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Quasimorphisms

DEFINITION: A quasimorphism is a map q from a group Γ→ R such that
q(x) = −q(x−1 and |q(xy)− q(y)− q(x)| < C, for some fixed constant C > 0.

EXAMPLE: (Brooks quasimorphism)
Let Fn be a free group with generators z1, ..., zn. Non-trivial elements of
Fn are represented by reduced words, that is, sequences of the letters
z1, ..., zn, z

−1
1 , ..., z−1

n such that zi and z−1
i don’t appear next to each other.

Fix a reduced word W . Given a reduced word W1, let n+(W1) be the
maximal number of disjoint subsequences equal to W in W1, n−(W1) be
the maximal number of disjoint subsequences equal to W−1 in W1, and
n(W1) := n+(W1)− n−(W1).

EXERCISE: Prove that |n(W1W2)− n(W1)− n(W2)| 6 2. In other words, n
is a quasimorphism. It is called the Brooks quasimorphism. It was defined
by Brooks and Gromov (1978).
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Equivalent quasimorphisms

DEFINITION: Two quasimorphisms q1, q2 : Γ → R are called equivalent if
|q1(g) − q2(g)| < C for some fixed constant C. A quasimorphism q Γ → R is
called homogeneous if q(zn) = nq(z) for any z ∈ Γ and and any n ∈ Z.

PROPOSITION: Any quasimorphism is equivalent to a unique homo-
geneous quasimorphism.

Proof: Left as an exercise.
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Quasimorphisms and stable commutator length

DEFINITION: A group G is called perfect if G = [G,G]. The commutator
length of g ∈ G is the minimal number m such that g can be represented as a
product of m commutators. The stable commutator length of an element
g ∈ G is defined as scl(g) := limn→∞

cl(gn)
n , where cl is the commutator length.

THEOREM: (Pasiencier and Wang)
Every element of a connected semisimple complex Lie group is a commutator.

THEOREM: (Dragomir Z. Ðoković)
The commutator length of any element in a semisimple real algebraic Lie
group is 1 or 2. It is equal to 2 for some elements in SU(p, q).

LEMMA: (Bavard)
Let q be a homogeneous quasimorphism. Then q(xyx−1y−1) = 0.

In particular, any homogeneous quasimorphism on a group with finite
stable commutator length vanishes. The converse is also true!

THEOREM: (Bavard duality)
For any g in a perfect group G, g has non-zero stable commutator length
if and only if there exists a homogeneous quasimorphism q : G−→ R
such that q(g) 6= 0.
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The Maslov index

DEFINITION: Let V = R2n, ω be a symplectic vector space, and GrL(V )

the Lagrangian Grassmannian, that is, the Grassmannian of all Lagrangian
subspaces.

PROPOSITION: π1(GrL(V )) = Z.
Proof. Step 1: Consider a complex structure on V compatible with the
symplectic structure, and fix a non-degenerate complex volume form Φ ∈
Λn,0(V ), |Φ| = 1. Consier a Lagrangian subspace W ⊂ V , and let VolW be its
Euclidean volume form. The restriction Φ|W is a complex-valued form which
satisfies

∣∣∣ Φ
VolW

∣∣∣ = 1. The number ph(W ) := Φ
VolW

is called the phase of W ,
we consider ph(W ) as an element in U(1) ⊂ C.

Step 2: The Maslov index is a homomorphism π1(GrL(V ))−→ Z induced
by the phase map ph : GrL(V ))−→ U(1). To prove that it induces an isomor-
phism on π1, we notice that U(V ) acts on GrL(V ) transitively, with O(W ) sta-
biliser of a point W ∈ GrL(V ), giving an isomorphism GrL(V ) = U(V )

O(W ) and an
exact sequence π1(O(W ))−→ π1(U(V ))−→ π1(GrL(V ))−→ π0(O(W )). Since
π1(U(n)) = Z, and rotation of the phase induces the change of orientation in
W , this implies π1(GrL(V )) = Z.
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The metaplectic group

PROPOSITION: In these assumptions, π1(Sp(V )) = Z and the natural
action map Sp(V )−→ GrL(V )) induces an isomorphism on π1.

