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Contact manifolds.

Definition: Let M be a smooth manifold, dimM = 2n−1, and ω a symplectic

form on M × R>0. Suppose that ω is automorphic: Ψ∗qω = q2ω, where

Ψq(m, t) = (m, qt). Then M is called contact.

Remark: The contact form on M is defined as θ = ωy ~T , where ~T = t ddt.

Then dθ = [d, ·y ~T ]ω = Lie~T ω = ω. Therefore, the form dθn−1 ∧ θ = 1
nω

ny ~T is

non-degenerate on M × {t0} ⊂M × R>0.

Remark: Usually, a contact manifold is defined as a (2n−1)-manifold with

1-form θ such that dθn−1 ∧ θ is nowhere degenerate.

Example: An odd-dimensional sphere S2n−1 is contact. Indeed, its cone

S2n−1 × R>0 = R2n\0 has the standard symplectic form
∑n
i=1 dx2i−1 ∧ dx2i

which is obviously homogeneous.

Contact geometry is an odd-dimensional counterpart to symplectic

geometry
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Kähler manifolds.

Definition: Let (M, I) be a complex manifold, dimCM = n, and g is Rieman-

nian form. Then g is called Hermitian if g(Ix, Iy) = g(x, y).

Remark: Since I2 = − Id, it is equivalent to g(Ix, y) = −g(x, Iy). The form

ω(x, y) := g(x, Iy) is skew-symmetric.

Definition: The differential form ω is called the Hermitian form of (M, I, g).

Definition: A complex Hermitian manifold is called Kähler if dω = 0.
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Sasakian manifolds.

Definition: Let (M, gM) be a Riemannian manifold, dimM = 2n − 1, and

(g, ω, I) a Kaehler structure on M × R>0 with g = gM + t2dt ⊗ dt. Suppose

that ω is automorphic: Ψ∗qω = q2g, where Ψq(m, t) = (m, qt), and I is Ψq-

invariant. Then M is called Sasakian, and M × R>0 its Kähler cone.

Sasakian geometry is an odd-dimensional counterpart to Kähler geom-

etry

Remark: A Sasakian manifold is obviosly contact. Indeed, a Sasakian man-

ifold is a contact manifold equipped with a compatible Riemannian

metric.

Example: An odd-dimensional sphere S2n−1 is Sasakian. Indeed, its cone

S2n−1 × R>0 = Cn\0 has the standard Kähler form
√
−1

∑n
i=1 dzi ∧ dzi which

is obviously automorphic.

S. Sasaki, ”On differentiable manifolds with certain structures which are closely related to

almost contact structure”, Tohoku Math. J. 2 (1960), 459-476.
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Kähler potentials on the Kähler cones

DEFINITION: A Kähler potential on a Kähler manifold (M, I, ω) is a func-

tion f such that the (1,1)-form ddc(f) is equal to ω, where ddc = dIdI−1 =
∂∂

−2
√
−1

.

CLAIM: Let M be a Sasakian manifold and C(M) = M×R>0 its Kähler cone,

with t the parameter on R>0 and ω its Kähler form. Then ddc(t2) = ω, in

other words, 1
2t

2 is a Kähler potential.

Proof: Let ~r = td/dt be the radial vector field. Cartan’s formula LieX η =

(dη)yX + d(ηyX) gives

2ω = Lie~r ω = d(ωy~r) = d(tI(dt)) = 2ddc(t2).

COROLLARY: The field I(~r) acts on C(M) by holomorphic isometries.

Proof: Indeed, ~r is holomorphic, and LieI~r(t) = 〈dt, Itd/dt〉 = 0. Therefore,

I(~t) preserves the Kähler potential and the Kähler structure.
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Reeb field

Definition: Given a contact manifold (M, θ), a vector field R is called the

Reeb field of (M, θ), if dθyR = 0 and θ(R) = 1.

DEFINITION: Let C(M) := M × R>0 be the cone of a Sasakian manifold

M . The vector field ~r := td/dt is called the Lee field on C(M). Clearly, ~r

acts on C(M) by holomorphic homotheties.

REMARK: On a Sasakian manifold, dθ is restriction of the Kähler form to

M = M × {1} ⊂ M × R>0, hence ker dθ|M = I(Rc). Also, θ(I(~r))|M = 1.

Therefore, R := I(~r) is the Reeb field of M.

COROLLARY: The Reeb field of a Sasakian manifold is the Riemannian

dual to its contact form θ = ω(~r, ·).

COROLLARY: For any Sasakian manifold, the Reeb field generates a

flow of diffeomorphisms acting on M by contact isometries.

Proof: The Reeb field θ] = I(~r) acts holomorphically because ~r acts holo-

morphically, and preserves the Kähler potentialm as shown above.
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Quasiregular Sasakian manifolds

Definition: A Sasakian manifold M is called quasiregular if all orbits of the

Reeb flow are compact.

CLAIM: Every quasiregular Sasakian manifold is a total space of S1-

bundle over a complex orbifold.

