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Contact manifolds.

Definition: Let M be a smooth manifold, dimM = 2n−1, and ω a symplectic
form on M × R>0. Suppose that ω is homogeneous: Ψ∗

qω = q2ω, where
Ψq(m, t) = (m, qt). Then M is called contact.

Remark: The contact form on M is defined as θ = ωy ~T , where ~T = t d
dt.

Then dθ = [d, ·y ~T ]ω = Lie~T
ω = ω. Therefore, the form dθn−1 ∧ θ = 1

nωny ~T is
non-degenerate on M × {t0} ⊂ M × R>0.

Remark: Usually, a contact manifold is defined as a (2n−1)-manifold with
1-form θ such that dθn−1 ∧ θ is nowhere degenerate.

Example: An odd-dimensional sphere S2n−1 is contact. Indeed, its cone
S2n−1 × R>0 = R2n\0 has the standard symplectic form

∑n
i=1 dx2i−1 ∧ dx2i

which is obviously homogeneous.

Contact geometry is an odd-dimensional counterpart to symplectic
geometry
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Kähler manifolds.

Definition: Let (M, I) be a complex manifold, dimC M = n, and g is Rieman-

nian form. Then g is called Hermitian if g(Ix, Iy) = g(x, y).

Remark: Since I2 = − Id, it is equivalent to g(Ix, y) = −g(x, Iy). The form

ω(x, y) := g(x, Iy) is skew-symmetric.

Definition: The differential form ω is called the Hermitian form of (M, I, g).

Definition: A complex Hermitian manifold is called Kähler if dω = 0.

Remark: Kähler manifolds are the main object of complex algebraic

geometry (algebraic geometry over C). See e.g. Griffiths, Harris, “Principles

of Algebraic Geometry”.
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Examples of Kähler manifolds.

Definition: Let M = CPn be a complex projective space, and g a U(n + 1)-

invariant Riemannian form. It is called Fubini-Study form on CPn. The

Fubini-Study form is obtained by taking arbitrary Riemannian form and aver-

aging with U(n + 1).

Remark: For any x ∈ CPn, the stabilizer St(x) is isomorphic to U(n). Fubini-

Study form on TxCPn is U(n)-invariant, hence unique up to a constant.

Claim: Fubini-Study form is Kähler. Indeed, dω
∣∣∣
x

is a U(n)-invariant 3-

form on Cn, but such a form must vanish (invariants of U(n) are known since

XIX century).

Corollary: Every projective manifold (complex submanifold of CPn) is Kähler.
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Almost complex manifolds.

A differential-geometric way of looking at Kähler manifolds.

Definition: An almost complex structure on a manifold M is an operator
I : TM −→ TM such that I2 = − Id. It is called integrable if I is induced by
a complex structure.

Theorem: A Riemannian almost complex Hermitian manifold (M, I, g) is
Kähler if and only if ∇ω = 0, where ∇ is a Levi-Civita connection.

Remark: This theorem is difficult (both ways). Integrability of almost com-
plex structures takes some intensive work on PDEs. The implication dω = 0
⇒ ∇ω = 0 is also non-trivial, but essentially linear-algebraic.

Remark: One may think of Kähler manifolds as of symplectic mani-
folds with a Riemannian structure compatible with a symplectic form.
Locally, every symplectic manifold admits a Kähler structure (Darboux).
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Sasakian manifolds.

Definition: Let M be a smooth manifold, dimM = 2n − 1, and (ω, I) a
Kaehler structure on M×R>0. Suppose that ω is homogeneous: Ψ∗

qω = q2g,
where Ψq(m, t) = (m, qt), and I is Ψq-invariant. Then M is called Sasakian,
and M × R>0 its Kähler cone.

Sasakian geometry is an odd-dimensional counterpart to Kähler geom-
etry

Remark: A Sasakian manifold is obviosly contact. Indeed, a Sasakian man-
ifold is a contact manifold equipped with a compatible Riemannian
metric.

Example: An odd-dimensional sphere S2n−1 is Sasakian. Indeed, its cone
S2n−1 × R>0 = Cn\0 has the standard Kähler form

√
−1

∑n
i=1 dzi ∧ dzi which

is obviously homogeneous.

S. Sasaki, ”On differentiable manifolds with certain structures which are closely related to

almost contact structure”, Tohoku Math. J. 2 (1960), 459-476.
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Quasiregular Sasakian manifolds.

Definition: Given a contact manifold (M, θ) with a Riemannian structure g,

the dual vector field θ] is called the Reeb field of (M, θ, g).

Remark: For any Sasakian manifold, the Reeb field generates a flow of

diffeomorphisms acting on M by contact isometries. This is obvious from

the definition, because the Reeb field θ] = It d
dt acts by holomorphic isometries

on the Kähler cone.

Definition: A Sasakian manifold M is called quasiregular if all orbits of the

Reeb flow are compact. The space of orbits of the Reeb flow is a complex

orbifold. Every quasiregular Sasakian manifold is a total space of S1-

bundle over a complex orbifold.

This is easy to see, because the quotient of M over the Reeb flow is the same

as the quotient of CM over its complexification, generated by θ] and Iθ].
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Examples of Sasakian manifolds.

Example: Let X ⊂ CPn be a complex submanifold, and CX ⊂ Cn+1\0 the
corresponding cone. The cone CX is obviously Kähler and homogeneous,
hence the intersection CX ∩ S2n−1 is Sasakian. This intersection is an S1-
bundle over X. This construction gives many interesting contact manifolds,
including Milnor’s exotic 7-spheres, which happen to be Sasakian.

Remark: A link of a homogeneous singularity is always Sasakian.

Remark: Every quasiregular Sasakian manifold is obtained this way, for some
Kähler metric on Cn+1.

