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Real analytic varieties

DEFINITION: Let B ⊂ Rn be an open ball, equipped with its sheaf of real

analytic functions. A weak real analytic space is a ringed space which is

locally isomorphic to Spec(O(B)/I), for some ideal I ⊂ O(B). A real analytic

variety is a weak real analytic space without nilpotents in its structure sheaf.

REMARK: In the literature, a real analytic space is a weak real analytic

space for which the structure sheaf is coherent (i. e., locally finitely generated

and finitely presentable). We will not use this notion.
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Real structures on complex varieties

DEFINITION: A smooth map Ψ : M −→N on an almost complex vari-

ety (M, I) is called antiholomorphic if dΨ(I) = −I. A function f is called

antiholomorphic if f is holomorphic.

EXERCISE: Prove that an antiholomorphic function on M defines an

antiholomorphic map from M to C.

EXERCISE: Prove that a map Ψ : M −→N of almost complex manifolds is

antiholomorphic if and only if Ψ∗(Λ0,1(N)) ⊂ Λ1,0(M).

EXERCISE: Let ι be a map from a complex variety M to itself. Prove

that ι is antiholomorphic if and only if ι∗(f) is antiholomorphic for any

holomorphic function f on U ⊂M.

DEFINITION: A real structure on a complex manifold M is an antiholo-

morphic involution τ : M −→M .

EXAMPLE: Complex conjugation defines a real structure on Cn.
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Fixed points of real structures on manifolds

PROPOSITION: Let M be a complex manifold and ι : M −→M a real
structure. Denote by M ι the fixed point set of ι. Then, for each x ∈ M ι

there exists a ι-invariant coordinate neighbourhood with holomorphic
coordinates z1, ..., zn, such that ι∗(zi) = zi.

Proof. Step 1: For each basis of 1-forms ν1, ..., νn ∈ Λ1,0
x (M), there exists

a set of holomorphic coordinate functions u1, ..., un such that dui
∣∣∣
x

= νi. To
obtain such a coordinate system, we chose any coordinate system v1, ..., vn
and apply a linear transform mapping dvi

∣∣∣
x

to νi.

Step 2: The differential dι acts on TxM as a real structure. Using the
structure theorem about real structures, we obtain that any real basis ζ1, .., ζn
of T ∗xM

ι is a complex basis in the complex vector space T ∗xM . Then νi :=
ζi +

√
−1 I(ζi)} is a basis in Λ1,0

x (M). Choose the coordinate system u1, ..., un
such that dui

∣∣∣
x

= νi (Step 1). Replacing ui by zi := ui + ι∗(ui), we obtain
a holomorphic coordinate system zi on M (compare with Theorem 1 in
Lecture 4) which satisfies ι∗(zi) = zi.

DEFINITION: Let {Ui} be an complex atlas on M . Assume that any Ui
intersecting M ι satisfies the conclusion of this proposition. Then {Ui} is
called compatible with the real structure.
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Real analytic manifolds and real structures

PROPOSITION: Let M ι ⊂ M be a fixed point set of an antiholomorphic

involution ι on a complex manifold M , {Ui} a complex analytic atlas, and

Ψij : Uij −→ Uij the gluing functions. Assume that the atlas Ui is compatible

with the real structure, in the sense of the previous proposition. Then all Ψij

are real analytic on M ι, and define a real analytic atlas on the manifold

M ι.

Proof: All gluing functions from one coordinate system compatible with the

real structure to another commute with ι, acting on coordinate functions

as the complex conjugation. This gives Ψij(zi) = Ψij(zi). Therefore, Ψij

preserve M ι, and are expressed by real-valued functions on M ι.
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Real analytic manifolds and real structures 2

PROPOSITION: Any real analytic manifold can be obtained from this

construction.

Proof. Step 1: Let {Ui} be a locally finite atlas of a real analytic manifold

M , and Ψij : Uij −→ Uij the gluing maps. We realize Ui as an open ball with

compact closure in Re(Cn) = Rn. By local finiteness, there are only finitely

many such Ψij for any given Ui. Denote by Bε an open ball of radius ε in the

n-dimensional real space im(Cn).