Proof: The quotient of M over the Reeb flow is the same as the quotient of

its cone C(M) over its complexification, generated by ~r and R = I(~r).

REMARK: The space of Reeb orbits X of a quasiregular Sasakian manifold

is in fact projective, as follows from Kodaira theorem. Indeed, C(M) is

C∗-bundle over X, and the corresponding line bundle has positive curvature

which can be expressed as ddc log(ϕ), where ϕ = r2 is the Kähler potential of

C(M).
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Examples of Sasakian manifolds.

Example: Let X ⊂ CPn be a complex submanifold, and CX ⊂ Cn+1\0 the

corresponding cone. The cone CX is obviously Kähler and automorphic,

hence the intersection CX ∩ S2n−1 is Sasakian. This intersection is an S1-

bundle over X. This construction gives many interesting contact manifolds,

including Milnor’s exotic 7-spheres, which happen to be Sasakian.

Remark: A link of a homogeneous singularity is always Sasakian.

Remark: Every quasiregular Sasakian manifold is obtained this way.

Remark: All 3-dimensional Sasakian manifolds are quasiregular, except S3

(H. Geiges, 1997, F. Belgun, 2000).

Remark: Every Sasakian manifold is diffeomorphic to a quasiregular

one (Ornea-V., arXiv:math/0306077)
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Number of closed Reeb orbits

Every Sasakian manifold can be approximated by a sequence of quasiregular

ones.

THEOREM: (Ornea-V., arXiv:math/0306077) Let S be a Sasakian struc-

ture on a manifold M . Then S = limiSi, where Si are quasiregular

Sasakian structures.

The main result of today’s talk (joint with Liviu Ornea).

THEOREM: Let M be a Sasakian manifold, M ′ a quasiregular Sasakian

manifold approximating M as above, and X its space of Reeb orbits on M ′.
Let N :=

∑
i bi(X) be the sum of its Betti numbers. Then M has at least

N closed Reeb orbits.

REMARK: Since X is projective,
∑
i bi(X) > m + 1, where m = dimCX by

Lefschetz theorem. Therefore, the number of closed Reeb orbits on a

Sasakian manifold M with dimRM = 2n+ 1 is at least n+ 1.
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CR-manifolds.

Definition: Let M be a smooth manifold, B ⊂ TM a sub-bundle in a tangent

bundle, and I : B −→B an endomorphism satisfying I2 = −1. Consider

its
√
−1 -eigenspace B1,0(M) ⊂ B ⊗ C ⊂ TCM = TM ⊗ C. Suppose that

[B1,0, B1,0] ⊂ B1,0. Then (B, I) is called a CR-structure on M .

Example: A complex manifold is CR, with B = TM . Indeed, [T1,0M,T1,0M ] ⊂
T1,0M is equivalent to integrability of the complex structure (Newlander-

Nirenberg).

Example: Let X be a complex manifold, and M ⊂ X a hypersurface.

Then B := dimC TM ∩ I(TM) = dimCX − 1, hence rkB = n − 1. Since

[T1,0X,T1,0X] ⊂ T1,0X, M is a CR-manifold.

Definition: A Frobenius form of a CR-manifold is the tensor B⊗B −→ TM/B

mapping X,Y to the projection ΠTM/B([X,Y ]). It is an obstruction to inte-

grability of the foliation given by B.
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Contact CR-manifolds.

Definition: Let (M,B, I) be a CR-manifold, with codimB = 1. Then M is

called a contact CR-manifold if its Frobenius form is non-degenerate.

Remark: Since [B1,0, B1,0] ⊂ B1,0 and [B0,1, B0,1] ⊂ B0,1, the Frobenius form

is a pairing between B0,1 and B1,0. This means that it is of Hodge type

(1,1), that us, pseudo-Hermitian.

Definition: Let (M,B, I) be a CR-manifold, with codimB = 1. Then M is

called a strictly pseudoconvex CR-manifold if its Frobenius form is positive

definite everywhere.

Example: Let h be a function on a complex manifold such that ∂∂h = ω

is a positive definite Hermitian form, and X = h−1(c) its level set. Then

the Frobenius form of X is equal to ω|X . In particular, X is a strictly

pseudoconvex CR-manifold.
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CR-geometry of Sasakian manifolds.

THEOREM: A Sasakian manifold is strictly pseudoconvex as a CR-

manifold.

Proof: Let ϕ = t2 be the Kähler potential on C(M) = M × R>0. Then

M is its level set. A level set of a Kähler potential is always strictly

pseudoconvex.

Question: Which strictly pseudoconvex CR-manifolds admit Sasakian struc-

tures?

Answer: (Ornea, V., arXiv:math/0606136) Let (M,B, I) be a compact,

strictly pseudoconvex CR-manifold. Then M admits a Sasakian metric if

and only if M admits a CR-holomorphic vector field which is transversal

to B. Moreover, for every such field v, there exists a unique Sasakian

metric such that v or −v is its Reeb field.
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Quasi-regular deformations of Sasakian manifolds.