Proof: Polar decomposition map gives a diffeomorphism Sp(V ) = A× U(V ),
where A is the space of symmetric positive definite matrices; since A is
contractible, we obtain that Sp(V ) is homotopy equivalent to U(V ). This
gives π1(Sp(V )) = Z. Since the generator of π1(GrL(V )) is induced by rota-
tions, the map Sp(V )−→ GrL(V )) induces an isomorphism of the fundamental
groups.

DEFINITION: The metaplectic group S̃p(V ) is the universal covering of
Sp(V ).

REMARK: Any finite-dimensional representation of S̃p(V ) is factorized through
Sp(V ). The group S̃p(V ) faithfully acts on a Hilbert space; the corresponding
representation is called the Weil representation. It is defined in the same
way as the spinorial representation, with the Weyl algebra (the algebra of
polynomial differential operators) in place of the Clifford algebra.

(both H. Weyl and A. Weil are mentioned here, and it is not a misprint).
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The Maslov quasimorphism

DEFINITION: Let u : [a, b]−→ U(1) be a continuous map, and ũ its lifting
to the universal covering R of U(1) = R

2πZ. The index of u is ũ(b)− ũ(a).

DEFINITION: Let x ∈ S̃p(V ) be an element in the metaplectic group. Since
S̃p(V ) is simply connected, there exists a unique up to homotopy path xt :

[0,1]−→ Sp(V ) connecting x to unity. Fix W ∈ GrL(V ), and let q(x) be the
index of the map t 7→ ph(xt(W )).

CLAIM: The map q is a quasimorphism, which is equal to the Maslov
index of the path xt connecting two preimages of the unity.

Proof: Left as an exercise.

DEFINITION: This map is called the Maslov quasimorphism.

7



Shelukhin quasimorphisms M. Verbitsky

The Entov quasimorphism and its generalization by Shelukhin

Let M be a compact symplectic manifold with c1(M) = 0, and ˜Symp(M) the
universal cover of the connected component its symplectomorphism group. In
2004, M. Entov constructed a quasimorphism q : ˜Symp(M)−→ R by taking a
path γt connecting γ ∈ Symp(M) to unity, computing the Maslov indices
of the paths γt(m) for all m ∈M and integrating over M.

This construction was generalized by E. Shelukhin using Donaldson’s con-
struction of the moment map on the space of compatible almost complex
structures.

The group of symplectic diffeomorphism acts on the space of compatible com-
plex structures (which is infinite-dimensional and Kähler) by holomorphic
isometries; its moment map was computed by Donaldson.

Shelukhin constructed a generalization of Entov’s quasimorphism using this
moment map. For this purpose he defined a general formalism which can be
applied to symplectic manifolds equipped with a certain geometric structure,
called “a Domic-Toledo structure”; this structure follows from hyperbolicity,
but is less restrictive.
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The space of compatible almost complex structures

DEFINITION: Let (V, ω) be a symplectic vector space, and I ∈ End(V ) a
linear operator which satisfies I2 = − Id, We say that I is a compatible
complex structure if ω(·, I·) is a positive definite symmetric form.

REMARK: Let M be the space of compatible complex structures on (V, ω),
and VC := V ⊗R C. A complex structure I on V can be obtained by taking a
subspace V 1,0 ⊂ VC such that VC = V 1,0⊕V 1,0. Then I is compatible with ω if
and only if V 1,0 is Lagrangian and satisfies

√
−1 ω(x, x) > 0 for any non-zero

x ∈ V 1,0. The second condition is open, hence M is an open subset in a
complex Lagrangian Grassmanian GrL(VC). The tangent space TW GrL(VC)

is the space of all maps A ∈ Hom(W,V/W ) which satisfy A(x, y) = −A(y, x);
therefore, M admits an invariant complex structure.
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The Siegel domain

REMARK: The spaceM of compatible complex structures is clearly isomor-
phic to Sp(n)/U(n); this is a symmetric space of negative curvature, equipped
with an Sp(n)-invariant complex structure. Since M is symmetric, it follows
that Sp(n)/U(n) is equipped with a natural Sp(n)-invariant complex struc-
ture, which is integrable and Kähler because any almost complex Hermitian
symmetric space is actually Kähler. The space Sp(n)/U(n) was introduced
by I. Pyatetsky-Shapiro in 1959 under the name “Siegel domains”. Now these
spaces are known as Siegel domains, or Pyatetsky-Shapiro domains.