Step 2: Let ε > 0 be a sufficiently small real number such that all Ψij can be

extended to gluing functions Ψ̃ij on the open sets Ũi := Ui ×Bε ⊂ Cn. Then

(Ũi,Ψij) is an atlas for a complex manifold MC. Since all Ψij are real,

they are preserved by the natural involution acting on Bε as −1 and on Ui as

identity. This involution defines a real structure on MC. Clearly, M is the set

of its fixed points.
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Complexification

DEFINITION: Let MR be a real analytic variety, and MC a complex analytic

variety equipped with an antiholomorphic involution, such that MR is the set

of its fixed points. Then MC is called complexification of MR.

DEFINITION: Let K ⊂M be a closed subset of a complex manifold, home-

omorphic to K1 ⊂ M1, where M1 is also a complex manifold. Fixing the

homeomorphism K ∼= K1, we may identify these sets and consider K as a

subset M1. We say that M and M1 have the same germ in K if there

exist biholomorphic open subsets U1 ⊂M1 and U ⊂M containing K, with the

biholomorphism ϕ : U −→ U1 identity on K.

DEFINITION: Germ of a variety M in K ⊂ M is an equivalence class of

open subsets U ⊂M containing K, with this equivalence relation.

THEOREM: (Grauert) Consider category Cι, with objects complex varieties

(M, ι) equipped with a real structure, and morphisms holomorphic maps com-

muting with ι. Then the category of real analytic varieties is equivalent

to the category of germs of M ∈ Cι in M ι ⊂M.
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Adic topology

DEFINITION: Let R be a local ring, and m its maximal ideal. The adic

topology on R is topology with the base of open sets a + ml, for all a ∈ R,

l ∈ Z>0.

REMARK: An adic completion is the completion with respect to this topol-

ogy.

EXERCISE: Suppose that the homomorphism R−→R/m = k admits a sec-

tion, k ↪→ R. Prove that the adic completion R̂ of R is naturally isomorphic

to the completion of
⊕
i

mi

mi+1.

REMARK: We should think about R̂ as of the ring of formal power series.

REMARK: Suppose that MR is a real variety underlying the complex variety

M . Then OMR is a real part of the completion of OM ⊗COM . with respect to

the uniform topology. The adic topology is stronger than the uniform topol-

ogy, hence the adic completion of OMR is isomorphic to the completion

of OM ⊗C OM , identified with formal power series of the holomorphic and

antiholomorphic variables on M .
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Real analytic differentials

DEFINITION: Let B be an open ball in Rn. For an ideal I ⊂ O(B) we define

the module of real analytic differentials on O(B)/I as Ω1(O(B)/I) :=

Ω1(O(B))

/(
I ·Ω1(O(B)) + dI

)
.

CLAIM: Let X be a complex variety, XR the underlying real analytic space.

Then the natural sheaf homomorphism i : OX⊗COX −→OXR⊗C is injec-

tive. For each point x ∈ X, i induces an isomorphism on x-completions

of OX ⊗C OX and OXR ⊗ C.

Proof: The adic completions of OX ⊗C OX and OXR ⊗ C are equal.

COROLLARY: Tensoring both sides of Ω1(OX ⊗COX)−→Ω1(OXR)⊗C by

OXR⊗C produces an isomorphism

Ω1(OX ⊗C OX)
⊗

OX⊗COX

(
OXR ⊗ C

)
= Ω1(OXR ⊗ C).

9



Singular hyperkähler varieties M. Verbitsky

The complex structure operator on underlying variety

REMARK: This implies that the sheaf Ω1(OX ⊗COX) admits a canonical
decomposition:

Ω1(OX ⊗C OX) =
(
Ω1(OX)⊗C OX

)
⊕
(
OX ⊗C Ω1(OX

)
.

DEFINITION: Let Ĩ be an endomorphism of Ω1(OX ⊗C OX) which acts as
a multiplication by

√
−1 on the first component and as a multiplication by

−
√
−1 on the second component. We extend Ĩ to

Ω1(OXR ⊗ C) = Ω1(OX ⊗C OX)
⊗

OX⊗COX

(
OXR ⊗ C

)

using the previous claim. Clearly, Ĩ is real, that is, comes from the OXR-
linear endomorphism of Ω1(OXR). Denote this OXR-linear endomorphism by
I : Ω1(OXR)−→Ω1(OXR); by construction, I2 = − Id. The endomorphism I

is called the complex structure operator on the underlying real analytic
space. In the case when X is smooth, I coincides with the usual complex
structure operator on the cotangent bundle.

