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Flat affine manifolds

DEFINITION: A flat affine manifold is a smooth manifold equipped with
a flat, torsion-free connection.

EXAMPLE: Let T be a group acting on an open subset U C R" freely,
properly discontinuously, by affine transforms. Then U/I" is affine.

REMARK: All flat affine manifolds are obtained this way.

DEFINITION: A flat affine manifold (M,V) is called special affine if it
admits a V-invariant volume form, or, equivalently, it its holonomy belongs
to SL(n,R). A flat affine manifold is complete if it is a quotient of R" by a
discrete group of affine transforms.

CONJECTURE: Markus conjecture (1961)
a compact affine manifold is complete if and only if it is special.

CONJECTURE: Auslander conjecture (1964)
For any complete affine manifold R™/I", the group I is solvable.

CONJECTURE: Chern conjecture (1955)
The Euler class of a compact affine manifold vanishes (proven by Bruno
Klingler in 2017 for special affine manifolds).
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Hessian manifolds

DEFINITION: Let (M,V) be a flat affine manifold. Since V is torsion-free,
the tensor V2(f) is symmetric for any f € C®M. A Riemannian metric g
on M is called Hessian if locally ¢ = V2(f), for some f which is called the
potential of the metric.

EXERCISE: Prove that a metric ¢ on (M,V) is Hessian if and only if
V(g) is a symmetric 3-form.

EXERCISE: Prove that the complex

v. AN(M) ®Sym2T*M

2
co (M) Y5 sym2T*M :
Sym>T*M

is elliptic.

REMARK: Cohomology of this complex are called Hessian cohomology,
and the cohomology classes represented by Hessian metrics are called Hessian
classes.

REMARK: This geometry is in many ways similar to Kahler geometry.
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Kahler manifolds

DEFINITION: Let (M,I,g9) be a complex Hermitian manifold, with I :
TM — TM, 2 = —1Id being the complex structure operator, and g an I-
invariant Riemannian form. Then w(-,-) := g(-,I-) is an anti-symmetric form,
called fundamental form of (M, I,q). Ifitis closed, (M, I, qg) is called Kahler.

THEOREM: (the local dd-lemma)
Let (M, 1,g,w) be a Kahler manifold, and d¢ := IdI~!. Then locally w is equal
to dd°(f) for some function f, which is called a Kahler potential.

REMARK: Let M be a complex manifold. Then the complex
oM s AL —ds A3(M)

is elliptic. If, in addition, M is compact and Kahler, its cohomology is equal
to HL1(M). For a general complex manifold, its cohomology is called Bott-
Chern cohomology.
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Calabi-Yau theorem

DEFINITION: A cohomology class of a Kahler form in H2(M) is called
the Kahler class of a Kahler manifold.

THEOREM: (Calabi-Yau theorem) Let (M, ) be a compact complex man-
ifold. A Kahler form w is uniquely determined by its Kahler class and
its volume form.

This theorem has a Hessian counterpart.

THEOREM: (S.-Y. Cheng, S.-T. Yau, 1982)
Let (M,V) be a compact special affine manifold. A Hessian metric on M
IS uniquely determined by its Hessian class and its volume form.
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Special Kahler manifolds
In physics, the following structure occurs very often.

DEFINITION: Let (M,I,V,g,w) be a Kahler manifold equipped with a flat,
torsion-free connection V which satisfies V(w) = 0 (but does not necessarily
preserve g). Assume that g is Hessian. Then (M,I,V,g,w) is called a special
Kahler manifold.

REMARK: A cotangent space to a special Kahler manifold is always hy-
perkahler (see the next slide).

EXAMPLE: The base of an *"algebraic Hamiltonion system” is always equipped
with a special Kahler structure (Donagi, Markman).

EXAMPLE: The moduli space of 3-dimensional Calabi-Yau manifolds is a
special pseudo-Kahler manifold ( “pseudo” here refers to the Kahler metric
having Lorentzian signature).
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Hyperkahler manifolds

DEFINITION: A hypercomplex manifold is a manifold M equipped with
three complex structure operators I, J, K, satisfying quaternionic relations
[J=—-JI=K, [°=J2=K?=—Idpy

(the last equation is a part of the definition of almost complex structures).

DEFINITION: A hyperkahler manifold is a hypercomplex manifold equipped
with a metric g which is Kahler with respect to I, J, K.

REMARK: This is equivalent to VI =VJ = VK = 0: the parallel translation
along the connection preserves I, J, K.

DEFINITION: Let M be a Riemannian manifold, € M a point. The
subgroup of GL(T,M) generated by parallel translations (along all paths) is
called the holonomy group of M.

REMARK: A hyperkahler manifold can be defined as a manifold which
has holonomy in Sp(n) (the group of all endomorphisms preserving I, J, K).
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Holomorphically symplectic manifolds

Let (M,gq,1,J,K) be hyperkdhler, and w;(-,-) = g(,I) wy(-,-) = g(-,J-),
wi (-, ) :=g(, K-) the corresponding Kahler forms.