Also, Sp(n)/U(n) appears in E. Cartan’s classification of Hermitian symmetric
spaces as “IIIn” (1935).

The Siegel domain is a Teichmüller space of Abelian varieties, that is,
the universal covering of the corresponding moduli space.
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The space of compatible almost complex structures on a manifold

Let (M,ω) be a symplectic manifold. dimRM = 2n. Denote by G the principal
Sp(n)-bundle of all symplectic frames on M , and let M(M) be the space of
all compatible almost complex structures on M . Clearly, M(M) = G ×Sp(n)
M, where M = Sp(n)/U(n) is the space of all compatible almost complex
structures on V = R2n. The projection M(M)−→M is a locally trivial map
with fiber M. Compatible almost complex structure on M bijectively
correspond to sections of this fibration.

CLAIM: Let (M,ω) be a symplectic manifold, and π : M(M)−→M the
Sp(n)/U(n)-fibration constucted above. Denote the space of sections of π
by CM ; this space is identified with the space of induced complex structures,
as show above. Since the fibers of π are complex manifolds, the space CM
acquires a natural almost complex structure. Then this complex structure
is integrable.

Proof: Darboux theorem implies that locally inM , the projectionM(M)−→M

is isomorphic to M× Rn −→ Rn, and this diffeomorphism is compatible with
the complex structure on fibers of this projection.
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The space of almost complex structures is symplectic

REMARK: The total spaceM(M) of the fibrationM(M)−→M is equipped
with a natural symplectic structure as follows: locally in M it is a prod-
uct of two symplectic manifolds M and M, and the transition functions are
symplectomorphisms.

DEFINITION: We define a non-degenerate 2-form on CM as follows. Given
two vectors u, v ∈ TICM , we interpret u, v as a collection of vectors tangent to
the fibers of π. These fibers are identified with M = Sp(n)/U(n), hence are
symplectic. We use this symplectic structure to pair v with u at each point
of M , and integrate the resulting function on M using the volume form of ω
as a measure.

CLAIM: The antisymmetric 2-form ωC on CM defined above is closed,
hence defines a symplectic and Kähler structure on CM .

Proof: This is clear locally in M , hence dω = 0 on vector fields with support
in a Darboux chart of M . Since any vector field can be obtained as a linear
combination of those, we have dωC = 0.
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The moment map

DEFINITION: Let G be a Lie group acting on a symplectic manifold (M,ω)

by symplectomorphisms. Consider v ∈ Lie(G) as a vector field on M . Then
Liev ω = 0, and Cartan formula gives d(ivω) = 0. The Hamiltonian of v is
a function Hv on M such that dHv = ivω. A vector field v ∈ TM is called
Hamiltonian if the 1-form ivω is exact.

DEFINITION: A Lie group action is Hamiltonian if any vector field v ∈ LieG

is Hamiltonian; the corresponding moment map takes vector field v ∈ LieG

and produces a function on M . We interpret it as a map µ : M −→ g∗, where
g = LieG and g∗ is the dual space.

REMARK: Consider the Lie algebra HamM of Hamiltonian vector fields onM .
We identify M with the space C∞M/R of functions up to a constant. For any
Hamiltonian action of HamM on a symplectic manifold X, the corresponding
moment map is a map X −→ (C∞M/R)∗. There is a perfect bilinear symmetric
pairing C∞M ×C∞M −→ R, taking f, g to

∫
M fgVolω. In the next theorem,

a map CM −→ C∞M is interpreted as a moment map using this pairing.
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The moment map on the space of almost complex structures

THEOREM: Let (M,ω) be a compact symplectic manifold, and CM the
space of all compatible almost complex structures constructed above. By
construction, any symplectomorphism of M acts on CM preserving the Kähler
structure. This action is Hamiltionian, and the corresponding moment
map takes the complex structure I ∈ CM to the function S(I) := R∧ωn−1

ωn

where R is the curvature of the connection on the canonical bundle induced
by the Bismut connection on the Hermitian manifold (M, I, ω).

