly
pseudoconvex. m

Question: Which strictly pseudoconvex CR-manifolds admit Sasakian struc-
tures?

Answer: (Ornea-V.) Let (M, B,I) be a compact, strictly pseudoconvex CR-
manifold. Then M admits a Sasakian metric if and only if M admits
a CR-holomorphic vector field which is transversal to B. Moreover, for
every such field v, there exists a unique Sasakian metric such that v or
—uv IS its Reeb field.

12
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CR-Holomorphic vector fields on pseudoconvex CR-manifolds

THEOREM: Let S be a strictly pseudoconvex compact CR-manifold, dimp S >
5. Then S admits a Sasakian structure if and only if S admits a transver-
sal CR-holomorphic vector field. This vector field becomes a Reeb field of
this Sasakian manifold.

Step 1: By Rossi-Andreotti-Siu, S = M, where M = Spec(H%(Og);) is
a Stein variety with isolated singularities, and R acts on M by holomorphic
automorphisms.

Step 2: Since R is transversal to the contact distribution, IR is transversal to
OM: replacing R by —R, we can always assume that IR points toward interior
of M, and A. := /2 for small £« maps M to a subset A.(M) Cc M with
compact closure.

Step 3: Consider the ring H = H9(O,,); of bounded holomorphic functions
on M, with sup-metric. Then H is a Banach ring. Since A-(M) has compact
closure, AX(B) is a normal family, where B is any open ball in the Banach
space H, and A} is a compact operator.

13
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CR-Holomorphic vector fields on pseudoconvex CR-manifolds (2)

Step 4: By maximum principle, for any non-constant f € H, one has

sup 4.(an) | fl < supps|f|. Since any limit point f;,, of a sequence (ALY*f
satisfies sup A:(M)|f| = sup,s|f], it is constant. A limit function f;,, exists,
because A}(B) is precompact.

Step 5: This implies that for each z € M, a limit point z;,, of a sequence
{z, Acz, A2z, ...} is unique and independent of z. Indeed, fiim(z) = f(zjim), but
flim = const. This implies that A: is a holomorphic contraction contracting
M to the origin point zqg C M.

Step 6: Since R‘Sg = A:(R) is nowhere vanishing for each e, the vector
field ¥ := IR is transversal to S: := A-(S) pointing to the origin. Therefore,
through each point of S passes a unique solution p(t) of an equation dp(t) =7

Step 7: Let ¢y, be a p-automorphic Kahler potential which is equal to 1 on
S C M. Such a potential exists, because S is strictly pseudoconvex, hence
it can be realized as a level set of a psh function. The Lie algebra (R, IR)
acts on (M,dd°p,) by holomorphic homotheties, hence it is a conical

Kahler manifold (Kamishima-Ornea). Therefore, S is Sasakian. m
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Quasi-regular deformations of Sasakian manifolds.

THEOREM: (D. Burns) Let (M,B,I) be a pseudoconvex CR-manifold,
which is not equivalent to a sphere with the standard CR-structure. Then
the group of holomorphic automorphisms of M is compact.

THEOREM: (Ornea-V.) Let (M, B,I) be a CR manifold admitting a Sasakian
structure, that is, a CR-holomorphic vector field R which is transversal to B.
Then R = |lim; R;, where R; are Reeb fields of quasiregular Sasakian
structures.

Proof. Step 1: Let G be the closure of the Lie subgroup in Aut(M, B, 1)
generated by et Since G is compact and commutative, it is a torus. For
any vector field R’ € Lie(G) in its Lie algebra sufficiently close to R, it is also
transversal to B, hence gives another Sasakian structure.

Step 2: A Reeb field R’ € Lie(G) is quasiregular if and only if it generates a
compact subgroup, that is, is rational with respect to the rational structure
on the Lie algebra LieG. However, rational points are dense in LieG. m
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