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Flat affine manifolds

DEFINITION: A flat affine manifold is a smooth manifold equipped with
a flat, torsion-free connection.

EXAMPLE: Let Γ be a group acting on an open subset U ⊂ Rn freely,
properly discontinuously, by affine transforms. Then U/Γ is affine.

REMARK: All flat affine manifolds are obtained this way.

DEFINITION: A flat affine manifold (M,∇) is called special affine if it
admits a ∇-invariant volume form, or, equivalently, it its holonomy belongs
to SL(n,R). A flat affine manifold is complete if it is a quotient of Rn by a
discrete group of affine transforms.

CONJECTURE: Markus conjecture (1961)
a compact affine manifold is complete if and only if it is special.

CONJECTURE: Auslander conjecture (1964)
For any complete affine manifold Rn/Γ, the group Γ is solvable.

CONJECTURE: Chern conjecture (1955)
The Euler class of a compact affine manifold vanishes (proven by Bruno
Klingler in 2017 for special affine manifolds).
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Hessian manifolds

DEFINITION: Let (M,∇) be a flat affine manifold. Since ∇ is torsion-free,

the tensor ∇2(f) is symmetric for any f ∈ C∞M . A Riemannian metric g

on M is called Hessian if locally g = ∇2(f), for some f which is called the

potential of the metric.

EXERCISE: Prove that a metric g on (M,∇) is Hessian if and only if

∇(g) is a symmetric 3-form.

EXERCISE: Prove that the complex

C∞(M)
∇2
−→ Sym2 T ∗M ∇−→

Λ1(M)⊗ Sym2 T ∗M

Sym3 T ∗M

is elliptic.

REMARK: Cohomology of this complex are called Hessian cohomology,

and the cohomology classes represented by Hessian metrics are called Hessian

classes.

REMARK: This geometry is in many ways similar to Kähler geometry.
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Kähler manifolds

DEFINITION: Let (M, I, g) be a complex Hermitian manifold, with I :

TM −→ TM, I2 = − Id being the complex structure operator, and g an I-

invariant Riemannian form. Then ω(·, ·) := g(·, I·) is an anti-symmetric form,

called fundamental form of (M, I, g). If it is closed, (M, I, g) is called Kähler.

THEOREM: (the local ddc-lemma)

Let (M, I, g, ω) be a Kähler manifold, and dc := IdI−1. Then locally ω is equal

to ddc(f) for some function f , which is called a Kähler potential.

REMARK: Let M be a complex manifold. Then the complex

C∞(M)
ddc−→ Λ1,1(M)

d−→ Λ3(M)

is elliptic. If, in addition, M is compact and Kähler, its cohomology is equal

to H1,1(M). For a general complex manifold, its cohomology is called Bott-

Chern cohomology.
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Calabi-Yau theorem

DEFINITION: A cohomology class of a Kähler form in H2(M) is called

the Kähler class of a Kähler manifold.

THEOREM: (Calabi-Yau theorem) Let (M, I) be a compact complex man-

ifold. A Kähler form ω is uniquely determined by its Kähler class and

its volume form.

This theorem has a Hessian counterpart.

THEOREM: (S.-Y. Cheng, S.-T. Yau, 1982)

Let (M,∇) be a compact special affine manifold. A Hessian metric on M

is uniquely determined by its Hessian class and its volume form.
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Special Kähler manifolds

In physics, the following structure occurs very often.

DEFINITION: Let (M, I,∇, g, ω) be a Kähler manifold equipped with a flat,

torsion-free connection ∇ which satisfies ∇(ω) = 0 (but does not necessarily

preserve g). Assume that g is Hessian. Then (M, I,∇, g, ω) is called a special

Kähler manifold.

REMARK: A cotangent space to a special Kähler manifold is always hy-

perkähler (see the next slide).

EXAMPLE: The base of an “algebraic Hamiltonion system” is always equipped

with a special Kähler structure (Donagi, Markman).

EXAMPLE: The moduli space of 3-dimensional Calabi-Yau manifolds is a

special pseudo-Kähler manifold (“pseudo” here refers to the Kähler metric

having Lorentzian signature).
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Hyperkähler manifolds

DEFINITION: A hypercomplex manifold is a manifold M equipped with

three complex structure operators I, J,K, satisfying quaternionic relations

IJ = −JI = K, I2 = J2 = K2 = − IdTM

(the last equation is a part of the definition of almost complex structures).

DEFINITION: A hyperkähler manifold is a hypercomplex manifold equipped

with a metric g which is Kähler with respect to I, J,K.

REMARK: This is equivalent to ∇I = ∇J = ∇K = 0: the parallel translation

along the connection preserves I, J,K.

DEFINITION: Let M be a Riemannian manifold, x ∈ M a point. The

subgroup of GL(TxM) generated by parallel translations (along all paths) is

called the holonomy group of M .