DEFINITION: A holomorphically symplectic manifold is a complex manifold
equipped with non-degenerate, holomorphic (2,0)-form.

REMARK: All hyperkahler manifolds are holomorphically symplectic.
Indeed, Sp(n) is a compact form of the symplectic group Sp(2n,C), and the
form w; 4+ —1 wg Is holomorphically symplectic on (M, I).

THEOREM: (Calabi-Yau) A compact, Kahler, holomorphically symplectic
manifold admits a unique hyperkahler metric in any Kahler class.
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Holomorphic Lagrangian fibrations

THEOREM: (Matsushita, 1997)

Let m: M — X be a surjective holomorphic map from a hyperkahler manifold
M to X, whith 0 < dimX < dimM. Then dimX = 1/2dim M, and the
fibers of © are holomorphic Lagrangian (this means that the symplectic
form vanishes on 7~ 1(z)).

DEFINITION: Such a map is called holomorphic Lagrangian fibration.

REMARK: The base of w Is conjectured to be rational. Hwang (2007)
proved that X = CP", if it is smooth. Matsushita (2000) proved that it has
the same rational cohomology as CP™.

REMARK: The base of # has a natural flat, torsion-free connection
on the smooth locus of w. The combinatorics of this connection can be
used to determine the topology of M (Strominger-Yau-Zaslow, Kontsevich-
Soibelman).

If we want to learn something about M, it’'s recommended to start
from a holomorphic Lagrangian fibration.
O]
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Trianalytic subvarieties and hyperholomorphic bundles

Let (M,gq,1,J, K) be a hyperkahler manifold. Define trianalytic subvarieties
as closed subsets which are complex analytic with respect to I, J, K.

0. Trianalytic subvarieties are singular hyperkahler.

1. Let L € H be a generic complex structure induced by quaternions. Then
all compact complex subvarieties of (M, L) are trianalytic.

2. A normalization of a hyperkahler variety is smooth and hyperkahler. This
gives a desingularization (“hyperkahler Hironaka").

3. A complex deformation of a trianalytic subvariety is again trianalytic, the
corresponding moduli space is (singularly) hyperkahler.

4. Similar results (also very strong) are true for vector bundles which are
holomorphic under I, J, K (“hyperholomorphic bundles’)
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Special Lagrangian subvarieties

DEFINITION: (Harvey-Lawson)

Let (M, g,w,I) be an n-dimensional Calabi-Yau manifold, and € A%O(M) its
holomorphic volume form. Special Lagrangian subvariety is a Lagrangian
subvariety S C (M,w) such that Re{2 is equal to the Riemannian volume form
on S.

THEOREM: (McLean)

Deformations of special Lagrangian subvarieties are unobstructed, and
in a neighbourhood of S C M this deformation space is locally identified
with H1(S, R).

REMARK: This implies that any special Lagrangian torus belongs to a
special Lagrangian fibration, defined in its neighbourhood.

REMARK: All known examples of special Lagrangian fibrations are obtained
by “hyperkahler rotation”: one takes a holomorphic Lagrangian fibration
on (M,I), where (M,1,J,K,g) is hyperkahler, and considers it as a real La-
grangian fibration on (M, J,wy).
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Mirror symmetry

Kontsevich’s homological mirror symmetry. Derived category of coherent
sheaves on a Calabi-Yau is equivalent to the Fukaya category on the mirror
dual Calabi-Yau, with Hamiltonion isotopy classes of Lagrangian subvarieties
as objects, and the Floer cohomology as morphisms.

SYZ (Strominger, Yau, Zaslow) interpretation of mirror symmetry.
Each Calabi-Yau manifold is equipped with a special Lagrangian toric fibra-
tion, dualizing the tori one obtains the mirror dual Calabi-Yau manifold.
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Kapustin-Witten duality

DEFINITION: The Hitchin system is the space of stable Higgs bundles on
a compact curve C with semisimple structure group G. It is equipped with a
Lagranian fibration with proper fibers and a base @; HO(C, K?J").

Kapustin-Witten duality (a. k. a “Montonen-Olive/geometric Lang-
lands duality”) is the duality between Hitchin systems associated with Lang-
lands dual Lie groups.

1. The corresponding holomorphic Lagrangian fibrations are expected to
be SYZ dual.

2. In place of the Fukaya category on the symplectic side of Mirror Symme-
try, one has a category of holomorphic Lagrangian subvarieties (called
“BAA", “"ABA"” and “AAB branes”).

3. In place of the derived category of coherent sheaves on the complex side of
Mirror Symmetry there is a category which has pairs (trianalytic subvariety,
hyperholomorphic bundle on it) as objects; these are called “BBB branes’.