THEOREM: (D. Burns) Let (M,B, I) be a pseudoconvex CR-manifold,

which is not equivalent to a sphere with the standard CR-structure. Then

the group of holomorphic automorphisms of M is compact.

THEOREM: (Ornea-V., arXiv:math/0306077) Let (M,B, I) be a CR

manifold admitting a Sasakian structure, that is, a CR-holomorphic vector

field R which is transversal to B. Then R = limiRi, where Ri are Reeb

fields of quasiregular Sasakian structures.

Proof. Step 1: Let G be the closure of the Lie subgroup in Aut(M,B, I)

generated by etR. Since G is compact and commutative, it is a torus. For

any vector field R′ ∈ Lie(G) in its Lie algebra sufficiently close to R, it is also

transversal to B, hence gives another Sasakian structure.

Step 2: A Reeb field R′ ∈ Lie(G) is quasiregular if and only if it generates a

compact subgroup, that is, is rational with respect to the rational structure

on the Lie algebra LieG. However, rational points are dense in LieG.
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Closed Reeb orbits

CLAIM: Let M be a Sasakian manifold, and G = 〈etR〉 the compact group

constructed above. Then each 1-dimensional orbit of G is a closed Reeb

orbit.

REMARK: Let R1 ∈ Lie(G) be a rational Reeb field approximating R. The

corresponding Sasakian structure is quasiregular, and G acts on a projective

orbifold X = M/〈etR1〉 by complex isometries. Clearly, each fixed point

of G acting on X corresponds to 1-dimensional orbit of G acting on M.

COROLLARY: In these assumptions, the number of closed Reeb orbit in

M is no smaller than the number of fixed points of G acting on X.

Clearly, the number of fixed points of G acting on X is equal to the number

of zeros of a general vector field r ∈ LieG. Now the main result is given by

the following version of Bialynicki-Birula theorem.

THEOREM: Let r be a holomorphic vector field with isolated zeros on a

compact projective orbifold X. Then the number of zeros of r is equal

to
∑
i bi(X).
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Proof: C. Fontanari, Towards the cohomology of moduli spaces of higher

genus stable maps. Pubblicato su Archiv der Mathematik 89 (2007), 530-

535 (Proposition 1).
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Vaisman manifolds

DEFINITION: Let C(M) be the cone of a compact Sasakian manifold,
and q a non-isometric holomorphic homothety of C(M). The quotient V :=
C(M)/〈q〉, considered as a compact complex manifold, is called a Vaisman
manifold.

REMARK: Consider a form ddc log t on C(M) = M × R>0, where t is the
parameter on R>0. Then ω0 is q-invariant. Moreover, ω0 = 1

t2
(ω − dt ∧ I(dt))

is semi-positive definite.

REMARK: The form d log t is already q-invariant. Therefore, the form ω0 is
well defined on each Vaisman manifold, and is exact there,

DEFINITION: A foliation Σ := kerω0 is called canonical foliation on a
Vaisman manifold.

CLAIM: The canonical foliation is independent from the choice of C(M)
and q.

Proof: Suppose we have two different exact and (semi-)positive forms ω0 and
ω′0. The sum ω1ω0 +ω′0 is also exact and semipositive. Unless kerω0 = kerω0,

this sum is strictly positive, which is impossible because
∫
V ω

dimC V
1 = 0 by

Stoke’s theorem (because ω0 is exact).
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Complex curves on Vaisman manifolds

THEOREM: Let C be a complex curve on a Vaisman manifold V . Then C

is a leaf of the canonical foliation. In particular, C is an elliptic curve.

Proof:
∫
C ω0 = 0 by Stoke’s theorem (because ω0 is exact), hence C is tangent

to Σ = kerω0. However, all compact leaves of Σ are elliptic curves because

its tangent bundle TΣ is trivial.

REMARK: Let q act on the cone C(M) of Sasakian manifold by (m, t)−→ (m,λt)

with λ ∈ R>1. Then the canonical foliation is generated by ~r, I~r. In particular,

a leaf of Σ is compact if and only if the corresponding orbit of R = I~r

is compact.

We proved the following

COROLLARY: Let M be a Sasakian manifold, and V := C(M)/〈q〉 the

corresponding Vaisman manifold, with q = λ ∈ R>1. Then the number of

closed Reeb orbit is equal to the number of elliptic curves in V .
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Vaisman manifolds as submanifolds in Hopf manifolds

THEOREM: (Ornea-V., 2006) A compact complex manifold admits Vais-

man metric if and only if V admits a holomorphic embedding into a diag-

onal Hopf manifold H = (Cn\0)/〈A〉, where A is a diagonal endomorphism

with eigenvalues (α1, ...αn), |αi| > 1.

REMARK: Taking an intersection of V with two complementary flags of

Hopf submanifolds in H, we obtain at least 2 elliptic curves.
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