REMARK: A hyperkähler manifold can be defined as a manifold which

has holonomy in Sp(n) (the group of all endomorphisms preserving I, J,K).
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Holomorphically symplectic manifolds

Let (M, g, I, J,K) be hyperkähler, and ωI(·, ·) := g(·, I·) ωJ(·, ·) := g(·, J ·),

ωK(·, ·) := g(·,K·) the corresponding Kähler forms.

DEFINITION: A holomorphically symplectic manifold is a complex manifold

equipped with non-degenerate, holomorphic (2,0)-form.

REMARK: All hyperkähler manifolds are holomorphically symplectic.

Indeed, Sp(n) is a compact form of the symplectic group Sp(2n,C), and the

form ωJ +
√
−1 ωK is holomorphically symplectic on (M, I).

THEOREM: (Calabi-Yau) A compact, Kähler, holomorphically symplectic

manifold admits a unique hyperkähler metric in any Kähler class.
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Holomorphic Lagrangian fibrations

THEOREM: (Matsushita, 1997)

Let π : M −→X be a surjective holomorphic map from a hyperkähler manifold

M to X, whith 0 < dimX < dimM . Then dimX = 1/2 dimM, and the

fibers of π are holomorphic Lagrangian (this means that the symplectic

form vanishes on π−1(x)).

DEFINITION: Such a map is called holomorphic Lagrangian fibration.

REMARK: The base of π is conjectured to be rational. Hwang (2007)

proved that X ∼= CPn, if it is smooth. Matsushita (2000) proved that it has

the same rational cohomology as CPn.

REMARK: The base of π has a natural flat, torsion-free connection

on the smooth locus of π. The combinatorics of this connection can be

used to determine the topology of M (Strominger-Yau-Zaslow, Kontsevich-

Soibelman).

If we want to learn something about M, it’s recommended to start

from a holomorphic Lagrangian fibration.
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Trianalytic subvarieties and hyperholomorphic bundles

Let (M, g, I, J,K) be a hyperkähler manifold. Define trianalytic subvarieties

as closed subsets which are complex analytic with respect to I, J, K.

0. Trianalytic subvarieties are singular hyperkähler.

1. Let L ∈ H be a generic complex structure induced by quaternions. Then

all compact complex subvarieties of (M,L) are trianalytic.

2. A normalization of a hyperkähler variety is smooth and hyperkähler. This

gives a desingularization (“hyperkähler Hironaka”).

3. A complex deformation of a trianalytic subvariety is again trianalytic, the

corresponding moduli space is (singularly) hyperkähler.

4. Similar results (also very strong) are true for vector bundles which are

holomorphic under I, J, K (“hyperholomorphic bundles”)
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Special Lagrangian subvarieties

DEFINITION: (Harvey-Lawson)

Let (M, g, ω, I) be an n-dimensional Calabi-Yau manifold, and Ω ∈ Λn,0(M) its

holomorphic volume form. Special Lagrangian subvariety is a Lagrangian

subvariety S ⊂ (M,ω) such that Re Ω is equal to the Riemannian volume form

on S.

THEOREM: (McLean)

Deformations of special Lagrangian subvarieties are unobstructed, and

in a neighbourhood of S ⊂ M this deformation space is locally identified

with H1(S,R).

REMARK: This implies that any special Lagrangian torus belongs to a

special Lagrangian fibration, defined in its neighbourhood.

REMARK: All known examples of special Lagrangian fibrations are obtained

by “hyperkähler rotation”: one takes a holomorphic Lagrangian fibration

on (M, I), where (M, I, J,K, g) is hyperkähler, and considers it as a real La-

grangian fibration on (M,J, ωJ).
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Mirror symmetry

Kontsevich’s homological mirror symmetry. Derived category of coherent

sheaves on a Calabi-Yau is equivalent to the Fukaya category on the mirror

dual Calabi-Yau, with Hamiltonion isotopy classes of Lagrangian subvarieties

as objects, and the Floer cohomology as morphisms.

SYZ (Strominger, Yau, Zaslow) interpretation of mirror symmetry.

Each Calabi-Yau manifold is equipped with a special Lagrangian toric fibra-

tion, dualizing the tori one obtains the mirror dual Calabi-Yau manifold.
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Kapustin-Witten duality

DEFINITION: The Hitchin system is the space of stable Higgs bundles on
a compact curve C with semisimple structure group G. It is equipped with a
Lagranian fibration with proper fibers and a base

⊕
iH

0(C,K⊗jiC ).

Kapustin-Witten duality (a. k. a “Montonen-Olive/geometric Lang-
lands duality”) is the duality between Hitchin systems associated with Lang-
lands dual Lie groups.

1. The corresponding holomorphic Lagrangian fibrations are expected to
be SYZ dual.

2. In place of the Fukaya category on the symplectic side of Mirror Symme-
try, one has a category of holomorphic Lagrangian subvarieties (called
“BAA”, “ABA” and “AAB branes”).

3. In place of the derived category of coherent sheaves on the complex side of
Mirror Symmetry there is a category which has pairs (trianalytic subvariety,
hyperholomorphic bundle on it) as objects; these are called “BBB branes”.

