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Contact manifolds.

Definition: Let M be a smooth manifold, dim M = 2n—1, and w a symplectic
form on M x R>0. Suppose that w is homogeneous: Wiw = ¢w, where
W,(m,t) = (m,qt). Then M is called contact.

Remark: The contact form on M is defined as 60 = auf, where T = t4&.
Then df = [d,  1T]w = Liesw = w. Therefore, the form do" 1 Ao = L T is
non-degenerate on M x {to} C M x R>9,

Remark: Usually, a contact manifold is defined as a (2n — 1)-manifold with
1-form 6 such that d9" ! A 6 is nowhere degenerate.

Example: An odd-dimensional sphere S2"—1 is contact. Indeed, its cone
g2n—1 x R>0 = R?™\0 has the standard symplectic form Y%, dxo; 1 A dzo;
which is obviously homogeneous.

Contact geometry is an odd-dimensional counterpart to symplectic
geometry
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Kahler manifolds.

Definition: Let (M, I) be a complex manifold, dimg M = n, and g is Rieman-
nian form. Then g is called Hermitian if g(Ix,Iy) = g(x,vy).

Remark: Since 12 = —1Id, it is equivalent to g(Iz,y) = —g(z, Iy). The form
w(x,y) ;= g(x, [y) is skew-symmetric.

Definition: The differential form w is called the Hermitian form of (M, 1,q).
Definition: A complex Hermitian manifold is called Kahler if dw = 0.

Remark: Kahler manifolds are the main object of complex algebraic
geometry (algebraic geometry over C). See e.qg. Griffiths, Harris, “Principles
of Algebraic Geometry”.
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Examples of Kahler manifolds.

Definition: Let M = CP"™ be a complex projective space, and g a U(n + 1)-
invariant Riemannian form. It is called Fubini-Study form on CP"™. The
Fubini-Study form is obtained by taking arbitrary Riemannian form and aver-
aging with U(n 4+ 1).

Remark: For any z € CP", the stabilizer St(x) is isomorphic to U(n). Fubini-
Study form on T,CP" is U(n)-invariant, hence unique up to a constant.

Claim: Fubini-Study form is Kahler. Indeed, dw‘ is a U(n)-invariant 3-
form on C", but such a form must vanish (invariants of U(n) are known since
XIX century).

Corollary: Every projective manifold (complex submanifold of CP"™) is Kahler.
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Almost complex manifolds.
A differential-geometric way of looking at Kahler manifolds.

Definition: An almost complex structure on a manifold M is an operator
I: TM — TM such that 12 = —1Id. It is called integrable if [ is induced by
a complex structure.

Theorem: A Riemannian almost complex Hermitian manifold (M, 1I,q) is
Kahler if and only if Vw = 0, where V is a Levi-Civita connection.

Remark: This theorem is difficult (both ways). Integrability of almost com-
plex structures takes some intensive work on PDEs. The implication dw = 0O
= Vw = 0 is also non-trivial, but essentially linear-algebraic.

Remark: One may think of Kahler manifolds as of symplectic mani-
folds with a Riemannian structure compatible with a symplectic form.
Locally, every symplectic manifold admits a Kahler structure (Darboux).
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Sasakian manifolds.

Definition: Let M be a smooth manifold, dmM = 2n — 1, and (w,I) a
Kaehler structure on M xR>9. Suppose that w is homogeneous: Wiw = ¢2g,
where W,(m,t) = (m,qt), and I is Wg-invariant. Then M is called Sasakian,
and M x R>0 its Kahler cone.

Sasakian geometry is an odd-dimensional counterpart to Kahler geom-
etry

Remark: A Sasakian manifold is obviosly contact. Indeed, a Sasakian man-
ifold iIs a contact manifold equipped with a compatible Riemannian
metric.

Example: An odd-dimensional sphere S2"—1 is Sasakian. Indeed, its cone
§2n=1 x R>0 = C™\0 has the standard K&hler form /=1 Y%, dz; A dz; which
IS obviously homogeneous.

S. Sasaki, "On differentiable manifolds with certain structures which are closely related to
almost contact structure”, Tohoku Math. J. 2 (1960), 459-476.
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Quasiregular Sasakian manifolds.

Definition: Given a contact manifold (M, 6) with a Riemannian structure g,
the dual vector field 6% is called the Reeb field of (M, 6, g).

Remark: For any Sasakian manifold, the Reeb field generates a flow of
diffeomorphisms acting on M by contact isometries. This is obvious from
the definition, because the Reeb field 08 — It% acts by holomorphic isometries
on the Kahler cone.

Definition: A Sasakian manifold M is called quasiregular if all orbits of the
Reeb flow are compact. The space of orbits of the Reeb flow is a complex
orbifold. Every quasiregular Sasakian manifold is a total space of Sl-
bundle over a complex orbifold.

This is easy to see, because the quotient of M over the Reeb flow is the same
as the quotient of CM over its complexification, generated by 6 and 6%
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Examples of Sasakian manifolds.

Example: Let X ¢ CP™ be a complex submanifold, and CX C C”+1\O the
corresponding cone. The cone CX is obviously Kahler and homogeneous,
hence the intersection C'X N S27~1 is Sasakian. This intersection is an S!-
bundle over X. This construction gives many interesting contact manifolds,
including Milnor’s exotic 7-spheres, which happen to be Sasakian.

Remark: A link of a homogeneous singularity is always Sasakian.