DEFINITION: Let M be a weak real analytic space, and I : Ω1(OM)−→Ω1(OM)
an endomorphism satisfying I2 = −1. Then I is called an almost complex
structure on M .
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Integrability of almost complex structures

THEOREM: X, Y be complex analytic varieties, and fR : XR −→ YR be
a morphism of underlying real analytic varieties which commutes with the
complex structure. Then there exist a morphism f : X −→ Y of complex
analytic varieties, such that fR is its underlying morphism.

Proof: A continuous map of complex varieties, holomorphic outside of
singularities, is meromorphic. Therefore, its graph Γ ⊂ X × Y is a complex
subvariety of X×Y . Since f is real analytic the projection Γ

π−→ X induces an
isomorphism on completions. Therefore, π is flat and unramified, hence etale.
Since π is one-to-one on points, π etale implies that π is an isomorphism.

DEFINITION: Let M be a real analytic variety, and I : Ω1(OM)−→Ω1(OM)
an endomorphism satisfying I2 = −1. Then I is called an almost complex
structure on M . If there exist a structure C of complex variety on M such
that I appears as the complex structure operator associated with C, we say
that I is integrable. The above theorem implies that this complex structure
is unique if it exists.

QUESTION: Is there a version of Newlander-Nirenberg theorem in this
setup?

11



Singular hyperkähler varieties M. Verbitsky

Hyperkähler manifolds

DEFINITION: (E. Calabi, 1978)

Let (M, g) be a Riemannian manifold equipped with three complex structure

operators I, J,K : TM −→ TM, satisfying the quaternionic relation I2 = J2 =

K2 = IJK = − Id . Suppose that I, J, K are Kähler. Then (M, I, J,K, g) is

called a hyperkähler manifold.

LEMMA: Let (M, I, J,K) be hyperkähler. Then the form Ω := ωJ+
√
−1ωK

is a holomorphic symplectic 2-form on (M, I).

Hyperkähler geometry is essentially the same as holomorphic symplectic ge-

ometry

THEOREM: (E. Calabi, 1952, S.-T. Yau, 1978)

Let M be a compact, holomorphically symplectic manifold admitting a Kähler

metric. Then M admits a hyperkähler metric, which is uniquely deter-

mined by the cohomology class of its Kähler form.
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HYPERCOMPLEX MANIFOLDS

a. k. a “Hyperkähler manifolds without a metric”

DEFINITION: Let M be a smooth manifold equipped with endomorphisms
I, J,K : TM −→ TM , satisfying the quaternionic relation I2 = J2 = K2 =
IJK = − Id . Suppose that I, J, K are integrable almost complex structures.
Then (M, I, J,K) is called a hypercomplex manifold.

EXAMPLES:
1. In dimension 1 (real dimension 4), we have a complete classification of
compact hypercomplex manifolds, due to C. P. Boyer (1988).

2. Many homogeneous examples, due to D. Joyce and physicists Ph.
Spindel, A. Sevrin, W. Troost, A. Van Proeyen (1980-ies, early 1990-ies).

3. Some nilmanifolds and solvmanifolds admit locally homogeneous hyper-
complex structure (M. L. Barberis, I. Dotti, A. Fino) (1990-ies).

4. Some inhomogeneous examples are constructed by deformation or as
fiber bundles.

In dimension > 1, no classification results are known (and no conjectures
either).
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OBATA CONNECTION

Hypercomplex manifolds can be characterized in terms of holonomy

THEOREM: (M. Obata, 1952) Let (M, I, J,K) be a hypercomplex mani-

fold. Then M admits a unique torsion-free affine connection preserving

I, J,K.

Converse is also true. Suppose that I, J,K are operators defining quater-

nionic structure on TM , and ∇ a torsion-free, affine connection preserving I,

J, K. Then I, J, K are integrable almost complex structures, and (M, I, J,K)

is hypercomplex.

Holonomy of Obata connection lies in GL(n,H). Conversely, a mani-

fold equipped with an affine, torsion-free connection with holonomy in

GL(n,H) is hypercomplex.

This can be used as a definition of a hypercomplex structure.
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Twistor spaces

DEFINITION: Induced complex structures on a hypercomplex manifold

are complex structures of form S2 ∼= {L := aI + bJ + cK, a2 + b2 + c2 = 1.}
They are usually non-algebraic. Indeed, if M is compact, for generic a, b, c,

(M,L) has no divisors (Lecture 17).