Remark: All 3-dimensional Sasakian manifolds are quasiregular (H. Geiges,
1997, F. Belgun, 2000).

Remark: Every Sasakian manifold is diffeomorphic to a quasiregular
one (Ornea-V., arXiv:math/0306077)
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Sasaki-Einstein manifolds

Definition: A Sasaki-Einstein manifold is a Sasakian manifold with Ric(M) =

const g, where Ric is its Ricci curvature, and const a constant.

Boyer and Galicki (also: Demailly, Kollar, Boyer, Galicki, Nakamaye) found a

way of constructing Sasaki-Einstein metrics on many 5-dimensional and

7-dimensional manifolds, including Milnor’s exotic spheres, using Nadel’s

theory of multiplier ideals. These examples are quasiregular.

Cheeger and Tian conjectured that all Sasaki-Einstein manifolds are quasireg-

ular. In 2005, physicists found very exotic counteraxamples, constructed “as

BPS limits of the Euclideanised Kerr-de Sitter metrics”. using number theory.

These manifolds are studied very intensively.
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Sasaki-Einstein manifolds: normalized volume

Definition: Let (M, g) be a Sasaki-Einstein manifold, dimR M = 2n− 1, with
Ric(M) = const g. If we multiply g by a constant, Ric(M) does not change,
hence const can be anything (it is always positive). Normalized Einstein
equation: Ric(M) = (2n− 2)g Normalized volume: Vol(M) := Vol(M)

Vol(S2n−1)
.

Remark: If M is quasiregular, Vol(M) is always rational (expressed through
c1 of the corresponding S1-bundle).

Theorem: (D. Martelli, J. Sparks, S.-T. Yau, hep-th/0603021) Vol(M) is
an algebraic number.

Remark: This was obtained from string physics, then [MSY] found a proof
using Duistermaat-Heckman formula.

Conjecture: ([MSY]) The degree of Vol(M) is is equal to the dimension of
the Lie group obtained as a closure of the Reeb action.
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CR-manifolds.

Definition: Let M be a smooth manifold, B ⊂ TM a sub-bundle in a tangent
bundle, and I : B −→B an endomorphism satisfying I2 = −1. Consider
its

√
−1 -eigenspace B1,0(M) ⊂ B ⊗ C ⊂ TCM = TM ⊗ C. Suppose that

[B1,0, B1,0] ⊂ B1,0. Then (B, I) is called a CR-structure on M .

Example: A complex manifold is CR, with B = TM . Indeed, [T1,0M, T1,0M ] ⊂
T1,0M is equivalent to integrability of the complex structure (Newlander-
Nirenberg).

Example: Let X be a complex manifold, and M ⊂ X a hypersurface.
Then B := dimC TM ∩ I(TM) = dimC X − 1, hence rkB = n − 1. Since
[T1,0X, T1,0X] ⊂ T1,0X, M is a CR-manifold.

Definition: A Frobenius form of a CR-manifold is the tensor B⊗B −→ TM/B

mapping X, Y to the ΠTM/B([X, Y ]). It is an obstruction to integrability of
the foliation given by B.
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Contact CR-manifolds.

Complex algebraic geometry is a rich source of contact structures.

Definition: Let (M, B, I) be a CR-manifold, with codimB = 1. Then M is
called a contact CR-manifold if its Frobenius form is non-degenerate.

Remark: Since [B1,0, B1,0] ⊂ B1,0 and [B0,1, B0,1] ⊂ B0,1, the Frobenius form
is a pairing between B0,1 and B1,0. This means that it is Hermitian.

Definition: Let (M, B, I) be a CR-manifold, with codimB = 1. Then M is
called a strictly pseudoconvex CR-manifold if its Frobenius form is positive
definite everywhere.

Example: Let h be a function on a complex manifold such that ∂∂h = ω

is a positive definite Hermitian form, and X = h−1(c) its level set. Then
the Frobenius form of X is equal to ω

∣∣∣
X
. In particular, X is a strictly

pseudoconvex CR-manifold.
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CR-geometry of Sasakian manifolds.

Claim: Let M be a Sasakian manifold, CM = M × R>0 its Kähler cone, and
ϕ(m, t) = t the projection of CM to R>0. Then

√
−1 ∂∂ϕ = ω is its Kähler

form.

Proof:√
−1 ∂∂ϕ = ddcϕ = dIdϕ = dIdt = d(ωy d

dt) = ω as we have already seen.

Corollary:
A Sasakian manifold is strictly pseudoconvex as a CR-manifold.

Question:
Which strictly pseudoconvex CR-manifolds admit Sasakian structures?

Answer: (Ornea, V., arXiv:math/0606136) Let M be a compact, strictly
pseudoconvex CR-manifold. Then M admits a Sasakian metric if and
only if M admits a proper, transversal CR-holomorphic S1-action.
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A Sasakian analogue of Kodaira embedding theorem.

Theorem: (Ornea-V., arXiv:math/0609617) Let M be a compact Sasakian

manifold. Then M admits a CR-holomorphic embedding to a sphere.

An idea of a proof: A cone of Sasakian manifold is a link of a complex
singularity (Ornea-V., arXiv:math/0407231). Embedding projectivization of
singularity into CPn, we obtain a contact immersion of M into a sphere. To
make it CR-holomorphic, the following theorem was used.

Theorem: (Ornea-V.) Let X ⊂ M be a complex submanifold of a Kaehler
manifold (M, ωM). Assume that X is equipped with a Kaehler form ωX, and
the cohomology classes of ωX and ωM

∣∣∣
X

are equal. Then M admits a Kähler

form ω such that ω
∣∣∣
X

= ωX.

“We can extend a Kähler form from a submanifold to an ambient

manifold, if cohomology allows”.
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