Proof: S. K Donaldson, Remarks on gauge theory, complex geometry and 4-
manifold topology, Fields Medallists’ lectures, World Sci. Ser. 20th Century
Math., vol. 5, World Sci. Publ., River Edge, NJ, 1997, pp. 384-403.

REMARK: S(I) is the scalar curvature of the Riemannian metric on M

induced by I, if I is integrable.

DEFINITION: The volume map µ : M −→ g∗ is called equivariant if it
exchanges the G-action on M given originally with the coadjoint action on g∗,
that is, if for all g ∈ G one has µ(gm) = coad(g)µm.

CLAIM: The moment map constructed by Donaldson is clearly HamM-
equivariant.
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Domic-Toledo structure

DEFINITION: Let (M,ω) be a symplectic manifold. A Domic-Toledo
structure on M is a collection of paths K(x, y) connecting x to y for any
pair of points x, y ∈ M , such that any triangle formed by x, y, z ∈ M can be
filled by a disk D, and |

∫
D ω| is bounded by a constant C independent from

the choice of x, y, z and the paths.

We always parametrize the paths γ in K(x, y) by [0,1].

EXAMPLE: Let M be a universal covering of a compact symplectic manifold
admitting a metric of negative sectional curvature, and K(x, y) the geodesic
connecting x to y. Since a geodesic triangle in a Riemannian manifold with
negative sectional curvature k < −ε < 0 has bounded area A, we obtain
|
∫
D ω| < C, where C is A times the maximal eigenvalue of ωg−1. Therefore,

(M,ω,K(x, y)) is a Domic-Toledo space.

DEFINITION: For this reason, the paths γ ∈ K(x, y) are called geodesic
paths (associated with the Domic-Toledo structure), and the corresponding
triangles the geodesic triangles.

15



Shelukhin quasimorphisms M. Verbitsky

Domic-Toledo structure on the space of complex structures

EXAMPLE: A Hermitian symmetric space of negative curvature (such as
the Siegel space) is Domic-Toledo, for the same reason.

EXAMPLE: Let (M,ω) be a compact symplectic manifold, and CM the space
of almost complex structures, considered as a symplectic manifold. Consider
two points a, b ∈ CM as sections of the bundle π : M(M)−→M . The fibers of
this bundle are Hermitian symmetric spaces of negative curvature, hence any
two points x, y ∈ M = Sp(n)/U(n) can be connected by a unique geodesic,
which depends smoothly on x, y. We connect a to b by geodesics in each fiber
of π; this gives a path K(a, b) in CM . The symplectic volume of a disc filling
the geodesic triangle is integral over M of discs which fill the corresponding
triangles in the fibers of π, hence its volume is bounded.

COROLLARY: Let (M,ω) be a compact symplectic manifold, and CM the
space of almost complex structures, considered as a symplectic manifold.
Then the fiberwise geodesics K(a, b) define a Domic-Toledo structure
on CM.
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The action functional

DEFINITION: (Weinstein, 1992)
Let (M,ω) be a simply connected symplectic manifold, equipped with a Hamil-
tonian action of a Lie group G. For symplicity, we assume that (M,ω) is
aspherical, that is, 〈ω, π2(M)〉 = 0. Consider a loop γt ∈ G, let x ∈ M and
let D be a disk on M with boundary in γt. Define the action functional
A(γ) =

∫
D ω−

∫ 1
0 Htdt, where Ht := µ(γ′t) is the Hamiltonian of the vector field

γ′t ∈ Lie(G).

THEOREM: The action functional defines a homomorphism π1(G)→ R; it
is independent from the choice of γt in its homotopy class and from
the choice of x ∈M.