The twistor space Tw(M) of a hypercomplex manifold is a complex man-

ifold obtained by gluing these complex structures into a holomorphic

family over CP1. More formally:

DEFINITION: Let Tw(M) := M × S2. Consider the complex structure

Im : TmM → TmM on M induced by J ∈ S2 ⊂ H. Let IJ denote the complex

structure on S2 = CP1. The operator I := Im ⊕ IJ : TxTw(M) → TxTw(M)

satisfies I2 = − Id. It defines an almost complex structure on the mani-

fold Tw(M), which is called the twistor space of M . This almost complex

structure is integrable.

EXAMPLE: If M = Hn, the space Tw(M) is biholomorphic to Tot(O(1)⊕2n) ∼=
CP2n+1\CP2n−1.
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Space of sections

REMARK: Let Z ⊂ M be a complex subvariety of M . Recall that the set
D(Z) of all complex deformations of Z is equipped with a natural structure
of a complex manifold, called the Douady space of Z in M . If Z is smooth,
the Zariski tangent space T[Z]D(Z) is naturally identified with the space of
sections of the normal bundle H0(NZ). Note that the Douady space is not
necessarily reduced, it might have nilpotents in its structure sheaf.

DEFINITION: Let Tw(M)
π−→ CP1 be the twistor space of a hypercomplex

manifold. The space of holomorphic section of π is called the space of
twistor sections, or the space of twistor lines, denoted by Sec(M).

DEFINITION: Fix m ∈ M , and consider a twistor section I
sm−→ (I ×m) ∈

CP1 ×M = Tw(M). Then sm is called a horizontal twistor secton. The
variety of horisontal twistor sections is denoted by Hor; it is a real analytic
subvariety in the corresponding Douady space.

CLAIM: Let ι0 : CP1 −→ CP1 be the anticomplex involution with no fixed
points given by the central symmetry of S2 ⊂ R3, and ι : Tw −→ Tw map
(s,m) to (ι0(s),m). Then ι is also an anticomplex involution. Moreover,
the space of horizontal twistor sections is naturally identified with a con-
nected component the real analytic variety Secι of all twistor sections
fixed by ι.
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The twistor data

DEFINITION: Let M be a hypercomplex manifold. The following collection
of data is called the twistor data associated with M .
* A complex analytic variety Tw, equipped with a morphism π : Tw −→ CP1.
* An anticomplex involution ι : Tw −→ Tw such that ι ◦ π = π ◦ ι0
* A choice of connected component Hor of Secι ⊂ Sec.

CLAIM: The twistor data of a hypercomplex manifold satisfies the following
axioms.

(i) For each point x ∈ Tw, there is a unique line s ∈ Hor ⊂ Secι,
passing through x.

(ii) For every line s ∈ Hor ⊂ Secι, the conormal sheaf

N∗s = ker
(

Ω1 Tw
∣∣∣
im s

s∗−→ Ω1(im s)
)

of im s is isomorphic to O(−1)⊕2n.

Proof. Step 1: The second condition is implied by Tw(Hn) = Tot(O(1)⊕2n).
Every hypercomplex manifold can be deformed to Hn by rescaling (or taking
the associative graded quotient), hence the normal bundle to s ∈ Hor is
also O(1)⊕2n.

Step 2: The first condition follows from the axiom (ii) of the twistor data
and the dimension count.
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The twistor data of Deligne-Simpson type

THEOREM: (HKLR) The hypercomplex structure on a hypercomplex
manifold M is determined by its twistor data.

REMARK: The condition (ii) can be replaced by the following condition.

(ii′) For every line s ∈ Hor ⊂ Secι, and every a 6= b ∈ CP1, there exists
a tubular neighbourhood U ⊂ Tw of im s, such that for every x, y ∈ U,
π(x) = a, π(y) = b, there exists a unique twistor line sx,y ⊂ U passing
through x and y.

REMARK: The condition (ii) should be thought of as a linearization of
(ii′). These conditions are equivalent (an exercise).

THEOREM: Let (Tw, π, ι,Hor) be the twistor data satisfying condition (i).
Then the conditions (ii) and (ii′) are equivalent.

Proof: Left as a (non-trivial) exercise in deformation theory.

DEFINITION: The twistor data satisfying (i), (ii′) define a twistor space
of Deligne-Simpson type. These conditions were proposed by Deligne and
Simpson in order to define the singular hyperkähler manifolds.
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Hypercomplex varieties

DEFINITION: Let M be a real analytic variety equipped with almost complex
structures I, J and K, such that I ◦ J = −J ◦ I = K. Then M is called an
almost hypercomplex variety.