Kapustin-Witten duality is expected to exchange the BBB branes and
the holomorphic Lagrangian subvarieties.
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Holomorphic Lagrangian fibrations

DEFINITION: Let M be a holomorphically symplectic manifold, and π :

M −→B a proper surjective holomorphic map with B normal and all fibers

holomorphically Lagrangian. Then π is called a holomorphic Lagrangian

fibration.

CLAIM: (Liouville) A smooth fiber F of a holomorphic Lagrangian

fibration π : M −→B is always a torus.

Proof: For any fibration π : M −→B, any smooth fiber F = π−1(x) has

trivial normal bundle NF = π∗(TxB). For any function on B, its Hamiltonian

gives a section of TF . Choose a collection of holomorphic functions such that

their Hamiltonians give a basis in TF . Since these Hamiltonians commute,

the corresponding vector fields in TF also commute. This gives a locally free

action of an abelian Lie group on F , and therefore F is a quotient of an

abelian group by a lattice.

DEFINITION: Let π : M −→B be a proper, regular fibration. The flat

connection on the bundle Riπ∗(RM) on B with the fiber Hi(π−1(x) for all

x ∈ B is called the Gauss-Manin connection.
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Special Kähler geometry on the base of holomorphic Lagrangian fibra-

tions

DEFINITION: Let π : M −→B be a Lagrangian fibration, and F := π−1(x)

a regular fiber. Then π∗TxB = NF = T ∗F . This identifies TB with the bundle

R1π∗(RM) of first cohomology of fibers. Then TB is equipped with a natural

flat connection, called the Arnold-Liouville connection.

EXERCISE: Prove that this connection is torsion-free.

REMARK: Let π : M −→B be a holomorphic Lagrangian fibration. A

Kähler form ω on M restricted to a smooth fiber F of π defines a cohomology

class [ω] ∈ H2(F ). Since F is a torus, we can consider [ω] as a 2-form on

R1π∗(RM) = TB. This form is clearly parallel under the Gauss-Manin

connection, and defines a Kähler structure on B.

THEOREM: (Donagi-Markman, Freed)

Let π : M −→B be a holomorphic Lagrangian fibration on a Kähler holomor-

phic symplectic manifold and B0 ⊂ B be the complement to the discriminant

locus of B. Then (B0,∇, ω) is a special Kähler manifold.
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Lagrangian subvarieties in Hitchin systems

Note that the Hitchin systems are equipped with a natiral C∗-action
which multiplies the Higgs field by a number. Hitchin proved the following
result related to the Kapustin-Witten duality.

THEOREM: (Hitchin) Let π : M −→B be the Hitchin system. Then any C∗-
invariant holomorphic Lagrangian submanifold has an open set with the
structure of a fibration over a C∗-invariant special Kähler submanifold
of B, and each fiber is a disjoint union of translates of an abelian
subvariety.

He asked whether this is true in a more general situation.

THEOREM: (Kamenova-V.) Let π : M −→B be a holomorphic symplectic
Kähler manifold equipped with a holomorphic Lagrangian fibration π with
compact fibers, Z ⊂ M its holomorphic Lagrangian subvariety, X := π(Z),
and X0 ⊂ B the set of all regular values of π : Z −→X. Then X0 is a special
Kähler submanifold of B, and each fiber of π : Z −→X ober X0 is a
disjoint union of translates of the same torus.
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Lagrangian subspaces in W ⊕W ∗

Lemma 1: Suppose V ⊂W ⊕W ∗ is a Lagrangian vector subspace in W ⊕W ∗

with standard symplectic structure, and π : W ⊕W ∗ −→W the projection.

Then π(V )⊥ = V ∩W ∗, where R⊥ ⊂W ∗ denotes the annihilator of a subspace

R ⊂W , and W ∗ is considered as a subspace in W ⊕W ∗.

THEOREM: (Kamenova-V.) Let π : M −→B be a holomorphic symplectic

Kähler manifold equipped with a holomorphic Lagrangian fibration π with

compact fibers, Z ⊂ M its holomorphic Lagrangian subvariety, X := π(Z),

and X0 ⊂ B the set of all regular values of π : Z −→X. Then X0 is a special

Kähler submanifold of B, and each fiber of π : Z −→X ober X0 is a

disjoint union of translates of the same torus.

Proof. Step 1: Let Zx := π−1(x) ∩ Z, where x ∈ X0. The holomorphic

symplectic form induces non-degenerate pairing between TπzM (the fiberwise

tangent space) and TxB. Therefore, for all z ∈ Zx, one has TzZx = π(TzZ)⊥∩
TπzM , hence the spaces TzZx are translates for all z ∈ Zx. Therefore, Zx
is the union of tori which are translates of the same torus.
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Step 2: It remains only to show that X0 ⊂ B is flat with respect to

the Arnold-Liouville connection. We may identify the vertical tangent

space TπzM with H1(π−1(x)). Then TzZx is identified with the cohomology

of a compact torus H1(Zx), hence it stays constant under deformations of

x. Then π(TzZ) = π((TzZ)⊥) is constant under the Arnold-Liouville

connection.

18