Proof: A. Weinstein, Cohomology of symplectomorphism groups and critical
values of Hamiltonians, Math. Z. 201 (1989), no. 1, 75-82.

To obtain a quasimorphism, we generalize this construction, using
paths instead of closed loops.
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Domic-Toledo structure and the action functional

THEOREM: (Shelukhin, 2012)
Let G be a simply connected, connected Lie group (possibly infinite-dimensional)
acting on a Domic-Toledo space (X,ω,K(x, y)). Assume that this action is
Hamiltonian on (X,ω) and preserves the path sets K(x, y), and admits an
equivariant moment map µ : X −→ g∗. Starting from a point g ∈ G̃, let γ
be a path connecting g to the unity. For any x ∈ M , we consider a closed
loop γ by gluing to γ the path K(g(x), x). Then the action functional
Ax(g) =

∫
D ω −

∫ 1
0 Htdt, defines a quasimorphism G → R. Moreover, this

quasimorphism is independent from the choice of the path γ, and for
any x, y ∈ X, the quasimorphisms Ax, Ay are equivalent.
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Domic-Toledo structure and the action functional (2)

Proof:
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Formally Kähler manifolds

DEFINITION: Let F be a Fréchet manifold. The sheaf of vector fields
TF on F is a sheaf of continuous derivations of its structure sheaf.

REMARK: A commutator of two derivations is again a derivation. Therefore,
TF is a sheaf of Lie algebras.

DEFINITION: Let F be a Fréchet manifold, and I : TF −→ TF a smooth
C∞F -linear endomorphism of the tangent bundle satisfying I2 = −1. Then I

is called an almost complex structure on F .

REMARK: Clearly, I defines a decomposition TF ⊗C = T1,0F ⊕T0,1F , where
T1,0F is the

√
−1 -eigenspace of I, and T0,1F the −

√
−1 -eigenspace. Indeed,

x = 1
2(x+

√
−1 Ix) + 1

2(x−
√
−1 Ix).

DEFINITION: An almost complex structure on a Fréchet manifold (F, I) is
called formally integrable, if [T1,0F, T1,0F ] ⊂ T1,0F ,

DEFINITION: Let (F, I) be a formally integrable almost complex Fréchet
manifold, g a Hermitian structure on F , and ω be the corresponding (1,1)-
form. We say that (F, I, g) is formally Kähler if ω is closed.
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Formally Kähler structure on the knot space

DEFINITION: A knot on M is a non-parametrized, immersed free loop.
Note that we allow self-intersecting knots, though for technical reasons it’s
better to exclude loops going around the same knot several times (otherwise
the knot space becomes an orbifold, instead of a manifold).

DEFINITION: Let Knot(M) be the space of knots on an oriented Rieman-
nian 3-manifold M . For each S ∈ Knot(M), TS Knot(M) is the space of
sections of a normal bundle NS. Let γ be a unit tangent vector to S. The
vector product with γ defines a complex structure on the vector space
NS.

THEOREM: (Brylinski)
This complex structure is formally integrable. Moreover, the corre-
sponding metric on Knot(M) is formally Kähler.

21



Shelukhin quasimorphisms M. Verbitsky

Symplectic structure on the knot space

DEFINITION: Let Knotm(M) ⊂ Knot(M)×M be the space of marked knots,
that is, pairs (S1 γ

↪→ Knot(M), s ∈ S1), where |γ′| = const. Clearly, the forgetful
map Knotm(M)

π−→ Knot(M) is an S1-fibration. The fiberwise integration
map

Λi(Knotm(M))
π∗−→ Λi−1(Knot(M))

is defined as usual,

π∗(α)|S :=
∫
π−1(S)

(
αy

d

dt

)
dt

where t is a parameter on S.

REMARK: The pushforward map π∗ always commutes with the de Rham
differential. This gives an interesting map

π∗σ∗ : Λi(M)−→ Λi−1(Knot(M))

commuting with the de Rham differential.

CLAIM: Let M be a 3-manifold, and ρ a volume form on M . Then the form
π∗σ∗(ρ) is symplectic. It is equal to Brylinski’s Kähler form defined above.
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