DEFINITION: An almost hypercomplex variety is equipped with an action of
quaternion algebra in its differential sheaf. Each quaternion L ∈ H, L2 = −1
defines an almost complex structure on M . Such an almost complex structure
is called induced by the hypercomplex structure.

DEFINITION: Let M be an almost hypercomplex variety. We say that M is
hypercomplex if there exist a pair of induced complex structures I1, I2 ∈ H,
I1 6= ±I2, such that I1 and I2 are integrable.

A caution: Not everything which looks hypercomplex satisfies the con-
ditions of this definition. Take a quotient M/G of a hypercomplex manifold
by an action of a finite group G, acting compatible with the hyperkähler
structure. Then M/G is not hypercomplex, unless G acts freely.

EXAMPLE: Recall that a closed subset Z ⊂ (M, I, J,K) is called trianalytic
if Z is complex analytic with respect to I, J,K. Trianalytic subvarieties of
hypercomplex manifolds are hypercomplex (we leave this assertion as an
easy exercise in local algebra).
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Main results about the hypercomplex varieties

THEOREM: (Desingularization theorem)
Let (M, I, J,K) be a hypercomplex variety, and L an integrable induced com-
plex structure. Then the normalization M̃ of (M,L) is smooth. Moreover,
M̃L, as a real analytic variety, is independent from L ∈ CP1, and the complex
structures I, J,K induce a hypercomplex structure on M̃, in such a way
that the normalization map M̃ −→M is a morphism of hypercomplex
varieties.

Proof: Later today.

THEOREM: Let M be a hypercomplex variety, and L an induced com-
plex structure. Then L is integrable. Moreover, its twistor space is also
integrable.

Proof: Follows from the desingularization.

THEOREM: Consider the functor F associating to a hypercomplex variety M
the twistor data on its twistor space. Then F is equivalence of categories:
a hypercomplex variety can be recovered unambiguously from its twistor data.

Proof: Follows from the desingularization and HKLR.
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Trianalytic subvarieties

DEFINITION: A complex structure L = aI+bJ+cB, with a2+b2+c2 = 1, is

called induced complex structure, or induced by the quaternion action.

DEFINITION: Let (M, I, J,K, g) be a hyperkähler manifold. A complex sub-

variety Z ⊂ (M, I) is called trianalytic if it is complex analytic with respect

to J and K.

REMARK: A trianalytic subvariety Z ⊂ (M, I) is complex analytic with

respect to any induced complex structure L = aI + bJ + cB.

THEOREM: Let Z ⊂M be a trianalytic subvariety of a hyperkähler manifold

M , and Z0 the set of its smooth points. Then Z0 ⊂M is totally geodesic.

Proof: The Ricci curvature of M and Z0 vanishes because they are hy-

perkähler and hence Einstein. However, the contribution of the second fun-

damental form to the Ricci curvature of a submanifold is non-negative, and

positive when it is non-zero. Therefore, Ric(Z0) = Ric(M) = 0 implies that

the second fundamental form of Z0 vanishes, which is the same as total

geodesicity.
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The Zariski tangent cone

DEFINITION: Let M be a complex analytic or real analytic variety, and

mx an ideal of a point x ∈ M . The Zariski tangent space of M in x is

TzM :=
(
mx
m2
x

)∗
, and the Zariski tangent cone ZxM is the spectrum of the

ring
⊕
i

mix
mi+1
x

REMARK: The Zariski cone is realized as a closed C∗ or R∗-invariant

affine subvariety in TxM.

REMARK: The Zariski tangent cone might contain nilpotents; its reduction

ZxM is a subvariety in the Zariski tangent space TxX

CLAIM: Let X be a complex variety, and XR its underlying real variety. Then

(ZxX)R is naturally isomorphic to Zx(XR).

Proof: Locally we can always assume that X ⊂W = Cn is a complex subva-

riety. Then TxX is a subspace in W . A vector l ∈ TxX belongs to ZxX ⊂ TxX
if and only if the line R · l ⊂ TxX satisfies d(tl,X) = o(t).
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The Zariski tangent cone of hypercomplex varieties

COROLLARY: Let M be a hypercomplex variety, I an integrable induced

complex structure, and Zx(M, I) ⊂ TxM the reduced Zariski tangent cone to

(M, I) in x ∈ M . We consider TxM as a flat hypercomplex manifold. Then

the subvariety Zx(M, I) ⊂ TxM is independent from the choice of inte-

grable induced complex structure I. Moreover, Zx(M, I) is a trianalytic

subvariety of TxM.