Remark: Every quasiregular Sasakian manifold is obtained this way, for some
Kahler metric on C*t+1,

Remark: All 3-dimensional Sasakian manifolds are quasiregular (H. Geiges,
1997, F. Belgun, 2000).

Remark: Every Sasakian manifold is diffeomorphic to a quasiregular
one (Ornea-V., arXivimath/0306077)
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Sasaki-Einstein manifolds

Definition: A Sasaki-Einstein manifold is a Sasakian manifold with Ric(M) =
const g, where Ric is its Ricci curvature, and const a constant.

Boyer and Galicki (also: Demailly, Kollar, Boyer, Galicki, Nakamaye) found a
way of constructing Sasaki-Einstein metrics on many 5-dimensional and
7-dimensional manifolds, including Milnor's exotic spheres, using Nadel's
theory of multiplier ideals. These examples are quasiregular.

Cheeger and Tian conjectured that all Sasaki-Einstein manifolds are quasireg-
ular. In 2005, physicists found very exotic counteraxamples, constructed 'as
BPS limits of the Euclideanised Kerr-de Sitter metrics”. using number theory.
These manifolds are studied very intensively.
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Sasaki-Einstein manifolds: normalized volume

Definition: Let (M, g) be a Sasaki-Einstein manifold, dimp M = 2n — 1, with
Ric(M) = constg. If we multiply g by a constant, Ric(M) does not change,
hence const can be anything (it is always positive). Normalized Einstein

equation: Ric(M) = (2n — 2)g Normalized volume: Vol(M) = V;f(()g(zj\f_)l).

Remark: If M is quasiregular, VVol(M) is always rational (expressed through
c1 of the corresponding Sl—bundle).

Theorem: (D. Martelli, J. Sparks, S.-T. Yau, hep-th/0603021) Vol(M) is
an algebraic number.

Remark: This was obtained from string physics, then [MSY] found a proof
using Duistermaat-Heckman formula.

Conjecture: ([MSY]) The degree of Vol(M) is is equal to the dimension of
the Lie group obtained as a closure of the Reeb action.
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CR-manifolds.

Definition: Let M be a smooth manifold, B C T'M a sub-bundle in a tangent
bundle, and I : B — B an endomorphism satisfying I2 = —1. Consider
its v/—1 -eigenspace BL.O(M) c B C Cc ToM = TM @ C. Suppose that
[B1.0, B1.0] « BL.O. Then (B,I) is called a CR-structure on M.

Example: A complex manifold is CR, with B = T M. Indeed, [TYOM, T1.0M] ¢
T1.9)01 is equivalent to integrability of the complex structure (Newlander-
Nirenberg).

Example: Let X be a complex manifold, and M C X a hypersurface.
Then B = dim¢TM N I(TM) = dimgX — 1, hence rkB = n — 1. Since
[T19x 71.0x] c 719X, M is a CR-manifold.

Definition: A Frobenius form of a CR-manifold is the tensor BB — TM /B
mapping X,Y to the I‘ITM/B([X, Y]). It is an obstruction to integrability of
the foliation given by B.
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Contact CR-manifolds.
Complex algebraic geometry is a rich source of contact structures.

Definition: Let (M, B,I) be a CR-manifold, with codimB = 1. Then M is
called a contact CR-manifold if its Frobenius form is non-degenerate.

Remark: Since [B19, B1.0] ¢ B1.O and [BY1, B%1] ¢ BY1, the Frobenius form
is a pairing between BY%! and B9, This means that it is Hermitian.

Definition: Let (M, B,I) be a CR-manifold, with codimB = 1. Then M is
called a strictly pseudoconvex CR-manifold if its Frobenius form is positive
definite everywhere.

Example: Let h be a function on a complex manifold such that 90h = w
is a positive definite Hermitian form, and X = h~1(c¢) its level set. Then
the Frobenius form of X is equal to W\ - In particular, X is a strictly
pseudoconvex CR-manifold.
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CR-geometry of Sasakian manifolds.

Claim: Let M be a Sasakian manifold, CM = M X R>0 its Kahler cone, and
o(m,t) =t the projection of CM to R>0. Then /=1 99y = w is its Kahler
form.

Proof:
V—100p = dd¢p = dIdp = dIdt = d(w_I%) = w as we have already seen. =

Corollary:
A Sasakian manifold is strictly pseudoconvex as a CR-manifold.

Question:
Which strictly pseudoconvex CR-manifolds admit Sasakian structures?

Answer: (Ornea, V., arXivimath/0606136) Let M be a compact, strictly
pseudoconvex CR-manifold. Then M admits a Sasakian metric if and
only if M admits a proper, transversal CR-holomorphic Sl_action.
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A Sasakian analogue of Kodaira embedding theorem.

Theorem: (Ornea-V., arXivimath/0609617) Let M be a compact Sasakian
manifold. Then M admits a CR-holomorphic embedding to a sphere.

An idea of a proof: A cone of Sasakian manifold is a link of a complex
singularity (Ornea-V., arXivimath/0407231). Embedding projectivization of
singularity into CP"™, we obtain a contact immersion of M into a sphere. To
make it CR-holomorphic, the following theorem was used.

Theorem: (Ornea-V.) Let X C M be a complex submanifold of a Kaehler
manifold (M,w,;). Assume that X is equipped with a Kaehler form wy, and
the cohomology classes of wx and wy, L are equal. Then M admits a Kahler

form w such that w(X = Wwy-

‘VWe can extend a Kahler form from a submanifold to an ambient
manifold, if cohomology allows” .
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