Kapustin-Witten duality is expected to exchange the BBB branes and
the holomorphic Lagrangian subvarieties.
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Holomorphic Lagrangian fibrations

DEFINITION: Let M be a holomorphically symplectic manifold, and = :
M — B a proper surjective holomorphic map with B normal and all fibers
holomorphically Lagrangian. Then = is called a holomorphic Lagrangian
fibration.

CLAIM: (Liouville) A smooth fiber F of a holomorphic Lagrangian
fibration = : M — B is always a torus.

Proof: For any fibration = : M — B, any smooth fiber F = 7=~ 1(2) has
trivial normal bundle NF = n*(T;B). For any function on B, its Hamiltonian
gives a section of TF'. Choose a collection of holomorphic functions such that
their Hamiltonians give a basis in T'F. Since these Hamiltonians commute,
the corresponding vector fields in T'F' also commute. This gives a locally free
action of an abelian Lie group on F', and therefore F is a quotient of an
abelian group by a lattice. =

DEFINITION: Let # : M — B be a proper, regular fibration. The flat
connection on the bundle Rim«(Rjy;) on B with the fiber H*(x—1(z) for all

x € B is called the Gauss-Manin connection.
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Special Kahler geometry on the base of holomorphic Lagrangian fibra-
tions

DEFINITION: Let 7 : M — B be a Lagrangian fibration, and F := 7=~ 1(2)
a regular fiber. Then n#*T,B = NF = T*F. This identifies T'B with the bundle
R7m.(Ry,) of first conomology of fibers. Then TB is equipped with a natural
flat connection, called the Arnold-Liouville connection.

EXERCISE: Prove that this connection is torsion-free.

REMARK: Let # : M — B be a holomorphic Lagrangian fibration. A
Kahler form w on M restricted to a smooth fiber F' of m defines a cohomology
class [w] € H2(F). Since F is a torus, we can consider [w] as a 2-form on
R7«(Ry;) = TB. This form is clearly parallel under the Gauss-Manin
connection, and defines a Kahler structure on B.

THEOREM: (Donagi-Markman, Freed)

Let 7 : M — B be a holomorphic Lagrangian fibration on a Kahler holomor-
phic symplectic manifold and Bg C B be the complement to the discriminant
locus of B. Then (Bg,V,w) is a special Kahler manifold.
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Lagrangian subvarieties in Hitchin systems

Note that the Hitchin systems are equipped with a natiral C*-action
which multiplies the Higgs field by a number. Hitchin proved the following
result related to the Kapustin-Witten duality.

THEOREM: (Hitchin) Let # : M — B be the Hitchin system. Then any C*-
invariant holomorphic Lagrangian submanifold has an open set with the
structure of a fibration over a C*-invariant special Kahler submanifold
of B, and each fiber is a disjoint union of translates of an abelian
subvariety.

He asked whether this is true in a more general situation.

THEOREM: (Kamenova-V.) Let # : M — B be a holomorphic symplectic
Kahler manifold equipped with a holomorphic Lagrangian fibration =« with
compact fibers, Z C M its holomorphic Lagrangian subvariety, X = n(2),
and Xg C B the set of all reqular values of 7. Z — X. Then Xy is a special
Kahler submanifold of B, and each fiber of  : Z — X ober X is a
disjoint union of translates of the same torus.
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Lagrangian subspaces in W ¢ W*

Lemma 1: Suppose V C W W™* is a Lagrangian vector subspace in W W*
with standard symplectic structure, and = : W @ W* — W the projection.
Then 7(V)+ = VNW*, where R € W* denotes the annihilator of a subspace
R C W, and W™ is considered as a subspace in W & W*.

THEOREM: (Kamenova-V.) Let 7 : M — B be a holomorphic symplectic
Kahler manifold equipped with a holomorphic Lagrangian fibration = with
compact fibers, Z C M its holomorphic Lagrangian subvariety, X = n(~2),
and Xg C B the set of all reqgular values of m: Z — X. Then X is a special
Kahler submanifold of B, and each fiber of = : Z — X ober Xpy is a
disjoint union of translates of the same torus.

Proof. Step 1: Let Z, := n1(z) N Z, where z € Xy. The holomorphic
symplectic form induces non-degenerate pairing between TTM (the fiberwise
tangent space) and T B. Therefore, for all z € Z,, one has T, Z; = n(T>2)+ N
T7TM, hence the spaces 71,7, are translates for all z € Z,. Therefore, Z;
IS the union of tori which are translates of the same torus.
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Step 2: It remains only to show that Xg C B is flat with respect to
the Arnold-Liouville connection. We may identify the vertical tangent
space TTM with H1(z—1(z)). Then T.Z, is identified with the cohomology
of a compact torus H1(Z,), hence it stays constant under deformations of
z. Then #(T.2) = n((T.Z2)1) is constant under the Arnold-Liouville
connection.
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