Proof: Immediately follows from the previous claim.

COROLLARY: The reduced Zariski tangent cone Zx(M, I) of a hypercom-

plex variety is a union of quaternionic subspaces in TxM .

Proof: It is trianalytic, hence totally geodesic outside of its singularities. A

totally geodesic submanifold in Rn is an affine subspace.
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Spaces with locally homogeneous singularities

DEFINITION: Let A be a local ring. Denote by m its maximal ideal. Let Agr
be the corresponding associated graded ring for the m-adic filtration. Let Â,

Âgr be the m-adic completion of A, Agr. Let (Â)gr, (Âgr)gr be the associated

graded rings, which are naturally isomorphic to Agr. We say that A has

locally homogeneous singularities (LHS) if there exists an isomorphism

ρ : Â−→ Âgr which induces the standard isomorphism i : (Â)gr −→ (Âgr)gr
on associated graded rings.

DEFINITION: Let X be a complex or real analytic space. Then X is called

a space with locally homogeneous singularities (SLHS) if for each x ∈ X,

the local ring OxX has locally homogeneous singularities.

CLAIM: Let A be a complete local Noetherian ring over C, with a residual

field C. Then A has LHS if and only if there exists a surjective ring

homomorphism ρ : C[[x1, ..., xn]]−→A, where C[[x1, ..., xn]] is the ring of

power series, and the ideal ker ρ is homogeneous in C[[x1, ..., xn]].

Proof: Clear.
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Homogenizing automorphisms

DEFINITION: Let A be a local Noetherian ring over C, with a residual field

C, equipped with an automorphism e : A−→A. Let m be a maximal ideal of

A. Assume that e acts on m/m2 as a multiplication by λ ∈ C, |λ| < 1. Then e

is called a homogenizing automorphism of A.

PROPOSITION: Let A be a complete Noetherian ring over C, with a resid-

ual field C, equipped with a homogenizing authomorphism e : A−→A. Then

A has locally homogeneous singularities.

Proof: Take a collection of root vectors z1, ..., zn in the maximal ideal m

such zi := zi mod m2 generate m
m2 and are linearly independent. Then A is

a completion of its subring generated by z1, ..., zn, which is graded by the

eigenvalues of e.
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Homogenizing automorphism on a local ring of a hypercomplex variety

Let M be a hypercomplex variety, and AI := Ôx(M, I) the adic completion of
the local ring Ox(M, I), and AR := ̂Ox(MR)⊗R C be the x-completion of the
ring of germs of real analytic complex-valued functions on M .

REMARK: The natural map of completions U : ̂AI ⊗C A−I −→AR is surjec-
tive by Nakayama lemma.

Denote by p the natural quotient map p : A−I −→ C. By Nakayama again, the
projection ̂AI ⊗C A−I −→AI , a ⊗ b 7→ a ⊗ p(b), also surjective. It is not hard
to see that the kernel of this map contains the kernel of U , which defines a
map eI : AR −→AI. Let iI : AI −→AR be the map f 7→ f ⊗ 1 composed with
U .

THEOREM: Let M be a hypercomplex variety, x ∈ M a point, and I, J
induced complex structures, such that I 6= J and I 6= −J. Consider the map
ΨI,J : AI −→AI defined as iI ◦ eJ ◦ iJ ◦ iI. Then ΨI,J is a homogenizing
automorphism of AI. In particular, a hypercomplex variety is a space
with LHS.

Proof: Left as an exercise.
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The proof of the desingularization theorem

THEOREM: (Desingularization theorem)

Let (M, I, J,K) be a hypercomplex variety, and L an integrable induced com-

plex structure. Then the normalization M̃ of (M,L) is smooth. Moreover,

M̃L, as a real analytic variety, is independent from L ∈ CP1, and the complex

structures I, J,K induce a hypercomplex structure on M̃, in such a way

that the normalization map M̃ −→M is a morphism of hypercomplex

varieties.

Proof: As shown above, M is SLHS, hence it is locally isomorphic to its

Zariski tangent cone, which is biholomorphic to a union of complex subspaces.

Then its normalization is smooth.
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